

S1. UV-Vis spectra of Mango Leaf

Table T1. Recovery efficacy w.r.t As

Spiked (ppb)	Attained (ppb)	RSD (%)
5	4.8	96
7	6.8	97
10	9.5	95

Table T2. Recovery efficacy w.r.t Hg

Spiked (ppb)	Attained (ppb)	RSD (%)
5	4.6	92
7	6.9	98.6
10	9.7	97

S2 Recovery efficacy w.r.t As and Hg of modified AuNPs via Mango Leaf Extract

Table 13. Comparative analysis of the sensing scheme with other reported	works
--	-------

Sensing Mechanism	Heavy Metal	Medium	Limit of Detection	References
	Ion			
Colorimetric	Hg ²⁺ , Pb ²⁺	papain- functionalized <u>gold</u>	200 nM	[1]
	and Cu ²⁺	<u>nanoparticles</u>		
peroxidase- like activities	$\begin{array}{c} Pb^{2+}\\ and\\ Hg^{2+}\end{array}$	Gold nanoparticles	NP*	[2]
Colorimetric	Hg ²⁺	Cinamon modified gold Nanoparticles	NP*	[3]
Colorimetric	Pb ²⁺	functionalized gold nanoparticles	310 ng mL ⁻¹	[4]
Colorimetric	As ³⁺	glutathione functionalized gold nanoparticles	NP*	[5]
Colorimetric	$\begin{array}{c} Hg^{2+} \\ Pb^{2+} \end{array}$	dual-functional Ag/Au nanoparticles	5 nM, 1.4 nM	[5]
Colorimetric	Pb ²⁺	SiO _{2core} – Au _{shell} nanocomposit es	NP*	[6]

Colorimetric	Hg ²⁺	biogenetic gold	NP*	[7]
Colorimetric	$\begin{array}{c} As^{3^+} \\ Hg^{2^+} \end{array}$	Mango leaf modified gold nanoparticles	1, 1.3 ppb	This work

*-Not Provided

References

- [1] Biosensors and Bioelectronics, 26, 10, 4064-4069, 2011
- [2] Anal. Chem. 2014, 86, 4, 2065–2072
- [3] Colloids and Surfaces A: Physicochemical and Engineering Aspects, 5 2017, 451-457,

https://doi.org/10.1080/00032719.2014.961641

- [4] Analytical Letters, 48, 5, 2015
- [5] Optics & Laser Technology, 133, 2021, 106522
- [5] J. Mater. Chem. C, 2018,6, 7557-7567
- [6] Microchemical Journal, 124, 2016, Pages 104-110

[7] Colloids and Surfaces A: Physicochemical and Engineering Aspects, 508, 2016, 360-365