	1		Marchantin A	4
No		¹³ C-NMR	LU NIMD	¹³ C-NMR
110.	$(CDC1 500 MH_{z})$	(CDCl ₃ , 125	$(CDC1 500 MU_{z})$	(CDCl ₃ ,
	$(CDCI_3, 500 \text{ MHz})$	MHz)	(CDC13, 500 MIHZ)	125 MHz)
1	_	153.2	_	152.9
2	6.57 (1H, <i>d</i> , 8.0)	121.2	6.58 (1H, <i>d</i> , 8.5)	121.2
3	6.91 (1H, <i>d</i> , 8.5)	129.6	6.93 (1H, <i>d</i> , 8.5)	129.5
4		139.1	_	139.0
5	6.91 (1H, <i>d</i> , 8.5)	129.6	6.93 (1H, <i>d</i> , 8.5)	129.5
6	6.57 (1H, <i>d</i> , 8.0)	121.2	6.58 (1H, <i>d</i> , 8.5)	121.2
7	2.97–3.01 (2H, <i>m</i>)	35.3	2.96–3.01 (2H, <i>m</i>)	35.2
8	2.97–3.01 (2H, <i>m</i>)	30.3	2.96–3.01 (2H, <i>m</i>)	30.2
9	_	136.2	_	136.1
10	7.00 (1H, <i>dd</i> , 8.0, 1.5)	121.9	7.02 (1H, <i>dd</i> , 7.8, 1.5)	121.9
11	7.13 (1H, <i>dd</i> , 8.0, 7.5)	126.0	7.15 (1H, <i>t</i> , 7.8)	126.0
12	6.85 (1H, <i>dd</i> , 8.0, 1.5)	114.4	6.87 (1H, <i>dd</i> , 7.8, 1.5)	114.3
13		148.7	_	148.6
14	_	139.7	_	139.6
1'	_	130.8	_	130.6
2'	_	146.5	_	146.4
3'	5.13 (1H, <i>d</i> , 1.5)	107.9	5.13 (1H, <i>d</i> , 2.0)	107.9
4'	_	132.5	-	132.4
5'	6.46 (1H, <i>d</i> , 1.5)	109.3	6.47 (1H, <i>d</i> , 2.0)	109.3
6'	_	144.3	_	144.1
7'	2.78–2.80 (2H, <i>m</i>)	34.1	2.72–2.78 (2H, <i>m</i>)	34.0
8'	2.72–2.74 (2H, <i>m</i>)	35.5	2.72–2.78 (2H, <i>m</i>)	35.4
9'	_	143.1	_	143.0
10'	6.57 (1H, <i>dd</i> , 2.5, 2.0)	115.5	6.85 (1H, <i>t</i> , 2.0)	115.4
11'	_	156.8	_	156.6
12'	6.53 (1H, <i>dd</i> , 8.5, 2.0)	112.0	6.55 (1H, <i>dd</i> , 7.8, 2.1)	112.0
13'	6.97 (1H, <i>t</i> , 7.8)	128.9	6.98 (1H, <i>t</i> , 7.8)	128.8
14'	6.39 (1H, <i>brd</i> , 7.5)	123.2	6.41 (1H, <i>brd</i> , 7.8)	123.1

Table S-1. ¹H NMR (500 MHz, δ_{H} , multi, (*J* in Hz) and ¹³C NMR (125 MHz) data of compound 1 in CDCl₃

Marchantin A

	2		Riccardin C	1
No.	¹ H-NMR (Acetone- d_6 , 500 MHz)	$\begin{vmatrix} 1^{3}\text{C-NMR} \\ (\text{Acetone-}d_{6}, \\ 125 \text{ MHz}) \end{vmatrix}$	¹ H-NMR (CDCl ₃ , 500 MHz)	¹³ C-NMR (CDCl ₃ , 125 MHz)
1	_	154.4	_	152.5
2	6.73 (1H, <i>m</i>)	122.9	$6.72 - 6.80^{b}$	122.3
3	6.95 (1H, <i>d</i> , 8.0)	130.3	6.87 (brs)	129.2
4	_	140.8	—	139.8
5	6.95 (1H, <i>d</i> , 8.0)	130.3	6.87 (brs)	129.2
6	6.73 (1H, <i>m</i>)	122.9	$6.72 - 6.80^{b}$	122.3
7		287	2.88 (<i>m</i>)	38.1
/	2 62 2 02	50.7	2.95 (<i>m</i>)	36.1
0	2.03-3.03	26.0	$2.23 - 2.75^{b}$	35.0
0		50.0	$\begin{array}{c} .0 \\ \hline 2.23 - 2.75^{b} \\ \hline 3.03 (m) \\ \hline 4.3 \\ - \end{array}$	
9	_	144.3	_	143.7
10	6.93 (1H, <i>m</i>)	117.7	6.96 (<i>d</i> , 2.9)	117.5
11	_	157.8	_	155.9
12	6.73 (1H, <i>m</i>)	114.0	6.79 (<i>dd</i> , 8.6, 2.9)	114.3
13	7.03 (1H, <i>d</i> , 8.0)	133.4	7.03 (<i>d</i> , 8.6)	132.8
14	_	128.9	_	128.2
1'	_	145.4	_	143.7
2'	_	148.0	_	146.3
3'	5.36 (1H, <i>d</i> , 1.5)	117.4	5.35 (<i>d</i> , 2.0)	116.0
4'	_	133.5	_	133.1
5'	6.50 (1H, <i>m</i>)	121.5	6.73 (<i>dd</i> , 8.1, 2.0)	122.1
6'	6.72 (1H, <i>d</i> , 8.0)	116.6	6.92 (<i>d</i> , 8.1)	114.9
7'	2 63 3 03	37.9	$2.23 - 2.75^{b}$	37.1
8'	2.05-5.05	38.5	$2.23 - 2.75^{b}$	37.6
9'	_	141.8	_	141.9
10'	6.13 (1H, <i>d</i> , 8.0, 2.0)	122.7	6.23 (<i>dd</i> , 7.8, 1.7)	121.7
11'	6.77 (1H, <i>d</i> , 8.0)	133.1	6.77 (<i>d</i> , 7.8)	131.4
12'	_	126.8	_	124.4
13'	-	154.1	_	151.8
14'	6.36 (1H, <i>d</i> , 1.5)	117.0	6.39 (<i>d</i> , 1.7)	116.0

Table S-2. ¹H NMR (500 MHz, $\delta_{\rm H}$, multi, (*J* in Hz) and ¹³C NMR (125 MHz) data of compound 2 in CDCl₃

Riccardin C

Table S-3. ¹H NMR (500 MHz, $\delta_{\rm H}$, multi, (*J* in Hz) and ¹³C NMR (125 MHz) data of
compound **3** in acetone- d_6 .

	3		Isoriccardin	С
No	¹ H_NMR	¹³ C-NMR	¹ H_NMR	¹³ C-NMR
110.	$(\Delta \text{cetone} - d < 500 \text{ MHz})$	(Acetone- d_6 ,	(CDC1, 500 MHz)	(CDCl ₃ ,
	(Accionc- a_6 , 500 MHz)	125 MHz)	(CDC13, 500 MHZ)	125 MHz)
1	_	155.5		153.2
2	6.82 (1H, <i>d</i> , 8.5)	122.1	6.84 (1H, <i>dd</i> , 8.3, 1.7)	121.7
3	7.10 (1H, <i>dd</i> , 7.5, 2.5)	131.9	7.08 (1H, <i>dd</i> , 8.3, 1.7)	130.8
4	_	138.1	—	137.2
5	7.13 (1H, <i>dd</i> , 7.5, 2.5)	131.4	7.13 (1H, dd, 8.3, 1.7)	130.3
6	6.81 (1H, <i>d</i> , 8.5)	122.1	6.89 (1H, <i>dd</i> , 8.3, 1.7)	121.7
7	3.02-3.16 (4H, <i>m</i>)	35.4	3.13 (4H, <i>m</i>)	34.9
8		36.8	2.96 – 3.01 (2H, <i>m</i>)	36.1
9	_	142.1	_	143.3
10	6.65 (1H, <i>brs</i>)	117.5	6.77 (1H, brd, 1.3)	116.6
11	_	154.9	_	153.5
12	_	177.1	—	117.1
13	6.81 (1H, <i>m</i>)	131.6	6.91 (1H, <i>d</i> , 7.8)	130.5
14	6.54 (1H, <i>d</i> , 7.5)	122.4	6.65 (1H, <i>dd</i> , 7.8, 1.3)	122.6
1'	_	143.4		143.6
2'	_	145.5	_	147.8
3'	5.73 (1H, <i>d</i> , 1.0)	116.4	5.59 (1H, <i>d</i> , 2.0)	114.7
4′	_	134.6	_	133.6
5'	6.69 (1H, <i>dd</i> , 8.0, 2.0)	121.6	6.68 (1H, dd, 8.1, 2.0)	121.6
6'	6.74 (1H, <i>d</i> , 8.0)	116.3	6.83 (1H, <i>d</i> , 8.1)	114.6
7'	2.30-2.33 (2H, <i>m</i>)	38.5	2.50 (2H, <i>m</i>)	38.0
8'	2.50 (1H, <i>m</i>)	37.6	$2.20(2H_m)$	36.5
0	2.64 (1H, <i>m</i>)	37.0	2.29 (211, 11)	50.5
9'	_	138.1	_	142.9
10'	_	120.5	_	120.5

11'	_	206.1	_	154.0
12'	6.86 (1H, <i>d</i> , 7.5)	113.7	6.86 (1H, <i>dd</i> , 8.1, 1.0)	113.3
13'	7.05 (1H, <i>t</i> , 8.0)	129.1	7.28 (1H, <i>t</i> , 8.1)	130.1
14'	6.70 (1H, <i>dd</i> , 8.0, 2.0)	121.6	6.69 (1H, <i>dd</i> , 8.1, 1.0)	121.6
			A 1 1	

Table S-4.	¹ H NMR	(500 ME	$[z, \delta_H,$	multi,	(J in H)	z) and	¹³ C NMI	R (125	MHz)	data of
		(compo	ound 4 i	n aceto	ne- d_6 .				

	4		Marchantin K		
No.	¹ H-NMR (Acetone- d_6 , 500 MHz)	13 C-NMR (Acetone- d_6 , 125 MHz)	¹ H-NMR (CDCl ₃ , 600 MHz)	¹³ C-NMR (CD ₃ OD, 150 MHz)	
1	_	153.9	_	155.2	
2	6.51 (1H, brd, J = 8.0 Hz)	123.4	6.50 (1H, brd, J = 8.0 Hz)	122.7	
3	6.95 (1H, brd, J = 8.0 Hz)	129.4	6.91 (1H, brd, J = 8.0 Hz)	130.6	
4	_	140.0	_	140.6	
5	6.95 (1H, brd, J = 8.0 Hz)	129.4	6.91 (1H, brd, J = 8.0 Hz)	130.6	
6	6.51 (1H, brd, J = 8.0 Hz)	121.4	6.50 (1H, brd, J = 8.0 Hz)	122.7	
7	3.09–3.14 (1H, m) 2.95–3.06 (1H, m)	35.5	3.00–3.05 (1H, m) 2.90–2.97 (1H, m)	37.1	
8	2.95–3.06 (2H, m)	30.1	2.90–2.97 (1H, m) 2.80 (1H, ddd, <i>J</i> = 15.0, 10.0, 2.0 Hz)	30.8	

9	_	131.4	-	128.3
10	6.82 (1H, dd, J = 8.0, 1.5 Hz)	120.9	6.83 (1H, d, <i>J</i> = 8.5 Hz)	121.3
11	6.76 (1H, d, J = 8.5 Hz)	112.3	6.75 (1H, d, <i>J</i> = 8.5 Hz)	113.5
12	_	147.1	-	145.8
13	_	138.8	-	139.1
14	_	146.3	-	142.2
1'	_	136.8	-	134.8
2'	_	149.9	-	148.9
3'	4.97 (1H, d, <i>J</i> = 2.0 Hz)	107.6	4.96 (1H, d, <i>J</i> = 2.0 Hz)	109.2
4′	_	133.3	-	132.1
5'	6.59 (1H, d, J = 2.0 Hz)	106.0	6.52 (1H, d, $J = 2.0$ Hz)	107.0
6'	_	147.3	-	147.5
7'	4.08 (1H, dd, J = 9.5, 4.0 Hz)	84.1	4.06 (1H, dd, J = 10.0, 4.0 Hz)	85.9
8′	3.00 (1H, m) 2.59 (1H, dd, <i>J</i> = 13.0, 10.0 Hz)	43.8	3.03 (1H, dd, J = 12.0, 4.0 Hz) 2.56 (1H, dd, J = 12.0, 10.0 Hz)	45.0
9'	_	139.1	-	139.9
10'	6.68 (1H, d, <i>J</i> = 2.0 Hz)	116.9	6.68 (1H, d, <i>J</i> = 2.0 Hz)	118.1
11'	_	157.6	-	158.9
12'	6.45 (1H, dd, J = 8.5, 3.0 Hz)	114.4	6.46 (1H, ddd, J = 8.0, 3.0, 1.0)	114.0
13'	6.88 (1H, t, J = 7.5 Hz)	127.8	6.85 (1H, t, $J = 8.0$ Hz)	129.0
14′	6.05 (1H, brd, J = 7.0 Hz)	125.5	6.02 (1H, brd, J = 8.0 Hz)	124.6
OCH ₃	3.20 (s)	_	3.26 (s)	_

Table S-5. ¹H NMR (500 MHz, $\delta_{\rm H}$, multi, (*J* in Hz) and ¹³C NMR (125 MHz) data of
compound **5** in acetone- d_6 .

	5		Lunularin (CD ₃ OD)		
No	¹ H-NMR (Acetone- d_6 , 500 MHz)	$1^{3}C-$ NMR (Aceton e- d_{6} , 125 MHz)	δ _H , J (Hz)	δ _C	
1	_	155.5	_	156.5	
2	6.73 (1H, <i>d</i> , 8.5)	115.0	6.67 (1H, <i>d</i> , 8.0)	116.1	
3	7.03 (1H, <i>d</i> , 8.0)	129.1	6.96 (1H, <i>d</i> , 8.0)	130.5	
4	_	132.6	_	134.1	
5	7.03 (1H, <i>d</i> , 8.0)	129.1	6.96 (1H, <i>d</i> , 8.0)	130.5	
6	6.73 (1H, <i>d</i> , 8.5)	115.0	6.67 (1H, <i>d</i> , 8.0)	116.1	
7	2.78 (2H, s)	36.8	2.76 (2H, s)	38.3	
8	2.78 (2H, s)	38.1	2.76 (2H, s)	39.6	
1'	_	143.6	_	144.9	
2'	6.67 (1H, s)	115.4	6.60 (1H, <i>s</i>)	116.5	
3'	_	157.4	_	158.3	
4'	6.69 (1H, <i>d</i> , 2.0)	112.7	6.61 (1H, <i>d</i> , 7.8)	113.8	

5'	7.07 (1H, <i>t</i> , 7.8)	129.3	7.03 (1H, <i>t</i> , 7.8)	131.3
6'	6.63 (1H, <i>d</i> , 8.0)	119.5	6.64 (1H, <i>m</i>)	121.0

	6		3-(3,4-Dimethoxybenzyl)-5,7- dimethoxyphthalide		
No.	$\delta_{ m H}$	$\delta_{ m C}$	$\delta_{\rm H}$ (multi, J in Hz)	$\delta_{ m C}$	
	(Acetone- <i>d</i> ₆ , 500 MHz)	(Acetone- <i>d</i> ₆ , 125 MHz)	(CDCl ₃ , 400 MHz)	(CDCl ₃ , 100 MHz)	
1	/	167.1	/	168.0	
3	5.85 (t, 6.0)	80.3	5.59 (t, 6.1)	79.9	
4	6.61 (s)	99.5	6.21 (d, 1.2)	98.3	
5	/	166.8	/	166.5	
6	6.54 (d, 2.0)	99.6	6.38 (d, 1.7)	98.9	
7	/	160.3	/	159.7	
8	/	105.1	/	107.3	
9	/	154.8	/	154.2	
10	3.25 (dd, 14.0, 5.0) 3.10 (dd, 14.0, 6.0)	40.6	3.16 (dd, 14.2, 6.3) 3.07 (dd, 14.2,5.9)	40.5	
1'	/	129.3	/	127.8	
2'	6.87 (d, 1.5)	114.6	6.73 (br, s)	113.3	
3'	/	150.0	/	149.0	
4'	/	148.3	/	148.3	
5'	6.82 (d, 8.0)	112.6	6.78 (d, 8.0)	111.5	
6'	6.77 (dd, 8.5, 2.0)	122.9	6.74 (dd, 7.3, 1.8)	122.1	
5-OCH ₃	3.87 (s)	56.4	3.79 (s)	56.0	
7-OCH ₃	3.89 (s)	56.0	3.91 (s)	56.0	
3'-OCH ₃	3.75 (s)	56.3	3.83 (s)	55.9	
4'-OCH ₃	3.73 (s)	56.4	3.84 (s)	55.9	

Table S-6. $^1\!H$ NMR (500 MHz, $\delta_H,$ multi, (J in Hz) and $^{13}\!C$ NMR (125 MHz) data of

compound **6** in acetone- d_6 .

3-(3,4-Dimethoxybenzyl)-5,7-dimethoxyphthalide

Table S-7. ¹H NMR (500 MHz, $\delta_{\rm H}$, multi, (*J* in Hz) and ¹³C NMR (125 MHz) data of
compound **8** in acetone- d_6 .

		8		(5 <i>S</i> ,8 <i>R</i> ,9 <i>S</i> ,10 <i>R</i>)-2- Oxo-ent- 3-cleroden-15-oic acid (A)		Methyl (5 <i>S</i> ,8 <i>R</i> ,9 <i>S</i> ,10 <i>R</i>)-2-oxo- ent-clerod-3,13-dien- 15-oate (B)	
No.	$\delta_{\rm H}$ (multi, J in Hz) (Acetone- d_{6} , 500MHz)	$\delta_{\rm C}$ (Acetone- d_6 , 500 MHz)	$\delta_{\rm H}$ (multi, J in Hz) (CDCl ₃ , 200 MHz)	$\delta_{\rm H}$ (multi, J in Hz) (CDCl ₃ , 200 MHz)	$\delta_{\rm C}$ (CDCl ₃ , 50 MHz)	$\delta_{\rm H}$ (multi, J in Hz) (CDCl ₃ , 200 MHz)	$\delta_{\rm C}$ (CDCl ₃ , 50 MHz)
1	2.66 (dd, 18.5, 7.0) 2.43 (d, 18.0)	35.7	2.69 (dd, 18.5, 6.5) 2.50 (d, 18.5)		35.1		35.4
2		198.8			199.1		200.3
3	5.56 (d, 1.0)	129.1	5.84 (brs)	5.70 (m)	128.5	5.65 (br s)	128.5
4		169.4			168.6		167.5
5		40.1			38.6		38.6
6		37.5			36.7		36.7
7		29.1			28.9		28.9

8		37.4			36.6		36.6
9		40.3			39.3		39.3
10	1.90 (m)	47.9	1.83 (d, 6.5)		45.7		45.7
11		31.3			35.4		34.0
12		35.8			36.2		36.8
13		72.8			30.7		160.3
14	5.93 (dd, 17.0, 10.5)	147.1	5.87 (dd, 10.5, 17.5)	5.70 (m)	41.4		115.2
15	5.21 (dd, 17.5, 2.0) 4.98 (dd, 11.0, 2.0)	111.5	5.09 (d, 11.0) 5.20 (d, 16.5)	7.65 (1H, br s)	178.7		167.0
16	1.24 (s)	28.5	1.22 (s)	2.17 (s) 1.10 - 0.8 (m)	19.9	2.09 (br s) 0.96 (d, 6.0)	19.1
17	0.78 (d, 7.0)	16.3	0.77 (d, 7.0)	1.10 - 0.8 (m)	16.0	0.80 - 0.50 (m)	15.9
18	1.96 (d, 1.0)	20.5	1.94 (d, 1.5)	1.90 (br s)	20.5	1.80 (br s)	20.5
19	1.25 (s)	32.3	1.25 (s)	1.10 - 0.8 (m)	32.1	1.06 (br s)	32.1
20	0.56 (s)	19.6	0.58 (s)		18.0	0.80 - 0.50 (m)	17.8

- 1. A.G. Pacheco, P. Machado De Oliveira, D. Piló-Veloso, A. Flávio De Carvalho Alcântara. 13C-NMR Data of Diterpenes Isolated from Aristolochia Species. *Molecules* **2009**, 14 (3), 1245–1262.
- M. X. Lopes, L. M. V. Trevisan, and V. da S. Bolzani, Clerodane diterpenes from Aristolochia species. Phytochemistry, 1987, 26, 2781-2784, DOI: <u>10.1016/S0031-</u> <u>9422(00)83590-6</u>

Table S-8 . ¹ H NMR (500 MHz, $\delta_{\rm H}$, multi, (<i>J</i> in Hz) and ¹³ C NMR (125 MHz) dates the second sec	ta of
compound 9 in acetone- d_6 .	

	9		Vitexilactone	
No.	$\delta_{ m H}$ (multi, J in Hz) (Acetone- d_6 , 500 MHz)	$\delta_{ m C}$ (Acetone- d_6 , 125 MHz)	$\delta_{ m H}$ (multi, J in Hz) (CDCl ₃ , 500 MHz)	δ _C (CDCl ₃ , 125 MHz)
1	1.43 (m)	32.5	1.45 (m)	33.6
	1.32 (m)		1.36 (ca)	
2	1.71 (m)	19.6	1.65 (m)	18.6
	1.50 (m)		1.50 (ca)	
3	1.37 (m)	43.0	1.36 (ca)	43.6
5	1.24 (m)		1.17 (ddd, 3.0, 13.5, 13.5)	
4	_	34.7	_	34.0
5	1.76 (d, 2.3)	45.6	1.56 (d, 3.0)	47.7
6	5.34 (q, 3.0, 3.0, 2.5)	70.4	5.39 (ddd 3.0, 3.0, 3.0)	69.8

7	1.47 (m)	37.4	1.59 (ca)	36.1
	1.44 (m)		1.50 (ca)	
8	2.17 (m)	32.8	2.14 (m)	32.1
9	2.02	77.0	-	76.5
10	_	44.7	_	43.8
11	1.85 (q, 6.5, 3.0, 4.5)	32.6	1.98 (ddd, 6.0, 10.5, 15.0)	31.6
	1.82 (q, 4.0, 4.0, 6.5)		1.75 (ddd, 6.0, 10.5, 15.0)	
12	2.61 (m) 2H	26.0	2.50 (ca) 2H	25.4
13	_	173.4	_	171.1
14	5.86 (p, 1.5, 2.0, 1.5,	114.8	5.84 (dddd, 1.5, 1.5, 1.5	115.0
	2.0)		1.5)	
15	_	174.0	_	174.0
16	4.85 (d) 2H	73.8	4.76 (br s) 2H	73.2
17	0.92 (s)	16.4	0.90 (d, 6.5)	16.1
18	0.93 (s)	34.0	0.97 (s)	33.6
19	1.02 (s)	24.1	1.01 (s)	23.7
20	1.30 (s)	19.5	1.26 (s)	19.0
1'	-	170.5	_	170.4
2'	2.00 (s)	21.8	2.06 (s)	21.9

Table S-9. ¹H NMR (500 MHz, $\delta_{\rm H}$, multi, (J in Hz) in acetone- d_6 , CDCl₃ and ¹³C NMR(125 MHz) data of compound 10 in acetone- d_6 .

		10	12-oleanene-3-one		
.	$\delta_{\rm C}$	δ_{H}	δ_{H}	δ _C	$\delta_{\rm H}$
No.	(Acetone-	(Acetone- d_{6} ,	(CDCl ₃ , 500	(CDCl ₃ , 125	(CDCl ₃ , 500
	d_{6} , 125	500 MHz)	MHz)	MHz)	MHz)
1	20.0			20.0	
	39.8	-	_	39.8	-
2	34.7	_	_	34.5	_
3	216.2	_	_	217.2	—
4	47.7	_	_	47.6	_
5	56.0	-	_	55.3	_
6	20.4	_	_	18.8	_
7	33.1	_	_	33.2	_
8	40.0	_	_	40.1	_
9	47.8	2.31 (1H, m)	2.37 (1H, m)	47.7	2.33 (1H, m)
10	35.5	_	_	36.6	_
11	23.7	_	_	23.7	_
12	122.8	5.24 (1H, t,	5.21 (1H, t,	122.4	5.27 (1H, dd,
		4.0)	3.5, 4.0)		3.7, 3.4)
13	146.0	_	_	144.1	_
14	41.9	_	_	42.5	_
15	26.4	_	_	26.2	_
16	26.9	_	_	26.9	_
17	32.3	_	_	32.5	_
18	47.0	_	_	47.2	_
19	47.3	_	_	47.1	_
20	31.3	_	_	31.0	_
21	34.7	_		34.6	—

22	37.1	_	_	36.9	-
23	26.4	1.03 (3H, s)	1.06 (3H, s)	26.4	1.04 (3H, s)
24	21.9	1.05 (3H, s)	1.07 (3H, s)	22.1	1.07 (3H, s)
25	15.6	1.10 (3H, s)	1.02 (3H, s)	15.6	1.01 (3H, s)
26	17.3	1.06 (3H, s)	1.00 (3H, s)	16.8	0.99 (3H, s)
27	24.6	1.19 (3H, s)	1.25 (3H, s)	25.9	1.24 (3H, s)
28	28.9	0.87 (3H, s)	0.84 (3H, s)	28.6	0.84 (3H, s)
29	23.7	0.89 (3H, s)	0.92 (3H, s)	23.7	0.90 (3H, s)
30	32.3	0.88 (3H, s)	0.87 (3H, s)	32.8	0.86 (3H, s)

Table S-10. ¹H NMR (400 MHz, $\delta_{\rm H}$, multi, (*J* in Hz) and ¹³C NMR (125 MHz) data of compound 11 in CDCl₃

		11	3,11-dioxo ursolic acid		
No.	$\delta_{ m H}$ (multi, J in Hz)	$\delta_{ m C}$	$\delta_{ m H}$ (multi, J in Hz)	$\delta_{ m C}$	
	(CDCl ₃ , 400 MHz)	(CDCl ₃ , 100 MHz)	(CDCl ₃ , 300 MHz)	(CDCl ₃ , 100.6 MHz)	
1	38.7	_	39.9	_	
2	34.3	_	33.5	_	
3	217.4	_	215.9	_	
4	47.9	_	46.7	_	

5	55.5	_	54.0	_
6	19.0	_	18.3	_
7	32.5	_	32.0	_
8	39.9	_	40.7	_
9	60.8	2.39 (1H, s)	59.7	2.48 (1H, s)
10	36.9	_	37.5	_
11	199.5	_	198.7	_
12	130.8	5.63 (1H, s)	131.8	5.61 (1H, s)
13	163.3	_	164.8	_
14	44.0	_	43.6	_
15	28.6	_	28.4	_
16	23.8	_	24.2	_
17	47.6	_	47.0	_
18	52.6	_	53.8	2.46 (1H, d, J=12)
19	41.5	_	71.9	_
20	41.5	_	41.1	_
21	26.6	_	25.6	_
22	36.1	_	36.4	_
23	26.6	0.90 (3H, s)	26.1	0.88 (3H, s)
24	21.2	0.95 (3H, s)	20.8	0.94 (3H, s)
25	15.7	1.02 (3H, s)	15.3	0.98 (3H, s)
26	18.8	1.24 (3H, s)	18.2	1.22 (3H, s)
27	21.1	1.31 (3H, s)	20.7	1.30 (3H, s)
28	182.8		180.0	
28 29	182.8 23.7	0.87 (3H, d, J= 6.5 Hz)	180.0 26.0	0.85 (3H, d, J= 7.5 Hz)

Table S-11. ¹H NMR (500 MHz, δ_{H} , multi, (*J* in Hz) and ¹³C NMR (125 MHz) data of compound **12** in CDCl₃

No.		12	I	U rsolic acid
	δC	δΗ	δC	δH
	(CDCl ₃ , 125 MHz)	(CDCl ₃ , 500 MHz)		
1	38.9	-	38.9	-
2	27.4	_	27.1	-
3	79.2	3.22 (1H, dd, J= 5.0,	79.0	3.11 (1H, dd, J=9.0,
		7.0, 4.0)		7.0)
4	39.0	-	39.0	-
5	55.4	-	55.6	-
6	18.5	_	18.6	-
7	33.2	_	33.4	_
8	39.6	_	39.8	-
9	47.7	_	47.9	-
10	36.8	-	37.2	-
11	23.7	-	23.6	-
12	126.0	5.26 (1H, t, J=4.0)	125.8	5.16 (1H, t, J=3.5)

13	138.1	_	138.5	_
14	42.2	_	42.4	_
15	30.8	_	29.9	_
16	24.4	_	24.5	_
17	48.0	_	48.1	_
18	53.0	2.19 (1H, d, J=11.5)	53.2	2.11 (1H, d, J=11.8)
19	41.7	_	39.4	_
20	39.6	_	39.2	_
21	26.6	_	30.9	_
22	36.1	_	37.1	_
23	28.3	0.92 (3H, s)	28.3	0.90 (3H, s)
24	15.6	0.77 (3H, s)	15.6	0.74 (3H, s)
25	15.8	0.78 (3H, s)	15.8	0.70 (3H, s)
26	17.2	0.85 (3H, s)	17.2	0.84 (3H, s)
27	21.1	0.99 (3H, s)	23.7	1.01 (3H, s)
28	182.8	_	180.8	_
29	17.1	0.86 (3H, d, J= 6.5)	17.1	0.86 (3H, d, J= 6.1)
30	21.3	0.77 (3H, d, J= 4)	21.3	0.78 (3H, d, J= 6.5)

Table S-12. ¹H NMR (500 MHz, $\delta_{\rm H}$, multi, (J in Hz) in acetone- d_6 , CDCl₃ and ¹³C NMR(125 MHz) data of compound 13 in acetone- d_6 .

	13		Artemetin		
No.	¹ H-NMR (Acetone- d_6 , 500 MHz)	13 C-NMR (Acetone- d_6 , 125 MHz)	¹ H-NMR (DMSO- <i>d</i> ₆ , 500 MHz)	¹³ C-NMR (DMSO- <i>d</i> ₆ , 125 MHz)	
1	_	_	_	_	
2	_	155.8	_	155.6	
3	_	138.6	_	138.1	
4	_	178.9	_	178.4	
4 a	_	106.2	_	105.7	
5	_	152.7	_	151.9	
6	_	132.3	_	131.7	
7	_	159.3	_	158.8	
8	6.81 (1H, s)	90.8	6.89 (1H, s)	91.6	
8 a	_	152.3	_	151.7	
1'	_	122.8	_	122.2	
2'	7.78 (1H, d, <i>J</i> = 2.0 Hz)	122.1	7.61 (1H, d, <i>J</i> = 2.0 Hz)	124.0	
3'	_	149.2	_	148.7	
4'	_	152.0	_	151.4	
5'	7.14 (1H, d, <i>J</i> = 8.5 Hz)	111.3	7.11 (1H, d, <i>J</i> = 8.5 Hz)	111.3	
6'	7.76 (1H, dd, J = 2.0, 3.0 Hz)	111.8	7.69 (1H, dd, <i>J</i> = 2.0, 8.5 Hz)	111.7	
3- OCH ₃	3.92 (3H, s)	59.4	3.77 (3H, s)	56.6	
5-OH	12.69 (1H, s)	_	12.53 (1H, s)	_	

6- ОСН ₃	3.96 (3H, s)	55.9	3.88 (3H, s)	55.8
7- ОСН ₃	3.90 (6H, s)	59.7	3.82 (3H, s)	60.1
3'- OCH ₃	(-))	55.4	3.81 (3H, s)	55.8
4'- OCH ₃	3.80 (3H, s)	55.3	3.68 (3H, s)	55.7

Armetin

Table S-13. ¹H NMR (500 MHz, $\delta_{\rm H}$, multi, (J in Hz) in acetone- d_6 , CDCl₃ and ¹³C NMR(125 MHz) data of compound 1a and 1 in acetone- d_6 .

	1a		1		
No	¹ H-NMR (acetone- d_6 , 500 MHz)	¹³ C-NMR (CDCl ₃ , 125 MHz)	¹ H-NMR (acetone- d_6 , 500 MHz)	¹³ C-NMR (CDCl ₃ , 125 MHz)	
1	_	154.1	_	153.2	
2	6.50 (1H, <i>d</i> , 7.5)	121.8	6.57 (1H, <i>d</i> , 8.0)	121.2	
3	6.96 (1H, <i>d</i> , 8.0)	129.1	6.91 (1H, <i>d</i> , 8.5)	129.6	
4	-	137.1	_	139.1	
5	6.96 (1H, <i>d</i> , 8.0)	129.1	6.91 (1H, <i>d</i> , 8.5)	129.6	
6	6.50 (1H, <i>d</i> , 7.5)	121.8	6.57 (1H, <i>d</i> , 8.0)	121.2	
7	3.02 – 3.06 (4H, <i>m</i>)	35.7	2.97–3.01 (2H, <i>m</i>)	35.3	
8	3.02 – 3.06 (4H, <i>m</i>)	34.1	2.97–3.01 (2H, <i>m</i>)	30.3	
9	_	130.7	_	136.2	
10	6.82 (1H, <i>dd</i> , 8.0, 1.5)	121.5	7.00 (1H, <i>dd</i> , 8.0, 1.5)	121.9	

11	7.00 (1H, <i>t</i> , 8.0)	122.1	7.13 (1H, <i>dd</i> , 8.0, 7.5)	126.0
12	6.61 (1H, <i>dd</i> , 8.5, 2.5)	113.8	6.85 (1H, <i>dd</i> , 8.0, 1.5)	114.4
13	-	118.5	-	148.7
14	-	142.4	-	139.7
1'	-	139.5	-	130.8
2'	_	147.0	-	146.5
3'	5.34 (1H, s)	109.6	5.13 (1H, <i>d</i> , 1.5)	107.9
4'	-	133.8	-	132.5
5'	_	105.0	6.46 (1H, <i>d</i> , 1.5)	109.3
6'	_	144.5	_	144.3
7'	2.91 – 2.93 (2H, <i>m</i>)	34.8	2.78–2.80 (2H, <i>m</i>)	34.1
8'	2.91 – 2.93 (2H, <i>m</i>)	35.7	2.72–2.74 (2H, <i>m</i>)	35.5
9′	-	142.4	-	143.1
10'	6.28 (1H, <i>d</i> , 7.5)	115.2	6.57 (1H, <i>dd</i> , 2.5, 2.0)	115.5
11'	-	158.7	-	156.8
12'	7.04 (1H, <i>dd</i> , 8.0, 1.5)	116.5	6.53 (1H, <i>dd</i> , 8.5, 2.0)	112.0
13'	7.10 (1H, <i>t</i> , 7.8)	130.5	6.97 (1H, <i>t</i> , 7.8)	128.9
14'	6.28 (1H, <i>d</i> , 7.5)	126.4	6.39 (1H, <i>brd</i> , 7.5)	123.2

Figure S-1. Compounds reported in Marchantia polymorpha L.

2-[3-(hydroxymethyl)phenoxy]-3-[(4-hydroxyphenyl)ethyl]phenol **(31)** Combrerastatin A **(32)**

 α,β -dihydrostilbene-2,4',5-triol-2,5-di(β -D-glucopyranoside) (49)

(-)-Gymnomitrene (19) (-)-Parene (20)

(+)- β -Chamigrene (21)

3',4',5,7-tetrahydroxyisoflavone 7-(β -D-glucopyranoside) (55)

	ОП		
R ¹ =H	R ² =H	R ³ =H	Luteolin (36)
R ¹ =glucuronic acid	R ² =H	R ³ =H	Luteolin 7-glucuronide (37)
R ¹ =H	R ² =glucuronic acid	R ³ =H	Luteolin 3'-O- β -D-glucuronide (38)
R ¹ =glucuronic acid	R ² =glucuronic acid	R ³ =H	Luteolin 7,3'-diglucuronide (39)
R ¹ =glucuronic acid	R ² =H	R ³ =glucuronic acid	Luteolin 7,4'-diglucuronide (40)
R ¹ =H	R ² =glucuronic acid	R ³ =glucuronic acid	Luteolin 3',4'-O- β -D-diglucuronide (41)
R ¹ =glucuronic acid	R ² =glucuronic acid	R ³ =glucuronic acid	Luteolin 7,3',4'-tri-O-β-D-glucuronide (42)

3-(3,4-dihydroxyphenyl)-8-hydroxyisocoumarin (48)

 $R^{1} = R^{4} = H, R^{2} = R^{3} = OCH_{3} \quad 3,3¢-dimethoxy-2,2¢,7,7¢-tetrahydroxy-1,1¢-biphenanthrene (45)$ $R^{1} = R^{3} = R^{4} = H, R2 = OCH_{3} \quad 3-methoxy-2,2¢,3¢,7,7¢-pentahydroxy-1,1¢-biphenanthrene (46)$ $R^{1} = R^{3} = R^{3} = R^{4} = OH \quad 2,2¢,3,3¢,7,7¢-hexahydroxy-1,1¢-biphenanthrene (47)$

Shikimic acid $4-\beta$ -D-xylopyranoside (50) 2-(3,4-dihydroxyphenyl)ethyl- β -D-glucopyranoside (54)

Figure S-2. Compounds reported in Vietnamese Marchantia polymorpha L.

Figure S-3B. The ¹H NMR spectrum of 1 in acetone- d_6

Figure S-4A. The HRESIMS spectrum of 2.

Figure S-4B. The ¹H NMR spectrum of 2 in acetone- d_6 .

Figure S-4D. The ¹³C NMR spectrum of 2 in acetone- d_6 .

Figure S-5A. The HRESIMS spectrum of 3.

Figure S-5B. The ¹H NMR spectrum of **3** in acetone- d_6 .

Figure S-5C. The ¹³C NMR spectrum of **3** in acetone- d_6 .

Figure S-6B. The ¹H NMR spectrum of 4 in acetone- d_6 .

Figure S-7A. The HRESIMS spectrum of 5.

Figure S-7B. The ¹H NMR spectrum of 5 in acetone- d_6 .

Figure S-7E. The HMBC spectrum of 5 in acetone- d_6

Figure S-8A. The ¹H NMR spectrum of 6 in acetone- d_6 .

Figure S-8C. The HMBC spectrum of 6 in acetone- d_6 .

Figure S-8E. The HRESIMS spectrum of 6.

Figure S-9A. The HRESIMS spectrum of 7.

Figure S-9D. The HSQC spectrum of 7 in acetone- d_6 .

Figure S-9E. The HMBC spectrum of 7 in acetone- d_6

Figure S-10D. The ¹³C NMR spectrum of 8 in acetone- d_6

Figure S-10E. The HMBC spectrum of 8 in acetone- d_6 .

Figure S-11A. The HRESIMS spectrum of 9.

Figure S-11C. The ¹H NMR spectrum of 9 in acetone- d_6 .

Figure S-11E. The HMBC spectrum of 9 in acetone- d_6 .

Figure S-12A. The ¹H NMR spectrum of 10 in acetone- d_6 .

Figure S-12C. The ¹³C NMR spectrum of 10 in acetone- d_6 .

Figure S-13A. The HRESIMS spectrum of 11.

.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 f1 (ppm)

Figure S-14A. The ¹H NMR spectrum of 12 in CDCl₃.

Figure S-14C. The ¹³C NMR spectrum of 12 in MeOD.

Figure S-14E. The HMBC spectrum of 12 in CDCl₃.

Figure S-15A. The HRESIMS spectrum of 13.

Figure S-15B. The ¹H NMR spectrum of 13 in acetone- d_6 .

Figure S-16A. The ¹H NMR spectrum of 14 in acetone- d_6 .

Figure S-15C. The ¹³C NMR spectrum of 13 in acetone- d_6 .

Figure S-17A. The ¹H NMR spectrum of 15 in acetone- d_6 .

Figure S-18A. The HRESIMS spectrum of 1a.

Figure S-18C. The ¹³C NMR spectrum of 1a in acetone- d_6 .

Figure S-18D. The HMBC spectrum of 1a in acetone- d_6 .

General procedure to synthesize compound 1a

In 1.0 mL of mixture of acetic acid, marchantin A (**1** 6.0 mg, 0.014 mmol) and sodium bromide (14.0 mg, 0.136 mmol) were dissolved at 80°C. 0.36 mL of 30% hydrogen peroxide (0.86 mmol) was added to the reaction mixture. The reaction was conducted for 2 hours. The resulting solution was neutralized with saturated sodium hydrogen carbonate, then extracted with ethyl acetate-water (1:1, v/v) to gain an organic layer. This layer was subsequently washed with brine three times, then dried and applied to silica gel CC, eluted with n-hexane-EtOAc (4:1, v/v) to obtain **1a** (4.45 mg, 43%).

Scheme S-1. General procedure to synthesize compound 1a