Ferrocenylselenoether and its Cuprous Cluster Modified TiO₂ as

Visible-light Photocatalyst for Synergistic Transformation of N-Cyclic

Organics and Cr (VI)

Zhuo Yang^a, Jinshan Wang^a, Aimin Li^b, Chao Wang^{a,c}, Wei Ji^{a,*}, Elísabet Pires^c,

Wenzhong Yang^a, Su Jing^{a,*}

^a School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China. Email: buffycomji@njtech.edu.cn (W. Ji), sjing@njtech.edu.cn (S. Jing)

^b State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China

^c Instituto de Síntesis Química y Catálisis Homogénea, CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, E-50009 Zaragoza, Spain.

Preparation of L0 and fcSe

Figure S1. Crystallographic structure of L0.

- Figure S2. ¹H NMR spectrum of L0.
- Figure S3. HRMS spectrum of L0.
- Figure S4. ¹H NMR spectrum of fcSe.
- Figure S5. HR MS spectrum of fcSe.
- Figure S6. High-resolution XPS spectrum of Ti 2p in fcSe@TiO₂.
- Figure S7. TEM images of fcSe@TiO₂ nanoparticles and size distribution.
- Figure S8. TEM images of $[Cu_2I_2(\mathbf{fcSe})_2]_n@TiO_2$ nanoparticles and size distribution.
- Figure S9. FTIR spectra of TiO₂, fcSe, fcSe@TiO₂ and $[Cu_2I_2(fcSe)_2]_n@TiO_2$.
- Figure S10. Nitrogen adsorption-desorption isotherms of $fcSe@TiO_2$ (blue) and $[Cu_2I_2(fcSe)_2]_n@TiO_2$ (red).
- Figure S11. The first derivative of the Tauc Plot curve for $fcSe@TiO_2$ and $[Cu_2I_2(fcSe)_2]_n@TiO_2$.
- **Figure S12.** Transformation efficiency of (a) **fcSe**@TiO₂, (b) [Cu₂I₂(**fcSe**)₂]_n@TiO₂ for TC and Cr(VI) in multiple catalytic cycles.
- **Figure S13.** TEM images of **fcSe**@TiO₂ nanoparticles and size distribution after five catalytic cycles.
- **Figure S14.** TEM images of $[Cu_2I_2(\mathbf{fcSe})_2]_n$ (*TiO*₂ nanoparticles and size distribution after five catalytic cycles.
- Figure S15. FTIR spectra of TiO₂, fcSe, fcSe@TiO₂ and [Cu₂I₂(fcSe)₂]_n@TiO₂ after five cycles.
- Figure S16. The fluorescence change of SOSG in response to ${}^{1}O_{2}$ generated in the $[Cu_{2}I_{2}(\mathbf{fcSe})_{2}]_{n}@TiO_{2}$ system with $\cdot O_{2}^{-}$ scavenger p-BQ (red line) or TEMPOL (blue line).
- Figure S17. The spectrum of the Xenon Lamp MC-PF300C.
- Table S1. Crystallographic data for the L0.
- Table S2. Selected bond lengths (Å) and bond angles (°) for L0.
- **Table S3.** Zeta potentials and Z-average hydrodynamic diameters of $fcSe@TiO_2$ and $[Cu_2I_2(fcSe)_2]_n@TiO_2$ at different pH.

Table S4. TC photocatalytic degradation efficiency comparison of $fcSe@TiO_2$ and $[Cu_2I_2(fcSe)_2]_n@TiO_2$ with other representative systems.

Table S5. LC-MS spectra of degradation products.

Table S6. Evaluation of $fcSe@TiO_2$ and $[Cu_2I_2(fcSe)_2]_n@TiO_2$ in the visible lightphoto-degradation of representative N-cyclic organics.

References

Preparation of L0 and fcSe

All starting materials were analytical grade reagents and purchased from Aladdin or Source Leaf, and used without further purification unless otherwise specified. TiO₂ was commercial P25 (75% anatase, 25% rutile). 1,2,3-Triselena[3]ferrocenophane fcSe₃ (fc = [Fe(η^5 -C₅H₄)(η^5 -C₅H₄)]) was prepared according to literature method¹.

L0: fcSe₃ (0.426 g, 1 mmol) and NaBH₄ (0.378 g, 10 mmol) were added into anhydrous ethanol (150 mL) under nitrogen atmosphere. The reaction was performed at 0 °C for 30 min, then at 25 °C for 2 h. A THF solution of methyl 4-(bromomethyl)benzoate (0.458 g, 2 mmol) was added, and the reaction was carried out at 25 °C for 24 h. The solid precipitation was obtained by evaporation under reduced pressure, and was treated with water (50 mL) and extracted with dichloromethane (3×50 mL). The extract was dried over magnesium sulfate, evaporated to dryness. The yellowish solid 1,1'-bis[1-(methyl-4-benzoic acid methyl ester)-seleno]ferrocene (**L0**) was obtained by elution with petroleum ether/ethyl acetate (15:1 v/v). Yield 0.457 g (68%). ¹H NMR (400 MHz, CDCl₃, δ): 7.89, 7.87, 7.11, 7.09 (m, 8H, -ArH), 4.16, 4.09 (dd, 8H, -fcH), 3.91(s, 4H, -Se-CH₂-) 3.79 (s, 6H, -CH₃). ESIMS: 642.8 ([M+H]⁺).

KOH (0.310 g, 5.5 mmol) was added to ethanol (150 mL) solution of L0 (0.450 g, 0.7 mmol), then the mixture was left to react at 80 °C for 2 h. Part of the solvent was removed by evaporation under reduced pressure, then treated with dichloromethane (50 mL) and extracted with water (3×50 mL). Concentrated hydrochloric acid was added dropwise to the aqueous phase to adjust the acidity to pH=1.0. The yellow precipitation was collected to obtain the target product 1,1'-bis((4-carboxybenzyl)seleno)ferrocene (fcSe). Yield 0.381g (86%). ¹H NMR (400 MHz, DMSO-d⁶, δ): 12.84 (s, -COOH), 7.78, 7.76 (m, 8H, -ArH), 4.20, 4.09 (dd, 8H, -fcH), 3.87 (s, 4H, -Se-CH₂-). ESIMS: 614.9 ([M+H]⁺).

Figure S1. Crystallographic structure of L0.

Figure S2. ¹H NMR spectrum of L0.

Figure S3. HRMS spectrum of L0.

Figure S4. ¹H NMR spectrum of fcSe.

614.9278 614.9276 0.2 0.3 17.5 23.7 n/a n/a C26 H23 04 Fe Se2

Figure S5. HRMS spectrum of fcSe.

Figure S6. High-resolution XPS spectrum of Ti 2p in fcSe@TiO₂.

Figure S7. TEM images of $fcSe@TiO_2$ nanoparticles and size distribution.

Figure S8. TEM images of $[Cu_2I_2(\mathbf{fcSe})_2]_n$ ($(TiO_2 nanoparticles and size distribution)$.

Figure S9. FTIR spectra of TiO₂, fcSe, fcSe@TiO₂ and $[Cu_2I_2(fcSe)_2]_n@TiO_2$

Figure S10. Nitrogen adsorption-desorption isotherms of $fcSe@TiO_2$ (blue) and $[Cu_2I_2(fcSe)_2]_n@TiO_2$ (red).

Figure S11. The first derivative of the Tauc Plot curve for $fcSe@TiO_2$ and [Cu₂I₂(fcSe)₂]_n@TiO₂.

Figure S12. Transformation efficiency of (a) $fcSe@TiO_2$, (b) $[Cu_2I_2(fcSe)_2]_n@TiO_2$ for TC and Cr(VI) in multiple catalytic cycles.

Figure S13. TEM images of $fcSe@TiO_2$ nanoparticles and size distribution after five catalytic cycles.

Figure S14. TEM images of $[Cu_2I_2(\mathbf{fcSe})_2]_n$ ($Cu_2I_2(\mathbf{fcSe})_2]_n$) TiO₂ nanoparticles and size distribution after five catalytic cycles.

Figure S15. FTIR spectra of TiO₂, **fcSe**, **fcSe**@TiO₂ and $[Cu_2I_2(fcSe)_2]_n@$ TiO₂ after five cycles.

Figure S16. The fluorescence change of SOSG in response to ${}^{1}O_{2}$ generated in the $[Cu_{2}I_{2}(\mathbf{fcSe})_{2}]_{n}@TiO_{2}$ system with $\cdot O_{2}^{-}$ scavenger p-BQ (red line) or TEMPOL (blue line). Experimental conditions are 25-30 °C, pH = 7, $[Cu_{2}I_{2}(\mathbf{fcSe})_{2}]_{n}@TiO_{2}$ dosage = 0.2 g/L, H₂O₂ concentration = 20 mM, p-BQ or TEMPOL concentration = 2.5 mM, SOSG concentration = 0.25 μ M, 5 min of visible light irradiation.

Figure S17. The spectrum of the Xenon Lamp MC-PF300C.

Complexes	LO
Empirical formula	C ₂₈ H ₂₆ FeO ₄ Se ₂
Formula weight	640.26
Crystal system	Monoclinic
Space group	$P2_{1}/c$
a (Å)	12.387(3)
$b(\dot{A})$	6.2596(17)
$c(\dot{A})$	33.747(9)
α (°)	90
β (°)	91.613(3)
γ (°)	90
$V(Å^3)$	2615.6(12)
Z	4
$D_{\rm c} (\rm g \cdot \rm cm^{-3})$	1.626
μ (mm ⁻¹)	3.392
F (000)	1280
Crystal size (mm ³)	$0.18 \times 0.06 \times 0.05$
θ Range	1.645-25.000
Reflections collected	17262
Independent reflections	$4578 [R_{int} = 0.0610]$
Reflections observed $[I > 2\sigma(I)]$	3384
Data/restraints/parameters	4578/316/0
Goodness-of-fit on F^2	1.101
$R_1/wR_2 \left[I > 2\sigma(I)\right]$	0.1038/0.1999
R_1/wR_2 (all data)	0.0785/0.1908
Max., Min. $\Delta \rho$ (e·Å ⁻³)	1.663, -1.490

Table S1. Crystallographic data for L0

Bond	lengths	Bond	lengths	Bond angles	
Se1-C1	1.921(8)	Sel-Cl1	1.972(8)	C1-Se1-C11	98.6(3)
Se2-C6	1.892(9)	Se2-C19	1.943(9)	C6-Se2-C19	95.4(4)
O1-C18	1.199(15)	O2-C18	1.343(17)	C18-O2-C27	117.0(11)
O3-C26	1.212(14)	O4-C26	1.327(15)	C26-O4-C28	117.2(11)

 Table S2. Selected bond lengths (Å) and bond angles (°) for L0

Table S3. Zeta potentials and Z-average hydrodynamic diameters of \mathbf{fcSe} (TiO_2 and $[Cu_2I_2(\mathbf{fcSe})_2]_n$ (TiO_2 at different pH.

	fcS	e@TiO ₂	$[Cu_2I_2(\mathbf{fcSe})_2]_n$ (\overline{m} TiO ₂		
pН	ζ (mv) ± SD	Z-average size $(nm) \pm SD$	ζ (mv) ± SD	Z-average size $(nm) \pm SD$	
3	9.07 ± 1.0	6716 ± 57.0	3.70 ± 0.8	4933 ± 32.0	
5	5.06 ± 3.6	1530 ± 22.0	9.77 ± 2.2	4338 ± 63.0	
7	25.3 ± 2.0	673.3 ± 43.0	-7.46 ± 1.2	3141 ± 24.0	
9	-40.8 ± 6.5	366.2 ± 48.0	-23.1 ± 4.3	345.4 ± 30.0	

 $\label{eq:comparison} \textbf{Table S4. } TC \ photocatalytic \ degradation \ efficiency \ comparison \ of \ \textbf{fcSe} @TiO_2 \ and \ [Cu_2I_2(\textbf{fcSe})_2]_n @TiO_2 \ with \ other \ representative \ systems.$

Catalyst	Catalyst dosage g/L	H_2O_2 mM	Initial pH	TC initial concentration mg/L	Degradation effect	Reference
fcSe@TiO ₂	0.2	19.8	7	20	30 min 93.1%	This work
$[Cu_2I_2(\textbf{fcSe})_2]@TiO_2$	0.2	19.8	7	20	30 min 91.3%	This work
Fe ²⁺	0.005	0.59	7.5	100	60 min 97.1%	2

Fe-MOFs	0.15	10 mL/L	4.1	50	20 min 82.5%	3	
C@FONC	0.5	5	3	150	180 min 97.9%	4	
Fe-POM/CNNS-N _{vac}	1	10	4.5	20	18 min 96.5%	5	
15-yCeO ₂ /Fh	0.4	50	4	20	60 min 93.6%	6	
Fe-R-2	0.4	10	3.81	100	120 min 98.1%	7	
APRM-110	0.5	20	4.3	40	60 min 87.8%	8	
MFO-Au ₃	0.1	50	6	20	90 min 88.3%	9	
0.8MLD/CN/Fe ₃ O ₄	0.5	80	7	20	80 min 95.8%	10	
Cu-HNCN/PF	0.2	20	6.5	10	50 min 96%	11	
$Fe-g-C_3N_4/Bi_2WO_6$	0.4	1	6.5	10	120 min 93.9%	12	
FMCNEP	1.3	20	5	25	60 min 97.5%	13	

Table S5. LC-MS information and proposed structure of photocatalytic products in the catalytic degradation of TC by $fcSe@TiO_2$ and $[Cu_2I_2(fcSe)_2]n@TiO_2$

Intermediate Products	Retention Time (min)	MS (m/z)	Molecular Formula	Supposed Structure	fcSe@TiO ₂	$[Cu_2I_2(\mathbf{fcSe})_2]_n @TiO_2$
TC	6.49-6.59	445	$C_{22}H_{24}N_2O_8$	$H_{3}C_{N}CH_{3}$	\checkmark	\checkmark
I1	6.62-6.72	461	$C_{22}H_{26}N_2O_9$	$H_{3C} \xrightarrow{CH_{3}} H_{3C} \xrightarrow{CH_{3}} H_{3$	\checkmark	\checkmark
Ι2	6.77-6.86	433	$C_{20}H_{22}N_2O_9$	HO CH ₃ HH ₂ OH OH OH OH OH OH OH	\checkmark	\checkmark
13	6.87-6.94	427	$C_{22}H_{22}N_2O_7$		\checkmark	\checkmark
I4	6.48-6.45	353	$C_{16}H_{20}N_2O_7$		\checkmark	\checkmark
I5	6.21-6.3	337	$C_{14}H_8O_{10}$		\checkmark	\checkmark

I6	7.19-7.27	417	$C_{20}H_{22}N_2O_8$	HO CH ₃ NH ₂ OH O OH NH ₂	\checkmark	\checkmark
Ι7	7.04-7.11	447	$C_{20}H_{17}NO_{11}$	OH OH CH ₃ OH OH OH OH NH;	\checkmark	\checkmark
I8	7.13-7.19	325	$C_{19}H_{14}O_5$		\checkmark	-
19	6.8-6.91	266	$C_{13}H_{14}O_{6}$	CH ₂ OH OHOHOOH	\checkmark	-
I10	6.2-6.39	256	$C_{16}H_{16}O_3$		\checkmark	\checkmark
I11	5.85-6.04	242	$C_{15}H_{14}O_3$		\checkmark	\checkmark
I12	6.73-6.82	297	$C_{12}H_8O_9$		-	\checkmark

N analia ananiaa	Stranstand formation	fcSe(a	DTiO ₂	[Cu ₂ I ₂ (fcSe)	$[Cu_2I_2(\mathbf{fcSe})_2]_n$ @TiO ₂		
N-cyclic organics	Structural formula	Removal efficiency	$\eta_{ m CO+HCOOH}{}^{ m b}$	Removal efficiency	$\eta_{ m CO+HCOOH}{}^{ m b}$		
Tetracycline	$\begin{array}{c} \begin{array}{c} OH & O & HO \\ HO & HO \\ HO \\ HO \\ \end{array} \begin{array}{c} HO \\ H \\ \end{array} \begin{array}{c} OH \\ H \\ \end{array} \begin{array}{c} OH \\ H \\ OH \\ \end{array} \begin{array}{c} OH \\ OH \\ \end{array} \end{array}$	93.1%	7.2%	91.3%	6.1%		
Ciprofloxacin	R HN HN	86.2%	11.8%	64.9%	20.8%		
Methylene blue	N S C	93.9%	8.1%	41.4%	6.6%		
Toluidine blue	$H_{3}C$ $H_{2}N$ H	94.2%	6.9%	88.9%	10.8%		
Pigment Green		92.0%	3.0%	93.7%	4.3%		
Basic violet	N HCI	92.3%	4.4%	86.2%	3.7%		
Methyl Orange	Na' N C N N	17.1%	7.9%	16.0%	7.3%		
Imidazole	Z N N	16.6%	4.7%	25.9%	5.9%		

Table S6. Evaluation of \mathbf{fcSe} (TiO_2 and $[Cu_2I_2(\mathbf{fcSe})_2]_n$ (TiO_2 in the visible light photo-degradation of representative N-cyclic organics^a.

^a Experimental conditions are 25-30 °C, pH = 7, catalyst dosage = 0.2 g/L, H₂O₂ concentration = 20 mM. ^b The conversion rate CO and HCOOH $\eta_{CO+HCOOH}$ was calculated by Eq. (4).

References

[1] M.R. Burgess, S. Jing, C.P. Morley, J. Organomet. Chem., 2006, 691, 3484-3489.

[2] C. Han, H. Park, S. Kim, V. Yargeau, J. Choi, S. Lee, J. Park, Water Res., 2020, 172, 115514.

[3] Q. Wu, H. Yang, L. Kang, Z. Gao, F. Ren, Appl. Catal. B-Environ., 2020, 263, 118282.

[4] J. Zhou, F. Ma, H. Guo, D. Su, Appl. Catal. B-Environ., 2020, 269, 118784.

[5] J. Jiang, X. Wang, Y. Liu, Y. Ma, T. Li, Y. Lin, T. Xie, S. Dong, *Appl. Catal. B-Environ.*, 2020, **278**, 119349.

[6] X. Huang, N. Zhu, F. Mao, Y. Ding, S. Zhang, H. Liu, F. Li, P. Wu, Z. Dang, Y. Ke, *Chem. Eng. J.*, 2020, **392**, 123636.

[7] S. Guo, W. Yang, L. You, J. Li, J. Chen, K. Zhou, Chem. Eng. J., 2020, 393, 124758.

[8] Q. Li, G. Wei, Y. Yang, L. Gao, L. Zhang, Z. Li, X. Huang, J. Gan, *Chem. Eng. J.*, 2021, **424**, 130537.

[9] L. Qin, Z. Wang, Y. Fu, C. Lai, X. Liu, B. Li, S. Liu, H. Yi, L. Li, M. Zhang, Z. Li, W. Cao, Q. Niu, *J. Hazard Mater.*, 2021, **414**, 125448.

[10] X. Zhang, B. Ren, X. Li, B. Liu, S. Wang, P. Yu, Y. Xu, G. Jiang, *J. Hazard Mater.*, 2021, **418**, 126333.

[11] X. Zhang, B. Xu, S. Wang, X. Li, C. Wang, Y. Xu, R. Zhou, Y. Yu, H. Zheng, P. Yu, Y. Sun, *Appl. Catal. B-Environ.*, 2022, **306**, 121119.

[12] C. Liu, H. Dai, C. Tan, Q. Pan, F. Hu, X. Peng, Appl. Catal. B-Environ., 2022, 310, 121326.

[13] Y. Liu, X. Wang, Q. Sun, M. Yuan, Z. Sun, S. Xia, J. Zhao, J. Hazard. Mater., 2020, 424, 127387.