Supporting Information

In-situ synthesis of $g-C_3N_4$ /Ti₃C₂T_x nano-heterostructures for enhanced photocatalytic H₂ generation via water splitting

Amol B. Tambe,¹ Sudhir S. Arbuj, ^{1,*} Govind G. Umarji,¹ Sulbha K. Kulkarni,¹ Bharat B. Kale^{1,2,*}

¹Centre for materials for Electronics Technology (C-MET), Minister of Electronic and Information Technology Off Pashan Road, Panchwati, Pune-411008, Maharashtra, India.

²MIT World Peace University (MIT-WPU), Paud Rd, Kothrud, Pune, Maharashtra 411038.

E-mail: sudhir1305@gmail.com / bbkale1@gmail.com

Fig.S1 FESEM image of gCT-1(g, h), gCT-0.50(i, j), gCT-0.25(k, l), and gCT-0.05(m, n).

Fig.S3 FTIR Spectra of Ti₃C₂T_x, g-C₃N₄, gCT-1, gCT-0.75, gCT-0.50, gCT-0.25, and gCT-0.05.

Fig. S4 UV-Vis Absorbance spectra of (a) MB degradation under UV-Visible light (b) $Ti_3C_2T_x$, (c)g-C₃N₄,(d) gCT-1, (e)gCT-0.75, (f) gCT-0.50, (g) gCT-0.25, (h) gCT-0.05 and (i) UV-Vis absorbance spectra of MB degradation under dark condition using $Ti_3C_2T_{x,g}$ -C₃N₄ and its nanoheterostructure.

Fig. S5 a) photo conductivity sample measurement design, b) Actual sample deposited, c) current –Voltage characteristics of $Ti_3C_2T_x$, g-C₃N₄, gCT-1, gCT-0.75, gCT-0.50, gCT-0.25, and gCT-0.05.

a)	Region B.E.(eV)		FWHM(eV)	Assigned	References
		454.6(460.3)	0.7	Ti-C	1
Ti2p _{3/2} (2p _{1/2})		455.4(461.3)	0.8	Ti ²⁺	2
		456.3(462.3)	1.3	Ti ³⁺	3
		459.1(464.0)	1.6	Ti-O	1
		461.5(466.8)	2.5	C-Ti-T _x	2
		464.9	1.9	TiO _{2-X} T _x	1
		281.6	1.0	C-Ti	2
		284.4	1.1	C-Ti-T _x	1
	C 1s	285.0	1.0	C-C	2
		286.1	1.6	CH _x /C-O	1
		288.4	1.4	C-F/-COO	2
		529.9	1.1	TiO ₂	1
		530.7	1.1	Ti-O _x	2
	01s	531.8	1.2	Ti-OH	1
		533.2	1.6	Ti-H₂O	2
	F 1s	684.7	1.3	C-Ti-T _x	1
		685.7	1.5	C-F	2
b)	Region	B.E.(eV)	FWHM(eV)	Assigned	References
		454.3(460.0)	1.0	Ti-C	1
		455.9(461.8)	1.5	Ti ²⁺	2
Ti2p _{3/2} (2p _{1/2})		457.7(463.7)	1.6	Ti ³⁺	3
		458.2(464.1)	1.2	Ti-O	1
	,_,	460.9(465.9)	2.6	C-Ti-T _x	2
		463.8	1.6	TiO _{2-X} T _x	1
		281.0	0.5	C-Ti	2
		284.5	1.2	C-C	1
	C 1s	286.8	1.8	C-N=C	2
		287.8	1.2	N-C=N	1
		397.9	0.9	C-N=C	1
	N 1s	398.8	1.5	N-(C) ₃	1
		400.2	1.4	C-N-H	1
		529.3	1.2	TiO ₂	1
		530.5	1.3	Ti-O _x	2
	01s	531.4	1.0	Ti-OH	1
		532.4	1.1	Ti-H₂O	2
	F 1s	683.8	1.5	C-Ti-T _x	1
		685.4	1.9	C-F	2
c)	Region	B.E.(eV)	FWHM(eV)	Assigned	References
		284.2	1.0	C-C	1
	C 1s	286.8	0.9	C-N=C	2
		287.8	0.8	N-C=N	1
		398.2	0.9	C-N=C	1
	N1s	399.1	1.2	N-(C) ₃	1
		400.5	0.9	C-N-H	1

Table S1 XPS peak fitting results of a) $Ti_3C_2T_x$, b) gCT-0.75, c) g- C_3N_4

Table S2. Time Resolved Photoluminescence (TRPL) fitting parameters about fast PL lifetime (τ_1) , slow PL lifetime (τ_2) , and average lifetime (τ_{ave}) for Ti₃C₂T_x, gCT-0.75, g-C₃N₄.

Catalyst	A ₁ (%)	τ ₁ (ns)	A ₂ (%)	τ ₂ (ns)	τ _{ave} (ns)
Ti ₃ C ₂ T _x	91.3042	0.6801	8.9214	3.9214	1.8290
gCT-0.75 g-C ₃ N ₄	84.0100 90.2382	0.9723 0.7682	15.9900 9.7618	4.5923 4.0123	2.7656 1.9390

Table S3 Photocatalytic Hydrogen generation (μ mole of H₂ in 4h) of prepared Ti₃C₂T_x, g-C₃N₄, gCT-1, gCT-0.75, gCT-0.50, gCT-0.25, and gCT-0.05.

Time(h)	Amount of H_2 generated in μ mol/0.1g						
	$Ti_3C_2T_x$	$g-C_3N_4$	gCT-1	gCT-0.75	gCT-0.50	gCT-0.25	gCT-0.05
1	14.50	212.22	350.11	482.36	309.89	290.24	266.16
2	33.18	429.41	716.26	947.78	633.21	555.23	520.12
3	49.89	642.83	1040.65	1410.36	948.98	830.36	760.20
4	74.90	860.98	1410.21	1912.25	1296.23	1150.32	1021.23

S. No.	Photocatalyst	Light Source	Amount (mg)	Scavenger	Photocatalytic activity H ₂ generation	Ref.
1	$Ti_3C_2/g-C_3N_4$	200 W Hg lamp	30	triethanolamine	72.3 μ mol gcat ⁻¹ h ⁻¹	1
2	$g-C_3N_4@Ti_3C_2$ QDs	300 W Xe arc lamp	10	triethanolamine	5111.8 μmol g ⁻¹ h ⁻¹	2
3	$g-C_3N_4/Ti_3C_2T_x$	350 W xenon lamp	30	triethanolamine	88 μmol /g.cat./h	3
4	2Dg-C ₃ N ₄ /2D TiO ₂	300 W Xenon Iamp source	30	triethanolamine	1840.83 mmol g ⁻¹ L ⁻¹	4
5	$g-C_3N_4/Ti_3C_2/Pt$	300 W Xe lamp	30	methanol	5100 μmol h ⁻¹ g ⁻¹	5
6	P doped g-C ₃ N ₄ / Ti ₃ C ₂	Xe lamp 300 W	10	TEOA	3600.5 μmol h ⁻¹ g ⁻¹	6
7	gCT-0.75	400 Mercury Vapour Iamp	20	Methanol	1912.25 μmol h ⁻¹ 0.1g ⁻¹	This work
8	$g-C_3N_4/Ti_3C_2$	300 W Xe lamp (λ > 420 nm)	50	TEOA	116.2 μmol h ⁻¹ g ⁻¹	7
9	$Ti_{3}C_{2}/O$ -doped g- $C_{3}N_{4}$	300 W Xe lamp	10	TEOA	25124 μmol h ⁻¹ g ⁻¹	8
10	CCNT-TO-0.6	Xenon lamp 300 W	30	ΤΕΟΑ	1840.8 μmol h ⁻¹ g ⁻¹	9
11	BNCN20	Xenon lamp 300 W (λ > 420 nm)	10	ΤΕΟΑ	1941.7 μmol h ⁻¹ g ⁻¹	10

Table S4 Photocatalytic Hydrogen production using $MXene/g-C_3N_4$

Table S5. Hydrogen evolution rates $Ti_3C_2T_x$, $g-C_3N_4$, gCT-1, gCT-0.75, gCT-0.50, gCT-0.25, and gCT-0.05 and their corresponding apparent quantum yield (AQY).

S.No.	Catalyst	Amount of H₂ generated in (μmol/0.1g)	AQY(%)ª
1	Ti ₃ C ₂ T _x	74.90	0.2
2	g-C ₃ N ₄	860.98	1.4
3	gCT-1	1410.21	2.3
4	gCT-0.75	1912.25	3.1
5	gCT-0.50	1296.23	2.1
6	gCT-0.25	1150.32	1.9
7	gCT-0.05	1021.23	1.7

a = the % AQE calculated using the H_2 generation values for 0.1 g catalyst per $h_{\cdot}^{\cdot 11}$

Time(min) MB $Ti_3C_2T_x$ $g-C_3N_4$ gCT-1 gCT-0.75 gCT-0.50 gCT-0.25 gCT-0.05 0 100 100 100 100 100 100 100 100 80.78 15 90.58 87.99 81.27 80.28 74.84 80.50 80.23 30 83.75 76.77 64.51 67.71 74.59 88.98 60.49 73.32 60 86.96 77.54 70.25 54.20 50.59 57.84 62.59 65.20 90 85.72 67.14 60.68 42.95 39.8 46.61 52.79 53.13

30.10

16.43

8.30

37.56

31.56

21.72

41.85

36.47

27.41

48.68

41.95

32.60

Table S6 Amount of MB remain of prepared Ti₃C₂T_x, g-C₃N₄, gCT-1, gCT-0.75, gCT-0.50, gCT-0.25, and gCT-0.05.

33.42

21.95

15.30

120

150

180

83.39

82.66

81.60

59.54

56.95

47.69

53.60

45.68

36.91

S.No.	Photocatalyst	Light source	Amount (mg)	Dye	Dye con(µm)	Photocatalytic activity %Dye degradation	Ref.
1	facile modification of g-C ₃ N ₄	400W halogen lamp	80	MB	20	85.5	12
2	C_3N_4/Cu_2O	400 W sodium vapor lamp	50	MB	10	81	13
3	MXene/g-C ₃ N ₄	500 W halogen lamp	50	MB	20	69.9	14
4	gCT-0.75	400 Mercury Vapour Lamp	50	MB	30	91.7	This work
5	$Ti_{3}C_{2}T_{x}$ /alkalized- $C_{3}N_{4}$	300 W Xe lamp	10	MB	20	77	15

Table S7 Photocatalytic MB degradation $Ti_3C_2T_x/g-C_3N_4$.

Photoconductivity Measurements by I-V

To support the higher photocatalytic activity of gCT-0.75, the photoconductivity measurements of Ti₃C₂T_x, g-C₃N₄, gCT-1, gCT-0.75, gCT-0.50, gCT-0.25, and gCT-0.05 were carried out and the obtained current-voltage characteristics are depicted in (Supporting information Fig. S5 c). For photoconductivity measurement, the construction schematic is illustrated in (Supporting information Fig. S5 a). $Ti_3C_2T_x$ nanostructured powder films deposited on pre-patterned silver (CI1001, ECM USA) inter-digited electrode (jet-printed using Nordson PICO Pulse contact dispensing valve printer) on paper (Substrate). The interelectrode spacing of 200 µm between electrodes was maintained with a total path length of 30 mm. The 6 mm open diameter mask was pasted on the pre-patterned silver electrode to ensure the same area of powder films deposited for each photoconductivity measurement. The dispersed powder concentration was maintained the same for all samples throughout the photoconductivity measurement experiment (Supporting information Fig. S5 b). The measurements were performed using a kelvin probe connected to spring-loaded pressure contacts at room temperature. The entire setup was maintained in the metallic chamber (shield) in order to reduce the electrical noise effect. ^{16,17} I-V measurements were carried out using Keithley 4200 semiconductor characterization system (SCS) integrated with photoemission system (1000 W xenon lamp and 1.5AM (air mass ratio). All sample measurements were taken with voltage bias from -2.5 V to + 2.5 V under the illumination of light for all synthesized sample. ^{18,19} The Ti₃C₂T_x, gCT-1, gCT-0.50, gCT-0.25, and gCT-0.05 show relatively less photocurrent (in the range of 2.42-1.38 X 10⁻⁸ A) compared to gCT-0.75 as shown in the range of 2.73 X 10⁻⁸A) at applied bias of 0.75 V. The ~2 time's enhanced photoconductivity is observed for the gCT-0.75 than the other prepared catalyst and \sim 6 times than that of g-C₃N₄ (4.23 X 10⁻⁹A). This photoconductivity result is in accordance with the higher photocatalytic performance of gCT-0.75 among prepared catalysts.

References

- 1. T. Su, Z. D. Hood, M.Naguib, L. Bai, S. Luo and C. M. Rouleau, I. N. Ivanov, H. Ji and Z. Qin ZiliWu, *Nanoscale*, 2019, **11**, 8138-8149.
- 2. Y.Li, L.Ding, Y. Guo, Z. Liang, H. Cui, and J. Tian, ACS Appl. Mater. Interfaces. 2019, **11** (44), 41440-41447.
- 3. Y.Sun, D. Jin, Y. Sun, X. Meng, Y. Gao, Y. D.Agnese, C.Gang and X.Wang, *J. Mater. Chem. A*,2018,**6**, 9124-9131.
- 4. J. Liu , H. Zhou , J. Fan and Q. Xiang, Int. J. Hydrog. Energy, 2022, 47, 4546-4558.
- 5. X. An, W. Wang, J. Wang, H. Duan, J. Shi, X. Yu, *Phys. Chem. Chem. Phys.* 2018, **20**, 11405-11411.
- Z. Ai, Y. Shao, B. Chang, L. Zhang, J.Shen, Y. Wu, B.Huang and X. Hao, *Appl. Catal., B* 2019, 259, 118077.
- 7. J. Li, L. Zhao, S. Wang, J. Li, G. Wang and J. Wang, Appl. Surf. Sci., 2020, 515, 145922.
- 8. P. Lin, J. Shen, X. Yu, Q. Liu, D. Li and H. Tang, *Ceram. Int.*, 2019, **45**, 24656-24663.
- 9. J. Liu, H. Zhou, J. Fan and Q. Xiang, Int. J. Hydrog. Energy, 2022, 47(7), 4546-4558.
- 10. H. Dang, S.Mao, Q. Li, M. Li, M. Shao, W. Wang and Q. Liu, *Catal. Sci. Technol.*, 2022, **12**, 5032.
- 11. T. Su, Z.D. Hood, M. Naguib, L. Bai, S. Luo, C.M. Rouleau, I.N. Ivanov, H. Ji, Z. Qin and Z.Wu, *ACS Appl. Energy Mater.*, 2019, **2**,4640-4651.
- 12. F.Changa, Y. Xiea, C. Li, J. Chena, J. Luoa, X. Hub, J.Shen, *Appl. Surf. Sci.*, 2013, **280**, 967-974.
- 13. G. R. Surikanti, P. Bajaj, and M. V. Sunkara, ACS Omega, 2019, 4(17), 17301-17316
- 14. M.Nasri, M.Samsudin, A.Tahir and S. Sufian, *Energies*, 2022, **15**, 955.
- 15. Y. Xuanying , Y. Jili, T. Haifang, D. Yi, H. Bashir, Y.Kai , C. Yuqing, Liu Xia, *J. Colloid Interface Sci.*, 2020, **571**, 297-306.
- 16. M. Zhang, J Qin, S. Rajendran, X. Zhang and R. Liu, *Chem. Sus. Chem.*, 2018, 11, (24), 4226-4236.
- 17. H. Yu, H. Ma, X. Wu, X.Wang, J.Fan and J.Yu, Solar Photocatalysis, 2021, 5, (2), 2000372.
- 18. J. Liu, H. Zhou, J. Fan and Q. Xiang, Int.J.Hydrog.Energy., 2022,47, 7, 4546-4558.
- 19. N. Jawale, S. Arbuj, G.Umarji, M. Shinde, B. Kale and S.B. Rane, *RSC Adv.*, 2023, 13, 2418-2426.