Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

Rationale Design and Synthesis of Novel Apoptotic Thiadiazole Analogues Targeting VEGFR-2: Computational and *In vitro* studies

Walid E. Elgammal^a, Hazem Elkady^b, Hazem A. Mahdy^b, Dalal Z. Husein^c, Aisha A. Alsfouk^d, Bshra A. Alsfouk^d, Ibrahim M. Ibrahim^e, Eslam B. Elkaeed^f, Ahmed M. Metwaly^{g,h*}, Ibrahim H. Eissa^{b*}

a Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt ^b Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt.

- ^d Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
- ^e Biophysics Department, Faculty of Science, Cairo University. Cairo 12613, Egypt.
- ^f Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia.
- ^g Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
- ^h Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt.

*Corresponding authors:

Ibrahim H. Eissa

Medicinal Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt. Email: lbrahimeissa@azhar.edu.eg

Ahmed M. Metwalv

Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt. **Email:** ametwaly@azhar.edu.eg

Eslam B. Elkaeed: Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia. **Email:** ekaeed@um.edu.sa

^c Chemistry Department, Faculty of Science, New Valley University, El-Kharja 72511, Egypt.

	Content
S1. Chemistry	
S2. Biological testing	
S.3. In silico studies	
S.4. Spectral data	
_	

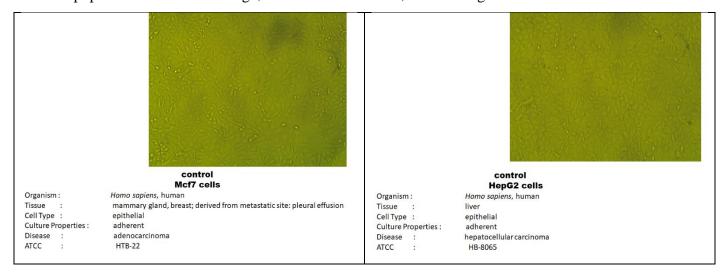
Lab code	Paper code
WA1	14
PH1	18a
PH4	18b
WC1	18c
WC4	18d
WM1	18e
WM4	18f

S.1. Chemistry

The chemicals, reagents, and reaction solvents used in this study were gained from Sigma-Aldrich, Alpha Chem, Fluka, and Loba and were not purified further. The melting points (mp), which have not been corrected, were measured using the SMP50 Digital Melting Point App provided by Bibby Scientific in Staffordshire. A Thermo Fisher Nicolet IS10 spectrophotometer was used to detect infrared spectra as solids on the potassium bromide disc (v_{max} in cm⁻¹) with a resolution of 4.0 cm⁻¹, covering 4000-400 cm⁻¹. H-NMR and ¹³C-NMR spectra (400 and 101 MHz) were recorded at the JNM-ECA 500 II Made by JEOL-JAPAN instrument through a solution of deuterated dimethyl sulfoxide. Proton chemical shifts are labeled in part per million (ppm), downfield from tetramethyl silane (TMS, δ =0) as an internal standard, and the following abbreviations (or a combination thereof) are used to describe splitting patterns: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet, and br, broad. The internal references used were the residual protons (2.50, 3.33 ppm for ¹H NMR, and 39.9 ppm for ¹³C NMR). Mass spectra were measured with a Thermo Scientific

GCMS model (Isq Lt) using the Thermo X-Calibur software (Shimadzu, Kyoto, Japan) at the Regional Center for Mycology and Biotechnology (RCMB), Al-Azhar University, Nasr City, Cairo, Egypt. Elemental studies were conducted at the Regional Center for Microbiology and Biotechnology, Al-Azhar University, Cairo, Egypt, with results accurate to within 0.4%. Thin-layer chromatography (TLC) was carried out on silica gel plates by using DCM: MeOH (95:5%), as the eluting system. The progress of the reaction and evaluation of product purity was determined using a UV indicator at 254 nm.

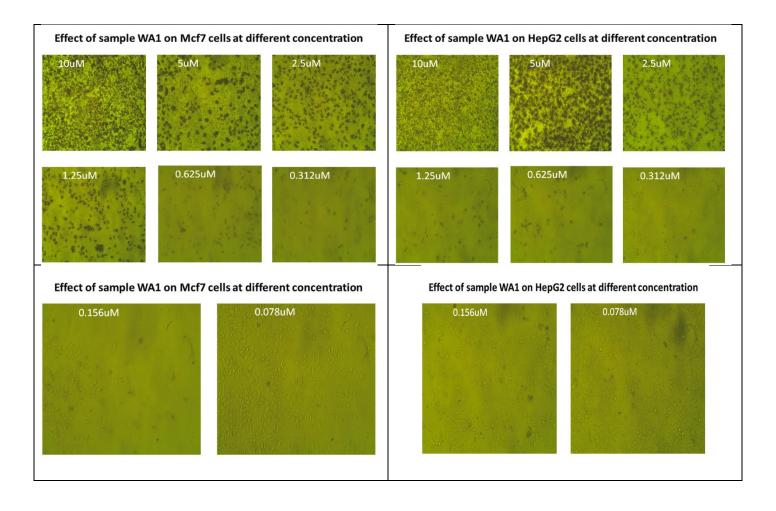
S2. Biological testing

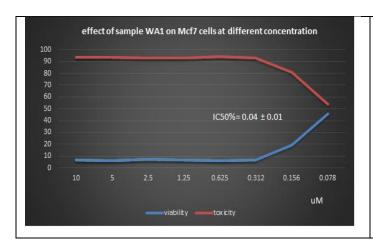

S.2.1. *In vitro* anti-proliferative activity

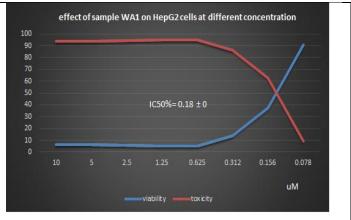
S.2.1.1. Determination of sample cytotoxicity on cells (MTT protocol)

- 1-The 96 well tissue culture plate was inoculated with 1 X 10⁵ cells / ml (100 ul / well) and incubated at 37°C for 24 hours to develop a complete monolayer sheet.
- 2- Growth medium was decanted from 96 well micro titer plates after confluent sheet of cells were formed, cell monolayer was washed twice with wash media.
- 3- two-fold dilutions of tested sample was made in RPMI medium with 2% serum (maintenance medium).
- 4- 0.1 ml of each dilution was tested in different wells leaving 3 wells as control, receiving only maintenance medium.
- 5- Plate was incubated at 37°C and examined. Cells were checked for any physical signs of toxicity, e.g. partial or complete loss of the monolayer, rounding, shrinkage, or cell granulation.
- 6- MTT solution was prepared (5mg/ml in PBS) (BIO BASIC CANADA INC).
- 8- 20ul MTT solution were added to each well. Place on a shaking table, 150rpm for 5 minutes, to thoroughly mix the MTT into the media.
- 9) Incubate (37C, 5% CO2) for 4 hours to allow the MTT to be metabolized.
- 10) Dump off the media. (dry plate on paper towels to remove residue if necessary.
- 11) Resuspend formazan (MTT metabolic product) in 200ul DMSO. Place on a shaking table, 150rpm for 5 minutes, to thoroughly mix the formazan into the solvent.
- 12) Read optical density at 560nm and subtract background at 620nm. Optical density should be directly correlated with cell quantity.

S.2.1.2. Morphological assay

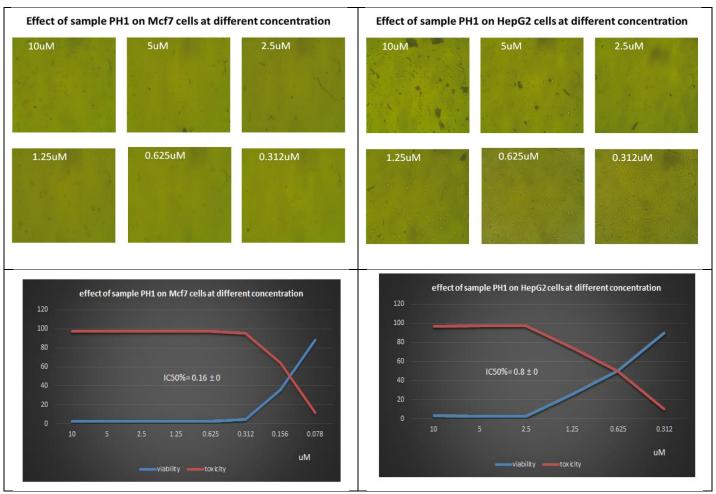

- ❖ Large-scale, morphological changes that occur at the cell surface, or in the cytoskeleton, can be followed and related to cell viability.
- ❖ Damage can be identified by large decreases in volume secondary to losses in protein and intracellular ions of due to altered permeability to sodium or potassium.
- ❖ Necrotic cells: nuclear swelling, chromatin flocculation, loss of nuclear basophilia
- ❖ Apoptotic cells: cell shrinkage, nuclear condansation, nuclear fragmentation




*** Cytotoxicity of WA1 (compound 14) against MCF-7 and HepG2

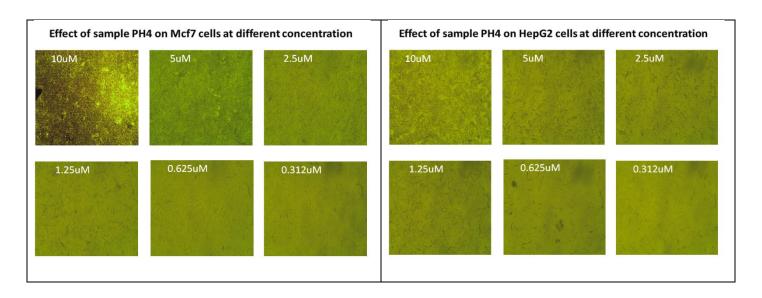
ID	uM		O.D		Mean O.D	±SE	Viability %	Toxicity %	IC ₅₀ ± SD
MCF-7		0.772	0.768	0.779	0.773	0.003215	100	0	uM
	10	0.053	0.048	0.055	0.052	0.002082	6.727037516	93.27296248	
	5	0.05	0.05	0.047	0.049	0.001	6.338939198	93.6610608	
	2.5	0.056	0.055	0.051	0.054	0.001528	6.985769728	93.01423027	
	1.25	0.056	0.049	0.055	0.053333	0.002186	6.899525658	93.10047434	
	0.625	0.048	0.042	0.048	0.046	0.002	5.95084088	94.04915912	
	0.312	0.049	0.055	0.053	0.052333	0.001764	6.770159552	93.22984045	
	0.156	0.163	0.152	0.133	0.149333	0.008762	19.31867184	80.68132816	0.04 ±
WA1	0.078	0.367	0.342	0.359	0.356	0.007371	46.05433376	53.94566624	0.01
***	5	0.173	0.156	0.162	0.163667	0.004978	21.17291936	78.82708064	
	2.5	0.263	0.269	0.271	0.267667	0.002404	34.62699439	65.37300561	
	1.25	0.388	0.367	0.393	0.382667	0.007965	49.50409659	50.49590341	
	0.625	0.659	0.678	0.666	0.667667	0.005548	86.37343683	13.62656317	
	0.312	0.771	0.764	0.778	0.771	0.004041	99.74126779	0.258732212	

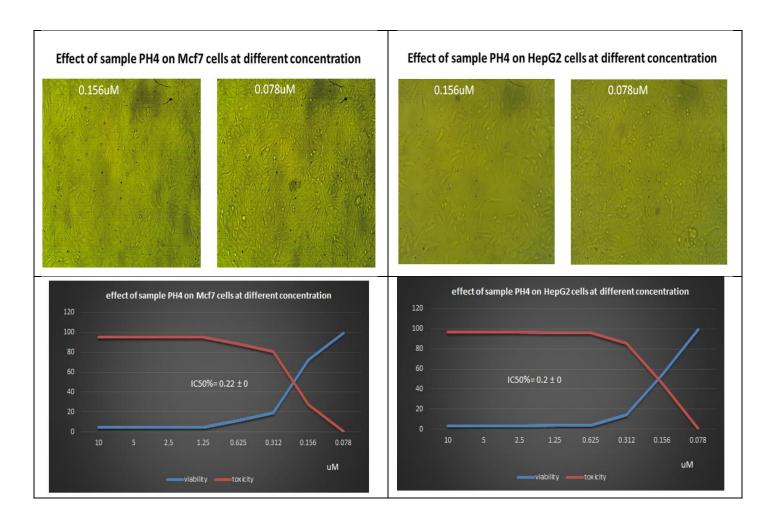
ID	uM		O.D		Mean	±SE	Viability %	Toxicity %	IC ₅₀
					O.D				± SD
HepG2		0.742	0.728	0.732	0.734	0.004163	100	0	uM
	10	0.043	0.047	0.044	0.044667	0.001202	6.08537693	93.91462307	
	5	0.045	0.046	0.045	0.045333	0.000333	6.176203451	93.82379655	
14/44	2.5	0.042	0.039	0.044	0.041667	0.001453	5.676657584	94.32334242	0.18 ± 0
WA1	1.25	0.037	0.041	0.036	0.038	0.001528	5.177111717	94.82288828	
	0.625	0.037	0.039	0.038	0.038	0.000577	5.177111717	94.82288828	
	0.312	0.11	0.093	0.106	0.103	0.005132	14.03269755	85.96730245	
	0.156	0.289	0.261	0.277	0.275667	0.00811	37.55676658	62.44323342	
	0.078	0.683	0.651	0.669	0.667667	0.009262	90.96276113	9.037238874	



*** Cytotoxicity of PH-1 (compound 18a) against MCF-7 and HepG2

ID	uM		O.D		Mean O.D	±SE	Viability %	Toxicity %	IC ₅₀ ± SD
MCF-7		0.772	0.768	0.779	0.773	0.003215	100	0	uM
	10	0.02	0.018	0.019	0.019	0.000577	2.457956016	97.54204398	
	5	0.019	0.018	0.021	0.019333	0.000882	2.501078051	97.49892195	
DUIA	2.5	0.019	0.022	0.018	0.019667	0.001202	2.544200086	97.45579991	0.16 ± 0
PH1	1.25	0.02	0.024	0.019	0.021	0.001528	2.716688228	97.28331177	
	0.625	0.018	0.023	0.022	0.021	0.001528	2.716688228	97.28331177	
	0.312	0.035	0.042	0.039	0.038667	0.002028	5.002156102	94.9978439	
	0.156	0.264	0.277	0.293	0.278	0.008386	35.96377749	64.03622251	
	0.078	0.673	0.7	0.682	0.685	0.007937	88.61578266	11.38421734	

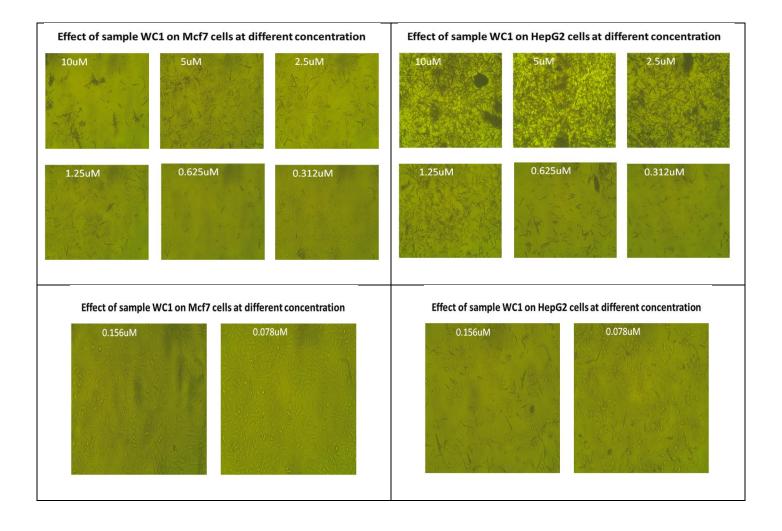

ID	uM		O.D		Mean O.D	±SE	Viability %	Toxicity %	IC ₅₀ ± SD
HepG2		0.742	0.728	0.732	0.734	0.004163	100	0	uM
	10	0.024	0.022	0.023	0.023	0.000577	3.133514986	96.86648501	
	5	0.022	0.019	0.026	0.022333	0.002028	3.042688465	96.95731153	
DUIA	2.5	0.02	0.02	0.021	0.020333	0.000333	2.770208901	97.2297911	0.8 ± 0
PH1	1.25	0.183	0.189	0.192	0.188	0.002646	25.61307902	74.38692098	
	0.625	0.385	0.362	0.358	0.368333	0.008413	50.18165304	49.81834696	
	0.312	0.668	0.652	0.648	0.656	0.00611	89.373297	10.626703	

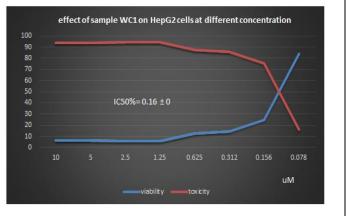


*** Cytotoxicity of PH-4 (compound 18b) against MCF-7 and HepG2

ID	uM		O.D		Mean O.D	±SE	Viability %	Toxicity %	IC ₅₀ ± SD
MCF-7		0.772	0.768	0.779	0.773	0.003215	100	0	uM
	10	0.036	0.038	0.038	0.037433	0.000722	4.842604571	95.15739543	
	5	0.039	0.038	0.039	0.038667	0.000333	5.002156102	94.9978439	
	2.5	0.03	0.036	0.038	0.034667	0.002404	4.484691677	95.51530832	
	1.25	0.036	0.035	0.036	0.035667	0.000333	4.614057784	95.38594222	
	0.625	0.085	0.074	0.11	0.089667	0.010651	11.59982751	88.40017249	
	0.312	0.163	0.128	0.154	0.148333	0.010493	19.18930574	80.81069426	
	0.156	0.584	0.542	0.561	0.562333	0.012143	72.74687365	27.25312635	
	0.078	0.77	0.765	0.774	0.769667	0.002603	99.56877965	0.431220354	0.22 ± 0
PH4	5	0.034	0.035	0.033	0.034	0.000577	4.398447607	95.60155239	0.22 ± 0
	2.5	0.034	0.034	0.036	0.034667	0.000667	4.484691677	95.51530832	
	1.25	0.032	0.036	0.034	0.034	0.001155	4.398447607	95.60155239	
	0.625	0.03	0.028	0.03	0.029333	0.000667	3.794739112	96.20526089	
	0.312	0.032	0.036	0.028	0.032	0.002309	4.139715395	95.86028461	
	0.156	0.177	0.19	0.164	0.177	0.007506	22.89780078	77.10219922	
	0.078	0.38	0.362	0.389	0.377	0.007937	48.77102199	51.22897801	

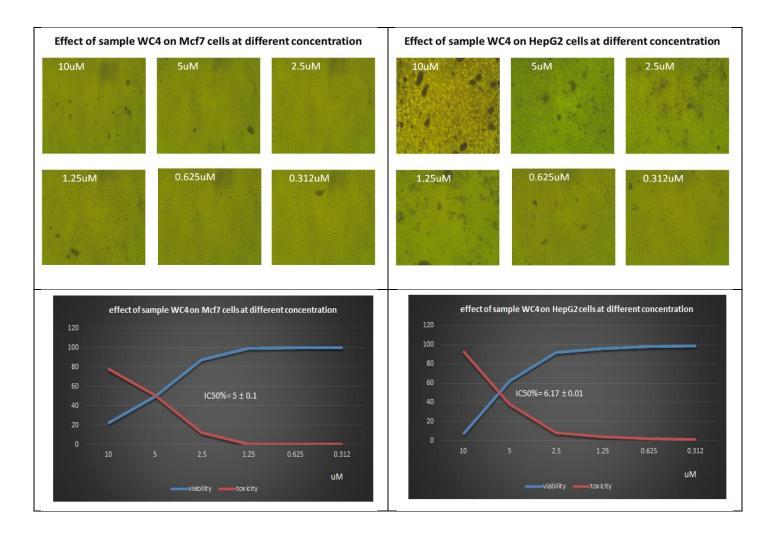
ID	uM		O.D		Mean O.D	±SE	Viability %	Toxicity %	IC ₅₀ ± SD
HepG2		0.742	0.728	0.732	0.734	0.004163	100	0	uM
	10	0.025	0.028	0.026	0.026333	0.000882	3.587647593	96.41235241	
	5	0.023	0.025	0.021	0.023	0.001155	3.133514986	96.86648501	
	2.5	0.026	0.023	0.025	0.024667	0.000882	3.36058129	96.63941871	
	1.25	0.035	0.032	0.03	0.032333	0.001453	4.405086285	95.59491371	
	0.625	0.028	0.026	0.029	0.027667	0.000882	3.769300636	96.23069936	
	0.312	0.099	0.116	0.105	0.106667	0.004978	14.53224342	85.46775658	
	0.156	0.413	0.386	0.394	0.397667	0.008007	54.17801998	45.82198002	
	0.078	0.736	0.73	0.727	0.731	0.002646	99.59128065	0.408719346	0.2 ± 0
PH4	5	0.03	0.027	0.027	0.028	0.001	3.814713896	96.1852861	0.2 ± 0
1114	2.5	0.021	0.02	0.022	0.021	0.000577	2.861035422	97.13896458	
	1.25	0.02	0.019	0.024	0.021	0.001528	2.861035422	97.13896458	
	0.625	0.023	0.021	0.022	0.022	0.000577	2.997275204	97.0027248	
	0.312	0.022	0.021	0.026	0.023	0.001528	3.133514986	96.86648501	
	0.156	0.264	0.289	0.291	0.281333	0.008686	38.32879201	61.67120799	
	0.078	0.673	0.642	0.668	0.661	0.009609	90.05449591	9.945504087	




*** Cytotoxicity of WC-1 (compound 18c) against MCF-7 and HepG2

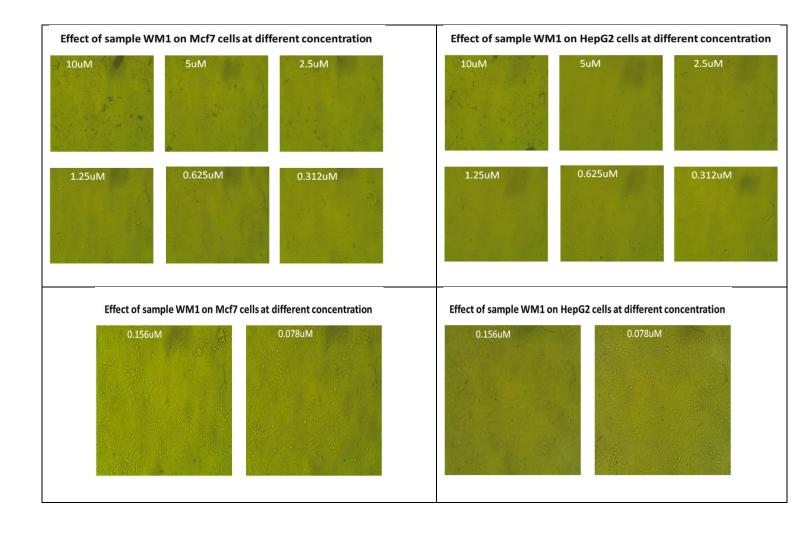
ID	uM		O.D		Mean O.D	±SE	Viability %	Toxicity %	IC ₅₀ ± SD
MCF-7		0.772	0.768	0.779	0.773	0.003215	100	0	uM
	10	0.027	0.028	0.026	0.027	0.000577	3.492884864	96.50711514	
	5	0.029	0.027	0.03	0.028667	0.000882	3.708495041	96.29150496	
14/64	2.5	0.052	0.048	0.05	0.05	0.001155	6.468305304	93.5316947	0.19 ± 0
WC1	1.25	0.083	0.059	0.062	0.068	0.00755	8.796895213	91.20310479	
	0.625	0.094	0.088	0.091	0.091	0.001732	11.77231565	88.22768435	
	0.312	0.198	0.216	0.201	0.205	0.005568	26.52005175	73.47994825	
	0.156	0.365	0.381	0.374	0.373333	0.004631	48.2966796	51.7033204	
	0.078	0.655	0.639	0.672	0.655333	0.009528	84.77792152	15.22207848	
	0.312	0.768	0.777	0.771	0.772	0.002646	99.87063389	0.129366106	

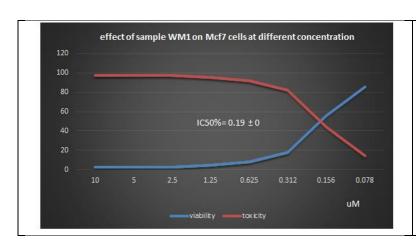
ID	uM		O.D		Mean O.D	±SE	Viability %	Toxicity %	IC ₅₀ ± SD
HepG2		0.742	0.728	0.732	0.734	0.004163	100	0	uM
	10	0.044	0.048	0.043	0.045	0.001528	6.130790191	93.86920981	
	5	0.045	0.046	0.044	0.045	0.000577	6.130790191	93.86920981	
	2.5	0.043	0.041	0.045	0.043	0.001155	5.858310627	94.14168937	0.16 ± 0
WC1	1.25	0.046	0.04	0.04	0.042	0.002	5.722070845	94.27792916	
	0.625	0.083	0.092	0.099	0.091333	0.004631	12.44323342	87.55676658	
	0.312	0.108	0.094	0.109	0.103667	0.004842	14.12352407	85.87647593	
	0.156	0.196	0.165	0.188	0.183	0.009292	24.93188011	75.06811989	
	0.078	0.633	0.598	0.619	0.616667	0.010171	84.01453224	15.98546776	

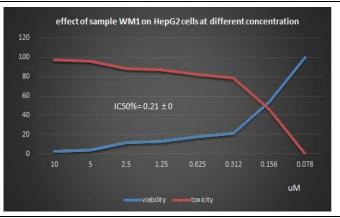


*** Cytotoxicity of WC-4 (compound 18d) against MCF-7 and HepG2

ID	uM		O.D		Mean O.D	±SE	Viability %	Toxicity %	IC ₅₀ ± SD
MCF-7		0.772	0.768	0.779	0.773	0.003215	100	0	uM
	10	0.17	0.163	0.189	0.174	0.007767	22.50970246	77.49029754	
	5	0.388	0.364	0.391	0.381	0.008544	49.28848642	50.71151358	
14464	2.5	0.688	0.663	0.679	0.676667	0.007311	87.53773178	12.46226822	5 ± 0.1
WC4	1.25	0.77	0.763	0.769	0.767333	0.002186	99.2669254	0.733074601	
	0.625	0.775	0.77	0.771	0.772	0.001528	99.87063389	0.129366106	
	0.312	0.768	0.777	0.771	0.772	0.002646	99.87063389	0.129366106	

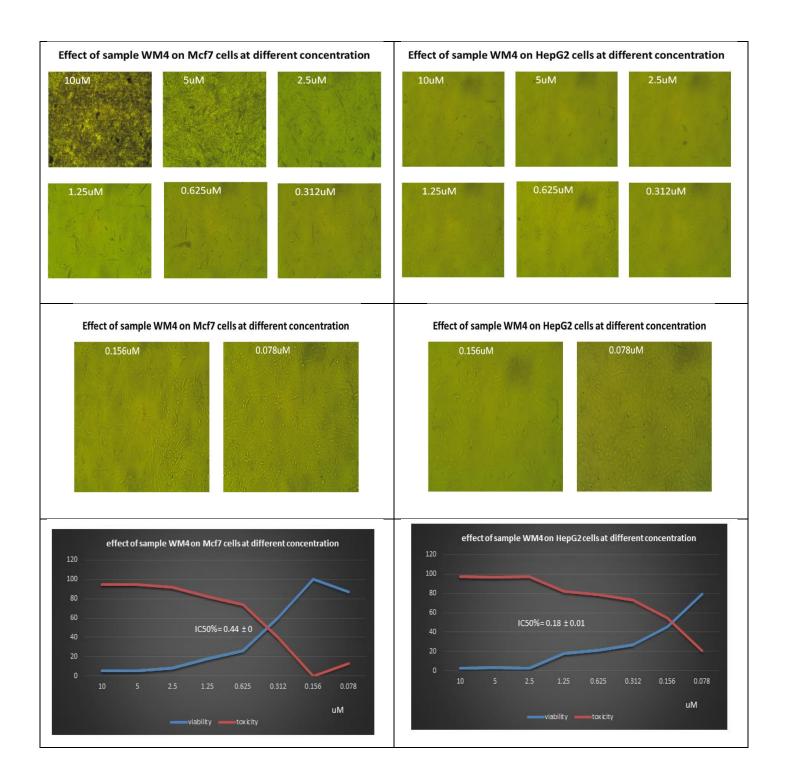

ID	uM		O.D		Mean O.D	±SE	Viability %	Toxicity %	IC ₅₀ ± SD
HepG2		0.742	0.728	0.732	0.734	0.004163	100	0	uM
•	10	0.063	0.048	0.052	0.054333	0.004485	7.40236149	92.59763851	
	5	0.463	0.442	0.459	0.454667	0.006438	61.94368756	38.05631244	
14/64	2.5	0.673	0.682	0.67	0.675	0.003606	91.96185286	8.038147139	6.17 ±
WC4	1.25	0.698	0.714	0.704	0.705333	0.004667	96.09445958	3.905540418	0.01
	0.625	0.724	0.722	0.715	0.720333	0.002728	98.13805631	1.861943688	
	0.312	0.73	0.717	0.724	0.723667	0.003756	98.59218892	1.407811081	




*** Cytotoxicity of WM-1 (compound 18e) against MCF-7 and HepG2

ID	uM		O.D		Mean O.D	±SE	Viability %	Toxicity %	IC ₅₀ ± SD
MCF-7		0.772	0.768	0.779	0.773	0.003215	100	0	uM
	10	0.024	0.022	0.021	0.022333	0.000882	2.889176369	97.11082363	
	5	0.022	0.026	0.023	0.023667	0.001202	3.061664511	96.93833549	
14/0.44	2.5	0.022	0.021	0.026	0.023	0.001528	2.97542044	97.02457956	0.19 ± 0
WM1	1.25	0.043	0.036	0.032	0.037	0.003215	4.786545925	95.21345408	
	0.625	0.088	0.092	0.01	0.063333	0.026692	8.193186718	91.80681328	
	0.312	0.151	0.127	0.133	0.137	0.007211	17.72315653	82.27684347	
	0.156	0.437	0.413	0.452	0.434	0.011358	56.14489004	43.85510996	
	0.078	0.674	0.668	0.641	0.661	0.010149	85.51099612	14.48900388	

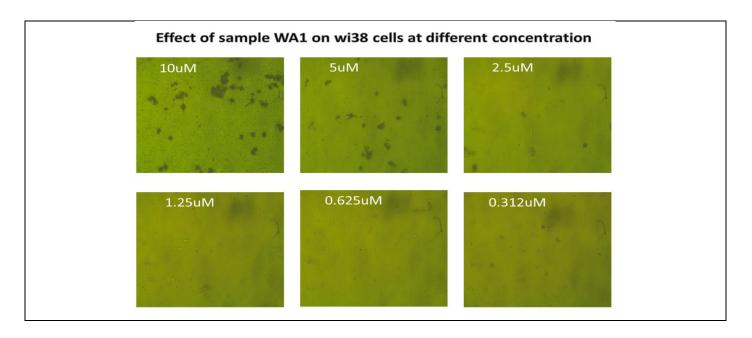
ID	uM		O.D		Mean O.D	±SE	Viability %	Toxicity %	IC ₅₀ ± SD
					0.5				_ 55
HepG2		0.742	0.728	0.732	0.734	0.004163	100	0	uM
	10	0.019	0.018	0.022	0.019667	0.001202	2.67938238	97.32061762	
	5	0.026	0.037	0.03	0.031	0.003215	4.223433243	95.77656676	
	2.5	0.084	0.091	0.088	0.087667	0.002028	11.94368756	88.05631244	0.21 ± 0
WM1	1.25	0.093	0.099	0.103	0.098333	0.002906	13.3969119	86.6030881	
	0.625	0.145	0.128	0.12	0.131	0.007371	17.84741144	82.15258856	
	0.312	0.166	0.148	0.152	0.155333	0.005457	21.16257947	78.83742053	
	0.156	0.397	0.382	0.406	0.395	0.007	53.8147139	46.1852861	
	0.078	0.736	0.73	0.732	0.732667	0.001764	99.81834696	0.181653043	

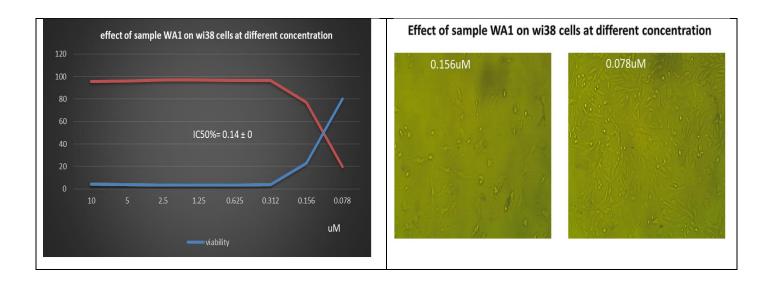


*** Cytotoxicity of WM-4 (compound 18f) against MCF-7 and HepG2

ID	uM	O.D		Mean O.D	±SE	Viability %	Toxicity %	IC ₅₀ ± SD	
MCF-7		0.772	0.768	0.779	0.773	0.003215	100	0	uM
	10	0.046	0.037	0.038	0.040333	0.002848	5.217766279	94.78223372	
	5	0.039	0.042	0.041	0.040667	0.000882	5.260888314	94.73911169	
\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.	2.5	0.064	0.059	0.061	0.061333	0.001453	7.934454506	92.06554549	0.44 ± 0
WM4	1.25	0.116	0.142	0.158	0.138667	0.012238	17.93876671	82.06123329	
	0.625	0.198	0.202	0.214	0.204667	0.004807	26.47692971	73.52307029	
	0.312	0.453	0.473	0.461	0.462333	0.005812	59.81026304	40.18973696	
	0.156	0.766	0.778	0.771	0.771667	0.00348	99.82751186	0.172488141	
	0.078	0.66	0.684	0.666	0.67	0.007211	86.67529107	13.32470893	

ID	иM		O.D		Mean	±SE	Viability %	Toxicity %	IC ₅₀
					O.D				± SD
HepG2		0.742	0.728	0.732	0.734	0.004163	100	0	uM
	10	0.019	0.02	0.017	0.018667	0.000882	2.543142598	97.4568574	
	5	0.026	0.021	0.022	0.023	0.001528	3.133514986	96.86648501	
\A/B 4.4	2.5	0.02 0.018 0.0		0.024	0.020667	0.001764	2.815622162	97.18437784	0.18 ±
WM4	1.25	0.142	0.118	0.137	0.132333	0.007311	18.02906449	81.97093551	0.01
	0.625	0.183	0.155	0.138	0.158667	0.013119	21.61671208	78.38328792	
	0.312	0.214	0.183	0.199	0.198667	0.00895	27.06630336	72.93369664	
	0.156	0.331	0.308	0.356	0.331667	0.01386	45.18619437	54.81380563	
	0.078	0.593	0.563	0.585	0.580333	0.008969	79.06448683	20.93551317	




S.2.2. Safety assay

The safety profile of compound **14** was checked on against normal human lung cells (WI-38) to determine the treatments concentrations that do not depict toxic effects against the tested cells. A portion of $100.0~\mu l$ of $6\times10^4~cell/ml$ cells was seeded into each well of a 96-well plate and then the plates were incubated at $37^{\circ}C$ in a humidified 5.0% CO₂ incubator for 24 h. At the end of incubation period, the exhausted medium was replaced with $100.0~\mu l$ of different concentrations of the designated treatment (prepared in RPMI medium starting from 1.0~mM). The inoculated plates were incubated at the same growth conditions for another 24 h. At the end of incubation, cellular viability was assessed using MTS assay kit (Promega) according to the manual instruction.

*** Cytotoxicity of WA-1 (compound 14) against normal human lung cells (WI-38)

ID	uM		O.D		Mean O.D	±SE	Viability %	Toxicity %	IC50 ± SD
Wi38		0.672	0.67	0.668	0.67	0.001155	100	0	uM
	10	0.022	0.035	0.03	0.029	0.003786	4.328358209	95.67164179	
	5	0.026	0.025	0.029	0.026667	0.001202	3.980099502	96.0199005	
14/44	2.5	0.021	0.02	0.023	0.021333	0.000882	3.184079602	96.8159204	0.14 ± 0
WA1	1.25	0.02	0.02	0.025	0.021667	0.001667	3.233830846	96.76616915	
	0.625	0.021	0.026	0.023	0.023333	0.001453	3.482587065	96.51741294	
	0.312	0.026	0.023	0.025	0.024667	0.000882	3.68159204	96.31840796	
	0.156	0.152	0.177	0.132	0.153667	0.013017	22.93532338	77.06467662	
	0.078	0.534	0.551	0.528	0.537667	0.006888	80.24875622	19.75124378	

S.2.3. In vitro VEGFR-2 inhibition

Inhibitory activity of compound **14** against VEGFR-2 was evaluated using Human VEGFR-2 ELISA kit (VEGFR2(KDR) Kinase Assay Kit Catalog # 40325)(BPS Bioscience, San Diego, USA). A specific antibody for VEGFR-2 was seeded on a 96-well plate and 100 μL of the standard solution or the tested compound was added, all were incubated at room temperature for 2.5 hours. Then washed, 100 μL of the prepared biotin antibody was added, then incubated at room temperature for additional 1 hour. Washed, 100 μL of streptavidin solution was added then incubated for 45 min. at room temperature. Washed again, 100 μL of TMB Substrate reagent was added and incubated for 30 min. at room temperature. 50 μL of the stop solution was added, then read at 450 nm immediately. The standard curve was drawn, concentrations on the X-axis and the absorbance on the Y-axis.

VEGFR2	-											
code	IC50	conc	log	%inh	T2	T1	ΔΤ	RFU2	RFU1	ΔRFU	slope	K.Activity
WA1		100	2	95.3	30	0	30	4.67	0	4.67	3.333	5.604
WA1	• •	10	1	88.2	30	0	30	11.84	0	11.84	3.333	14.208
	_:	1	0	71.8	30	0	30	28.22	0	28.22	3.333	33.864
···	:	0.1	-1	46.5	30	0	30	53.48	0	53.48	3.333	64.176
		0.01	-2	31.6	30	0	30	68.41	0	68.41	3.333	82.092
EC				0	30	0	30	100	0	100	3.333	120
code	IC50	conc	log	%inh	T2	T1	ΔΤ	RFU2	RFU1	ΔRFU	slope	K.Activity

Page 17 of 29

Sorafenib	100	2	95.7	30	0	30	4.29	0	4.29	3.333	5.148
	10	1	89	30	0	30	11.03	0	11.03	3.333	13.236
	1	0	75.8	30	0	30	24.16	0	24.16	3.333	28.992
, is	0.1	-1	57.4	30	0	30	42.55	0	42.55	3.333	51.06
	0.01	-2	36.4	30	0	30	63.62	0	63.62	3.333	76.344
EC			0	30	0	30	100	0	100	3.333	120

S.2.4. Cell cycle analysis

The MCF-7 cells were distributed at a density of 2.5×10^5 cells per flask on to the tissue culture flasks (T-75 flask; Nunc A/S) containing RPMI-1640 medium supplemented with 2 % FBS. After incubation for 72h with compound **14** at a concentration of 0.041 μM, the cells were washed thrice with ice-cold PBS buffer and fixed in 70 % cold ethyl alcohol at -20 °C overnight. The contents from each of the flask were then centrifuged at $12,000\times g$ for 20 min followed by washing and treatment with 100 μl PBS containing 1 mM RNase A (Qiagen, Hilden, Germany). After incubation for 45 min at 37 °C, the cells were stained with 400 μl propidium iodide (PI; $50 \, \mu g/ml$; Sigma-Aldrich) for 30 min. The cells were filtered through a 40-μm nylon mesh (BD Biosciences, San Jose, CA, USA), and the DNA content was analyzed using Epics XL-MCLTM Flow Cytometer.

S.2.5. Apoptosis analysis

The annexin V externalization assay for apoptosis was performed using flow cytometry after treatment MCF-7 cells with compound **14** (at concentrations of 0.041 μM) for 72 h as described in the vendor's protocol (BD Pharmingen, BD Biosciences, San Jose, USA). Briefly, untreated and cells treated with compound **15**, from 60 to 70% confluent plates were trypsinized, washed in PBS and resuspended (1 × 10⁶ cells/ml) in binding buffer (10 mM HEPES, pH 7.4, 140 mM NaCl, 2.5 mM CaCl₂). A fraction (100 μl/1 × 10⁵ cells) of the cell suspension was incubated with 5 μl annexin V conjugated to FITC and 5 μl propidium iodide (PI) for 15 min at 25 °C in the dark. 400 μl of binding buffer was added to the suspension and apoptosis was measured immediately using a Becton Dickinson FACScan analyzer as described by Raza *et al.*, 2008. The apoptotic cells were estimated as the percentage of cells that stained positive for Annexin V-FITC while remaining impermeable to PI (AV+/PI-). This method also distinguished viable cells (AV-/PI-) and cells undergoing necrosis (AV+/PI+).

S.2.6. In vitro assay for BAX and Bcl-2 using RT-PCR Tanique

The molecular anticancer mode of action of compound **14** was investigated by screening their ability to affect the level of BAX and Bcl-2 using specific forward and reverse primers and RTq-PCR technique in MCF-7 cells (chosen as the most sensitive cancer cell line). After cellular treatment, MCF-7 cell line was cultured into 12 well plates (6×10³ cell/ml) for 24 hour at a concentration of 0.04 µM. After treatment, total RNA extraction was performed using RNA extraction kit (Qiagen, Germany). Then, 1 ug of the obtained RNA was used to synthesize cDNA using cDNA synthesis kit (Promega Corporation, Madison, USA) as recommended by the manufacturer. Simultaneously, GAPDH was used as internal control. The RTq-PCR was done using SYBR Green dye (QuantiTect SYBR Green PCR Kits) and Light Cycler fluorimeter (Bio-RAD S1000 Tm thermal cycler). The PCR cycling program was as follows: 95°C for 2 min, followed by 40 cycles of 95°C for 30s, 55°C for 30 s, and 60°C for 45s, and finally 60°C for 5 min.

The sequences for primers used in quantitative Real Time Reverse-Transcriptase PCR (qRT-PCR)

	Primers Primers								
BAX	: F 5'- TCAGGATGCGTCCACCAAGAAG -3',								
BAX	: R 5'- TGTGTCCACGGCGGCAATCATC-3'.								
Bcl-2	: F 5'- ATCGCCCTGTGGATGACTGAGT -3',								
Bcl-2	: R 5'- GCCAGGAGAAATCAAACAGAGGC -3'.								

GAPDH	: F 5'- GTCTCCTCTGACTTCAACAGCG-3'
GAPDH	: R 5'- ACCACCCTGTTGCTGTAGCCAA-3'

Gene Expression								
Control cells	Test cells	FLD						
	Control cells							

MCF7

Ser	code	Conc	GAPDH	Bax	ΔCTC	GAPDH	Bax	ΔCTΕ	ΔΔ СΤ	2^ ΔΔCΤ
			НС	TC	TC-	HE	TE	TE-	ΔСΤΕ-	
					НС			HE	ΔCTC	E=1.872
1	WA1		21.66	33.92	12.26	21.86	31.07	9.21	-3.05	6.7691
					70.06			70.06		_
5	Control		21.66	33.92	12.26	21.66	33.92	12.26	0	1

Ser	code	Conc	GAPDH	Bcl2	ΔСТС	GAPDH	Bcl2	ΔCTΕ	ΔΔ CT	2^ ΔΔCT
			HC	TC	TC-	HE	TE	TE-	ΔСΤΕ-	
					НС			HE	ΔCTC	E=1.872
1	WA1		21.66	26.84	5.18	21.86	29.97	8.11	2.93	0.1593
					7.70			7.70	_	_
5	Control		21.66	26.84	5.18	21.66	26.84	5.18	0	1

S.2.7. Wound healing assay (Migration assay)

Rat of migration (RM) = (wi - wf) / t

Wi =average of intial wound width um

Wf= average of final wound width um

T = time span of the assay in hours

Percentage of wound clouser % ={ $(A_{t=0} - A_{t=\Delta t}) / A_{t=0}$ } 100

 $A_{t=0} = intial$ wound area

 $A_{t=\Delta t}$ = wound area after n hours

Area difference % = (Ai - Af)

Ai = intial area

Af = final area

MCF-7 cells were grown to 95.0% confluency in a complete DMEM medium and then the wounds were formed using a plastic tip. After washing with pre-warmed PBS, the cells were incubated in the specific medium or compound **14** treatment. After incubation at 37°C and 5.0% CO₂ for 24h, the cells were washed with PBS and the wounds distance was determined as the scratch width of the treated and untreated groups using ImageJ software.

S3. *In silico* studies

S.3.1. Docking studies

Protein Preparation: The crystal structure of VEGFR-2 [PDB ID: 2OH4, resolution: 2.05 Å] was obtained from Protein Data Bank (https://www.rcsb.org). At first, the crystal structure of the VEGFR-2 complexed with the co-crystallized ligand was prepared by removing crystallographic water molecules. Only one chain was retained besides the co-crystallized ligand. The selected protein chain was protonated using the following setting. The used electrostatic functional form was GB/VI with a distance cut-off of 15 Å. The used value of the dielectric constant was 2 with an 80 dielectric constant of the used solvent. The used Van der Waals functional form was 800R3 with a distance cut-off of 10 Å. Then, the energy of the protein chain was minimized using Hamiltonian AM1 implanted in Molecular Operating Environment (MOE 2019 and MMFF94x (Merck molecular force field) for structural optimization. Next, the active site of the target protein was defined for ligand docking and redocking (in case of validation of docking protocol). The active site of the protein was identified as the residues that fall within the 5 Å distance from the perimeter of the co-crystallized ligand.

Ligand Preparation: 2D structures of the synthesized compounds and the standard compound, sorafenib were drawn using ChemBioDraw Ultra 14.0 and saved in MDL-SD file format. The 3D structures of the ligands were protonated, and the structures were optimized by energy minimization using MM2 force-field and 10000 iteration steps of 2 fs. The conformationally optimized ligands were used for docking studies.

Docking Setup and Validation of Docking Protocol: The protein-ligand docking studies were carried out using MOE version 2019. Validation of the docking protocol was carried out by redocking the co-crystallized reference ligand against the isolated pocket of VEGFR-2. The docking protocol was validated by comparing the heavy atoms RMSD value of the re-docked ligand pose with the corresponding co-crystallized reference ligand structure.

The docking setup for the tested compounds was established according to the protocol followed in the validation step. For each docking run, 30 docked solutions were generated using ASE for scoring function and rigid receptor for refinement. The pose with ideal binding mode was selected for further investigations. The docking results were visualized using Discovery Studio (DS) 4.0.

Analysis of the docking results was carried out by comparing the interactions and docking score obtained for the docked ligands with that of the re-docked reference molecule.

S.3.2. MD simulations

To assess the robustness of the VEGFR-2_14 complex and to compare the structure of the apo and holo protein, a 100 ns classical unbiased MD simulation was run in GROMACS 2021. We utilized the solution builder module of the CHARMM-GUI server to generate the input files. Using the transferable intermolecular potential 3 points (TIP3P) water model, we solvated and centered the apo protein and the docked complex in a cube of 8.3 nm in length with 1 nm of padding, and then neutralized the system with NaCl ions at a concentration of 0.154 M. The VEGFR-2 protein's amino acid parameters, the TIP3P water model, and the neutralizing ions were all obtained with the help of the CHARMM36m force field. Parameters for compound 14 were calculated with the help of the CHARMM general force field (CGenFF).

We utilized GROMACS 2021 to perform the dynamics and used periodic boundary conditions (PBCs) in all three spatial dimensions. The potential energy of the system was minimized so that atomic collisions may be avoided. During the equilibration process, the temperature was brought to 310 K and the pressure was brought to 1 atm. In detail, the minimizing step was set to be converged at 100,000 minimization steps or when the maximum force on any atom was 100 KJ.mol⁻¹.nm⁻¹. By using the Velocity Rescale technique, we were able to achieve thermal equilibrium in a canonical (NVT) ensemble. For pressure equilibration, we employed a Berendsen barostat with the isothermal-isobaric (NPT) ensemble. The production run in an NPT ensemble was started for 100 ns with the Nose-Hoover thermostat at 310 degrees Kelvin and the Parrinello-Rahman barostat set at 1 atm. The LINear Constraint Solver (LINCS) was used to impose length constraints on the hydrogen-bonded atoms . We utilized Particle Mesh Ewald (PME) to calculate the electrostatics with a threshold of 1.2 nm. By using a time step of 1 femtosecond during equilibration and 2 femtoseconds during production, the Newtonian equations of motion were integrated using the leap-frog algorithm. One thousand frames were captured at 0.1 ns intervals throughout the simulation. We centered the protein in the middle of the simulation box and made it whole again using the triconv command and then analyzed it using VMD TK scripts. VEGFR-2 and 14 root mean square deviation (RMSD) values were determined. Root mean square fluctuation (RMSF), the radius of gyration (RoG), the ligand-protein center of mass separation, and the number of hydrogen bonds were all computed to see their dynamic behavior with time.

MM-GBSA

When calculating the ligand's binding energy, we utilized the Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) method implemented in the gmx_MMPBSA program. In addition, decomposition analysis was carried out to calculate the binding energy contributed by each amino acid within 1 nm of the ligand. An ionic strength of 0.154 M and a solvation method (igb) value of 5 were selected. The dielectric constant was set to 1.0 inside and 78.5 outside the structure. The MM-GBSA approach is shown in Equation 1.

$$\Delta G = \langle Gcomplex - (Greceptor + Gligand) \rangle$$

Equation 1

Where < > represents the average of the enclosed free energies of complex, receptor, and ligand over the frames used in the calculation. In our approach, we used the whole trajectory (a total of 1000 frames). Different energy terms can be calculated according to Equations 2 to 6 as follows:

 Δ Gbinding = Δ H - Δ S Equation 2

 $\Delta H = \Delta E gas + \Delta E sol$ Equation 3

 $\Delta Egas = \Delta Eele + \Delta EvdW$ Equation 4

 Δ Esolv = EGB + ESA Equation 5

 $ESA = \gamma.SASA$ Equation 6

Where:

 ΔH is the enthalpy which can be calculated from gas-phase energy (E_{gas}) and solvation-free energy (E_{sol}). -T ΔS is the entropy contribution to the free binding energy. E_{gas} is composed of electrostatic and van der Waals terms; E_{ele} , E_{vdw} , respectively. E_{sol} can be calculated from the polar solvation energy (E_{GB}) and nonpolar solvation energy (E_{SA}) which is estimated from the solvent-accessible surface area.

ProLIF Analysis

we monitored which amino acids interacted with the ligand and how often using the python package Protein-Ligand Interaction Fingerprints (ProLIF). We next used TTclust to cluster the

trajectories, and the obtained representative frames were used with the Protein-Ligand interaction profiler (PLIP) to extract the interactions as 3D conformations.

Principal Component Analysis:

When the mass-weighted covariance matrix (C) of the positional fluctuations of a subset of atoms in a protein is analyzed using a Principal Component Analysis (PCA), the presence of coordinated motion at large amplitudes in MD trajectories becomes apparent. The alpha carbon atoms of amino acids Glu826:Leu1161 were used in the PCA analysis as a subset of atoms to detect the coordinated motion (15). After equilibration, the protein's configuration in each trajectory was used as the reference structure while performing the analyses that used a single trajectory. In contrast, the last frame from the equilibration of the apo system was chosen as the reference for the concatenated trajectory analyses. The PCA technique, in particular, uses the information revealed by diagonalizing the C matrix to determine the eigenvectors and eigenvalues that define the atomic motions' direction and amplitude. For any given system, the first PC displays the largest motion, whereas subsequent PCs show smaller motions. We were able to analyze the C matrix in GROMACS by utilizing the gmx covar command to diagonalize the matrix and the gmx anaeig command to complete the analysis.

Essential subspace size was determined based on the cumulative eigenvalues with respect to the number of eigenvectors used, where the variance maintained by the selected eigenvectors was shown. Additionally, the scree plot was made by plotting the eigenvalue of each eigenvector against its index number. Moreover, it is well known that the distribution of the initial eigenvectors does not follow a Gaussian distribution. Therefore, this was used as an additional criterion in determining the number of eigenvectors of the essential subspace.

For each principal component (pi) of the covariance matrix, the cosine content (ci) may be calculated from the C matrix; this absolute value goes from 0 (no cosine) to 1 (perfect cosine). The equation of cosine content is as follows:

$$c_i = \frac{2}{T} \left(\int \cos(i\pi t \, p_i(t) \, dt)^2 \left(\int p_i^2(t) \, dt \right)^{-1} \right)$$

Where T is the time of the simulation. Insufficient sampling has been associated with abnormally high ci values, which indicate random motion. The large-scale behavior of proteins is similar to

diffusion when the cosine content of the first few PCs is close to 1. All trajectories' cosine contents were calculated by analyzing the first 10 PCs.

Free Energy Landscape (FEL):

The exploration of a protein's free-energy landscape can be achieved by using a conformational sampling approach, which allows for the investigation of conformations that are similar to the native state structure. In this study, we employed the molecular dynamics (MD) simulation method to fulfill this purpose. To visually represent the free-energy landscape (FEL) in two dimensions, we define the probability of observing the system in a specific state, characterized by certain variables of interest (known as reaction coordinates), as proportionate to the exponential of the negative ratio between the free energy G_{α} associated with that state and the product of the Boltzmann constant k and the absolute temperature T (e^{-Ga/kT}). The complete FEL can be derived from these calculations.

$$G\alpha = -kT \ln(\frac{P(q_{\alpha})}{P_{max}(q)})$$

Where k is the Boltzmann constant, T is the temperature of simulation, $P(q_{\alpha})$ is an estimate of the probability density function obtained from a histogram of the MD data and $P_{\text{max}}(q)$ is the probability of the most probable state. We derived two-dimensional representations of the free-energy landscapes by considering two separate reaction coordinates: qi and qj. These representations were obtained by analyzing the joint probability distributions, referred to as P(qi,qj), which describe the system [https://www.sciencedirect.com/science/article/pii/S1093326309000175]. The GROMACS gmx sham command was utilized for this purpose.

S.3.4. Density Function Theory (DFT) calculations

After optimization at the DFT/B3LYP/6-31+G (d, p) theory level using the Gaussian 09(D.01) program, the quantum chemistry calculations were performed using the Multiwfn, AIMALL, and Gauss View 5.0 interface tools. AIMAll and Multiwfn programs were employed for the examination of the quantum theory of atoms in molecules (QTAIM). Numerous analyses, including those of electrostatic potential (ESP), total density of states (TDOS), frontiers molecular

orbitals (FMO), and total density of states (TDOS), have been done at the same theoretical level. The following mathematical formulas were used to determine the global reactivity receptors:

$$IP = -E_{\text{HOMO}}$$

$$EA = -E_{\text{LUMO}}$$

$$\mu = (IP+EA)/2$$

$$\eta = (IP-EA)$$

$$\omega = \mu^2/(2 \eta)$$

$$\sigma$$
= 1/ η

$$\Delta N = -(\mu/\eta)$$

$$\Delta E = -\omega$$

$$E_{gap} = E_{LUMO} - E_{HOMO}$$

where (μ) chemical potential, (σ) is softness, (η) is global hardness, (EA) is electron affinity (EA), (χ) is electronegativity, (IP) is ionization potential, (ΔE) is energy change, (ω) is electrophilicity index, and E_{gap} is the band gap between HOMO and LUMO orbitals.

Table S1. The QTAIM parameters (a.u.) at bond critical points (BCPs) of compound 14.

BCP #	Atoms	(ρ)	(∇2ρ)	K(r)	G(r)	V(r)	H(r)
1	C1 - C2	0.256466	-0.62583	0.215394	0.058938	-0.27433	-0.21539
2	C1 - O3	0.403276	-0.06569	0.69715	0.680728	-1.37788	-0.69715
3	C1 - N4	0.307285	-0.96937	0.459028	0.216686	-0.67571	-0.45903
4	C7 - C8	0.305403	-0.81588	0.29739	0.09342	-0.39081	-0.29739
5	C5 - C6	0.307829	-0.83398	0.304248	0.095753	-0.4	-0.30425
6	N4 - C5	0.287599	-0.87836	0.401897	0.182308	-0.58421	-0.4019
7	C7 - H30	0.289265	-1.07565	0.307155	0.038244	-0.3454	-0.30716
8	C6 - C7	0.315141	-0.86272	0.318005	0.102325	-0.42033	-0.318
9	C5 - C10	0.310864	-0.84684	0.309388	0.097678	-0.40707	-0.30939
10	C8 - C11	0.270685	-0.67357	0.233694	0.065302	-0.299	-0.23369
11	C9 - C10	0.312945	-0.85315	0.313479	0.100193	-0.41367	-0.31348
12	C8 - C9	0.306615	-0.81848	0.299902	0.095281	-0.39518	-0.2999
13	C10 - H32	0.283261	-1.01006	0.29477	0.042255	-0.33702	-0.29477

14	C11 - N13	0.370332	-0.80026	0.638515	0.43845	-1.07696	-0.63851
15	C11 - C12	0.254702	-0.60264	0.211313	0.060652	-0.27197	-0.21131
16	N13 - N14	0.343245	-0.63967	0.331974	0.172056	-0.50403	-0.33197
17	C12 - H33	0.28361	-1.0183	0.296322	0.041747	-0.33807	-0.29632
18	S15 - C16	0.195178	-0.35743	0.148929	0.059573	-0.2085	-0.14893
19	N14 - H33	0.016896	0.074351	-0.00335	0.015235	-0.01188	0.003353
20	N14 - C16	0.386386	-1.19527	0.66379	0.364971	-1.02876	-0.66379
21	S15 - C19	0.199388	-0.3705	0.154346	0.06172	-0.21607	-0.15435
22	N17 - C20	0.27094	-0.72164	0.383482	0.203071	-0.58655	-0.38348
23	N18 - C19	0.366414	-0.65692	0.628632	0.464402	-1.09303	-0.62863
24	C16 - N17	0.302056	-0.94084	0.431031	0.195822	-0.62685	-0.43103
25	N17 - N18	0.36515	-0.70103	0.366969	0.191711	-0.55868	-0.36697
26	C19 - C26	0.273059	-0.69495	0.239353	0.065616	-0.30497	-0.23935
27	C20 - C21	0.309461	-0.83984	0.307283	0.097322	-0.40461	-0.30728
28	N14 - H36	0.011404	0.042045	-0.00188	0.008636	-0.00676	0.001876
29	C21 - H36	0.289575	-1.07853	0.308196	0.038563	-0.34676	-0.3082
30	C22 - C24	0.312254	-0.86796	0.312791	0.0958	-0.40859	-0.31279
31	C20 - C23	0.313525	-0.85547	0.315032	0.101165	-0.4162	-0.31503
32	C23 - C25	0.308978	-0.83039	0.306392	0.098794	-0.40519	-0.30639
33	C21 - C24	0.314404	-0.85689	0.317056	0.102834	-0.41989	-0.31706
34	C22 - C25	0.310971	-0.84673	0.311019	0.099337	-0.41036	-0.31102
35	C26 - C43	0.257541	-0.62592	0.216893	0.060413	-0.27731	-0.21689
36	C43 - H44	0.280541	-0.99062	0.289722	0.042067	-0.33179	-0.28972
37	C26 - O27	0.401084	0.12538	0.683283	0.714628	-1.39791	-0.68328
38	N4 - H28	0.341929	-1.82397	0.507798	0.051807	-0.5596	-0.5078
39	C6 - H29	0.286376	-1.03455	0.300719	0.042082	-0.3428	-0.30072
40	C9 - H31	0.286588	-1.03623	0.300838	0.041781	-0.34262	-0.30084
41	C12 - H34	0.273922	-0.92699	0.277701	0.045955	-0.32366	-0.2777
42	C12 - H35	0.273361	-0.92275	0.276863	0.046175	-0.32304	-0.27686
43	C24 - H37	0.284988	-1.03287	0.298673	0.040454	-0.33913	-0.29867
44	C25 - H38	0.285253	-1.02363	0.299185	0.043279	-0.34246	-0.29919
45	C23 - H39	0.287031	-1.05078	0.302545	0.03985	-0.3424	-0.30255
46	O40 - C41	0.249211	-0.39723	0.354413	0.255107	-0.60952	-0.35441
47	C22 - O40	0.286527	-0.35775	0.438485	0.349048	-0.78753	-0.43849

48	C41 - H50	0.288072	-1.06136	0.302664	0.037323	-0.33999	-0.30266
49	C41 - H42	0.282696	-1.00809	0.291013	0.038991	-0.33	-0.29101
50	C43 - H45	0.275798	-0.95177	0.281808	0.043865	-0.32567	-0.28181
51	C43 - H46	0.274106	-0.93684	0.278831	0.04462	-0.32345	-0.27883
52	C2 - H47	0.280352	-0.98973	0.28971	0.042278	-0.33199	-0.28971
53	C6 - H49	0.008741	0.035179	-0.0021	0.006692	-0.00459	0.002103
54	C2 - H48	0.273833	-0.93054	0.278134	0.045498	-0.32363	-0.27813
55	C2 - H49	0.278397	-0.96613	0.285613	0.044081	-0.32969	-0.28561
56	C41 - H51	0.282711	-1.00819	0.291041	0.038995	-0.33004	-0.29104

S.3.5. ADMET studies

ADMET descriptors (absorption, distribution, metabolism, excretion and toxicity) of the compounds were determined using Discovery studio 4.0. Sorafenib was used as a reference molecule. At first, the CHARMM force field was applied then the tested compounds were prepared and minimized according to the preparation of small molecule protocol.

• Preparation of the tested compounds:

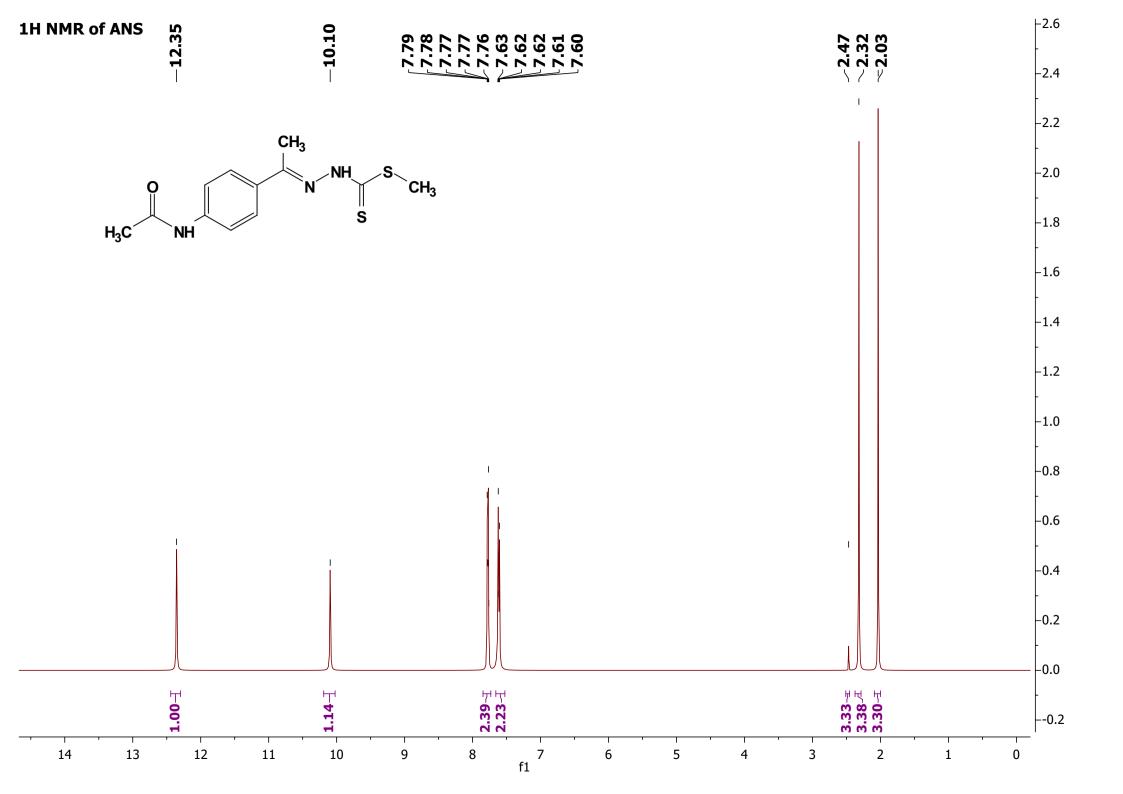
In this protocol, the general-purpose panel was utilized with the activation of the Prepare ligand option. The change ionization was switched on the true option using the Rule based as an ionization method. In Rule based task, we used the carboxylate as an acid ionization. Additionally, the primary, secondary, and tertiary amines were selected as Base ionization. The ionization enumeration option was switched on the one protomer. Under the filter smart option, we selected all options. The false option was selected for tasks Generate tautomers, generate isomers, Fix bad valencies, and parallel processing. The generate coordinates task was switched on the 3D option. Finally, the duplicate structure task was activated on the remove option.

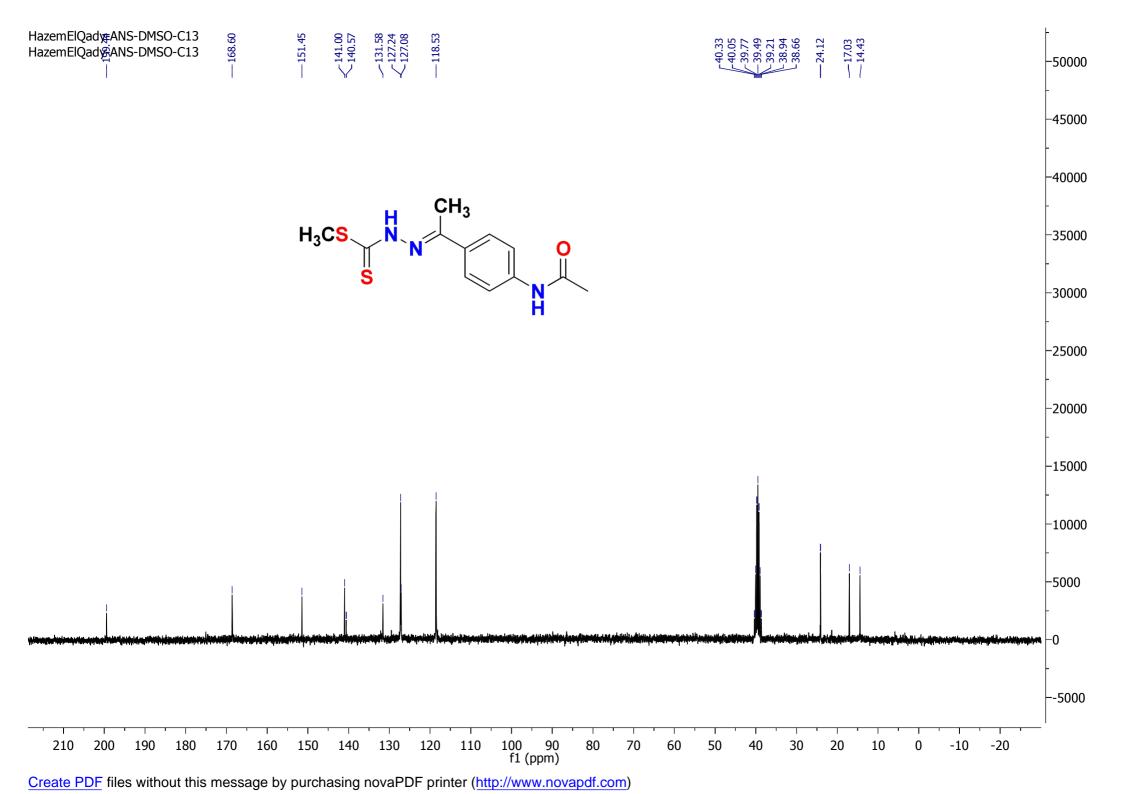
• Running of ADMET protocol

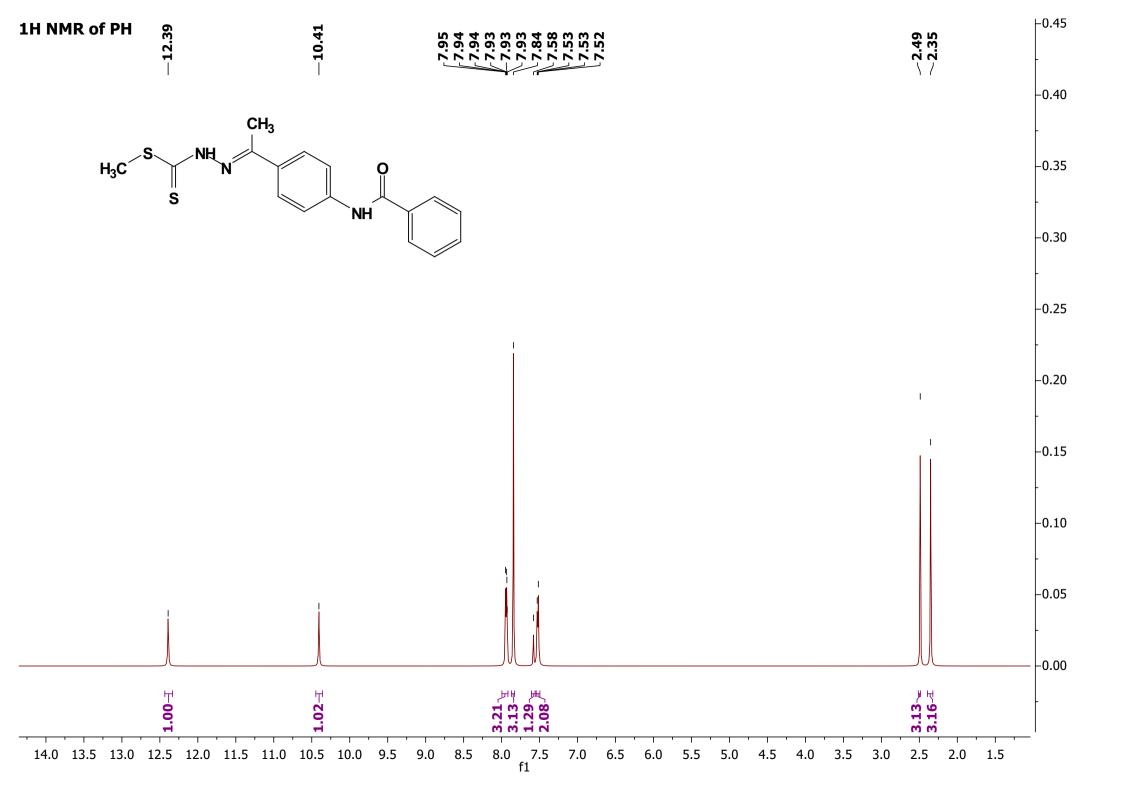
In this protocol, the small molecules panel was utilized with the activation of the ADMET descriptors option. Then, we selected the prepared compounds as the input ligands. Further, all the ADMET parameters (aqueous solubility, Blood brain barrier, intestinal absorption, CYP2D6, and

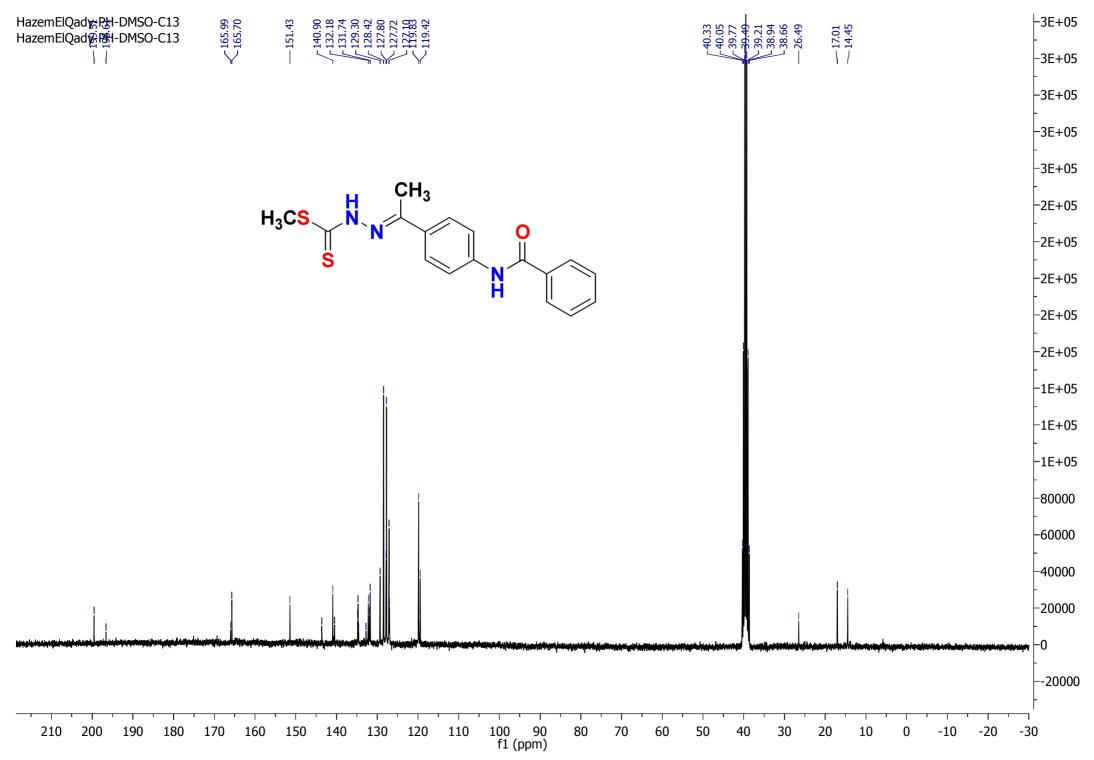
plasma protein binding) were selected. Then, the output of the running protocol was visualized to give the ADMET chart.

S.3.6 Toxicity studies

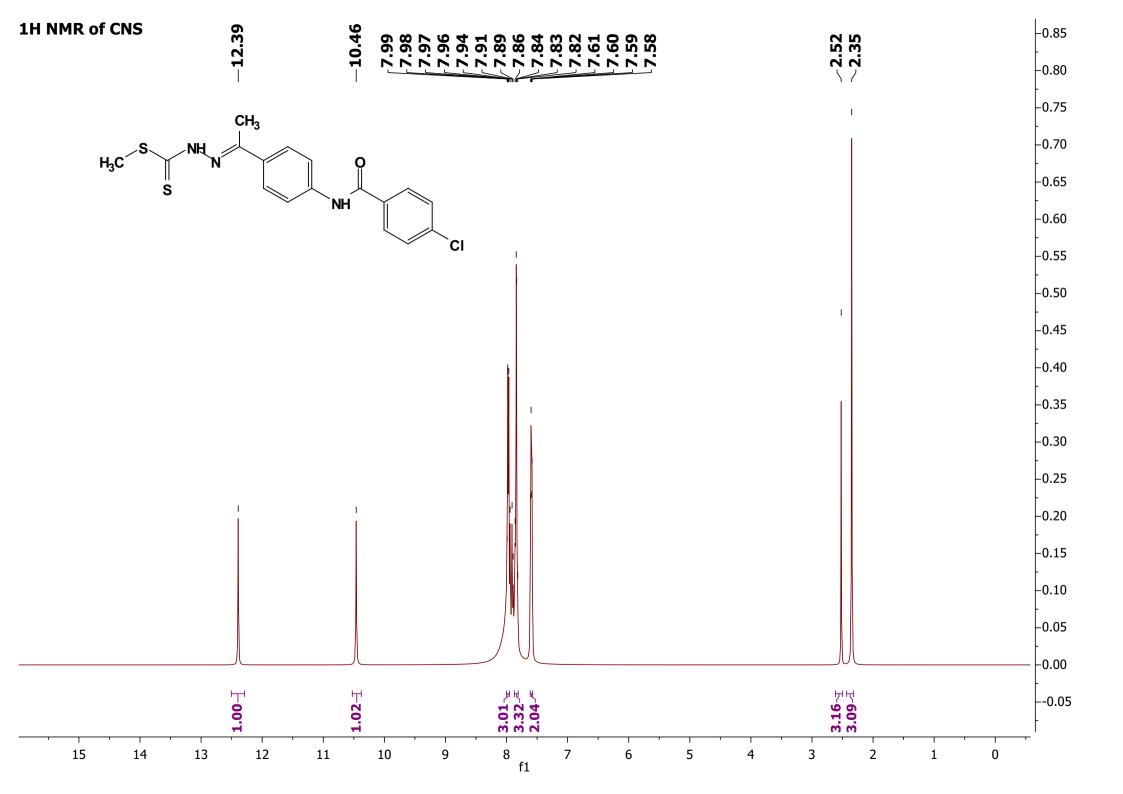

The toxicity parameters of the synthesized compounds were calculated using Discovery studio 4.0. Sorafenib was used as a reference molecule. At first, the CHARMM force field was applied then the compounds were prepared and minimized according to the preparation of small molecule protocol.

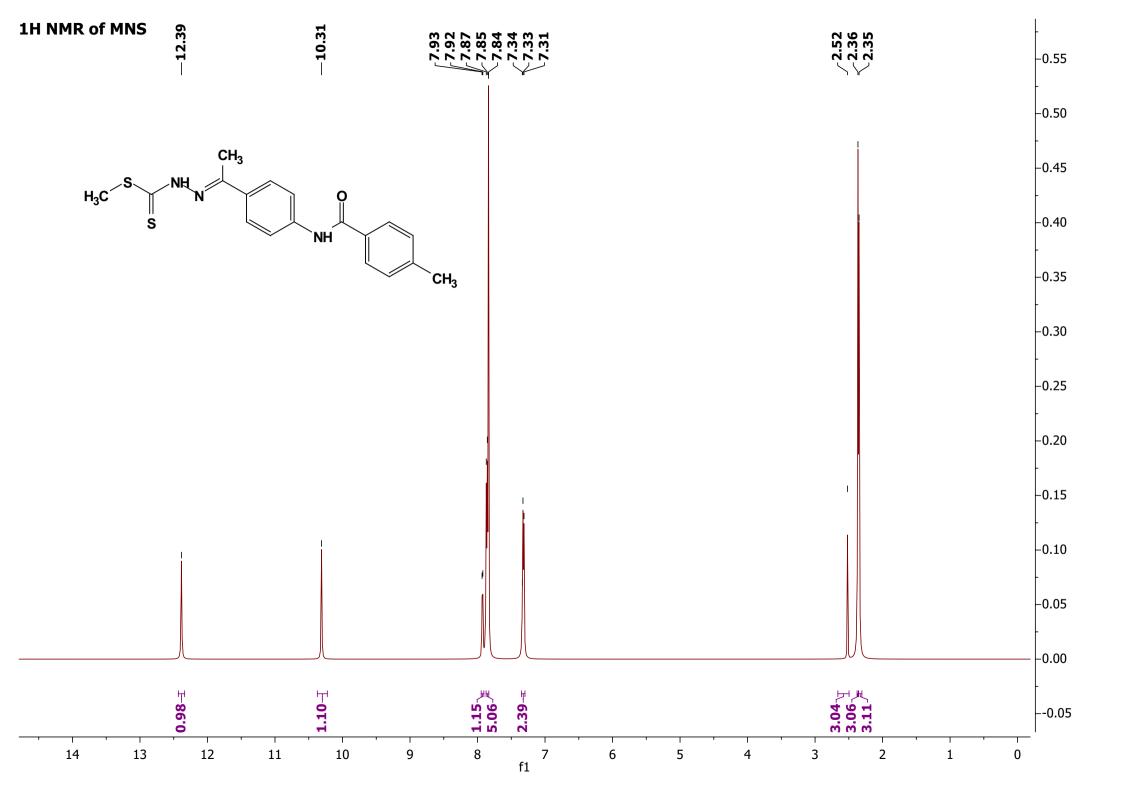

Preparation of the tested compounds:

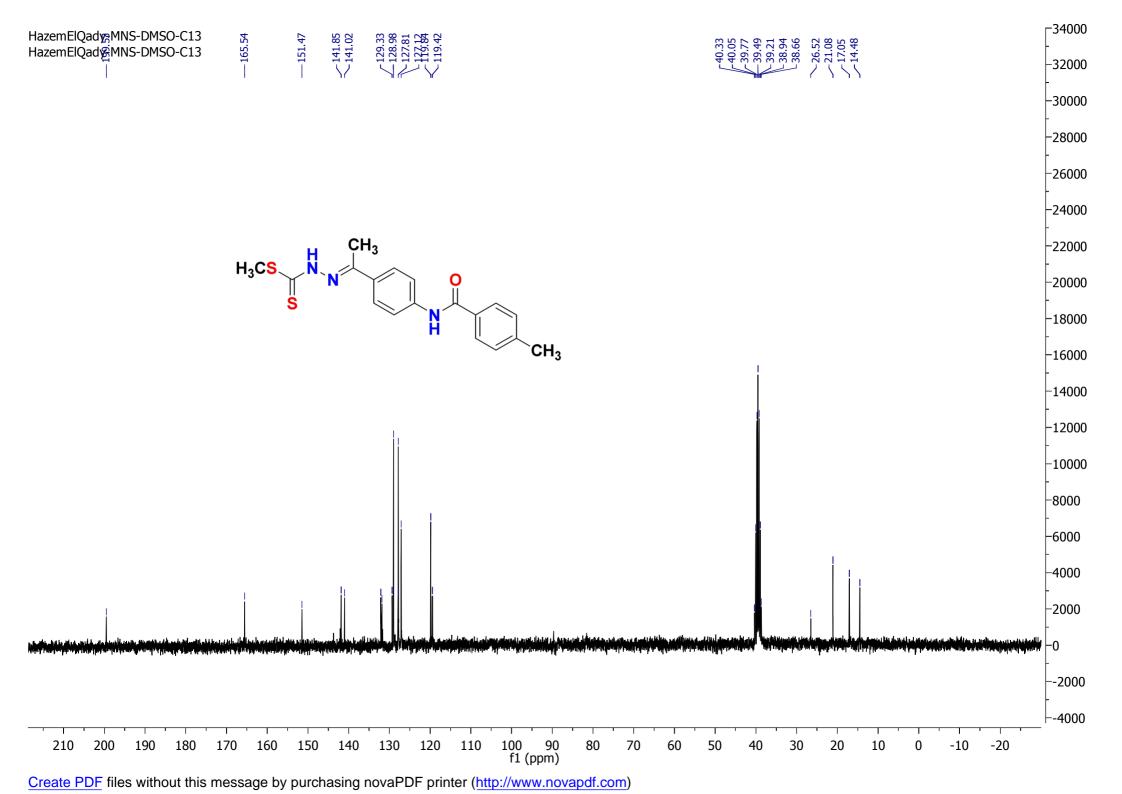

In this protocol, the general-purpose panel was utilized with the activation of the Prepare ligand option. The change ionization was switched on the true option using the Rule based as an ionization method. In Rule based task, we used the carboxylate as an acid ionization. Additionally, the primary, secondary, and tertiary amines were selected as Base ionization. The ionization enumeration option was switched on the one protomer. Under the filter smart option, we selected all options. The false option was selected for tasks Generate tautomers, generate isomers, Fix bad valencies, and parallel processing. The generate coordinates task was switched on the 3D option. Finally, the duplicate structure task was activated on the remove option.

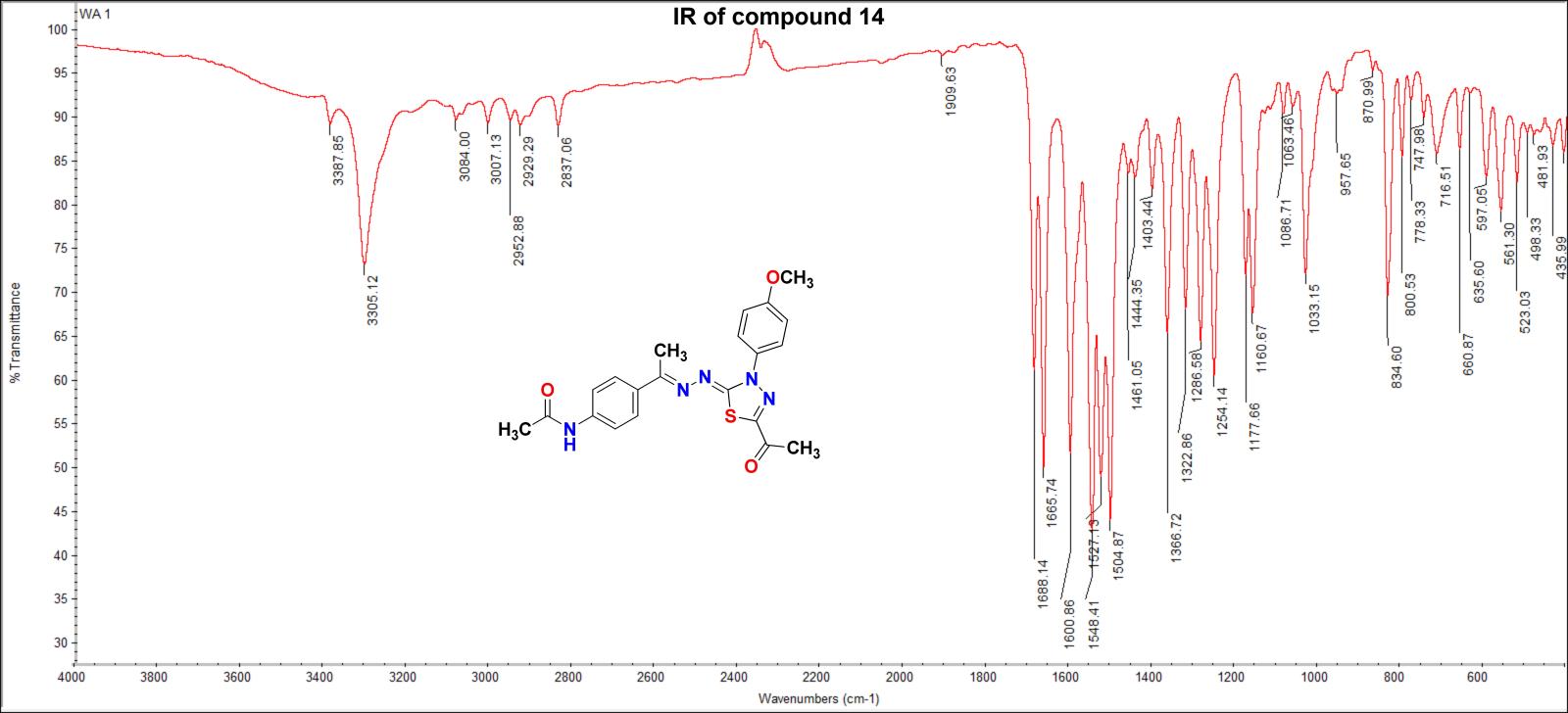

• Running of Toxicity protocol

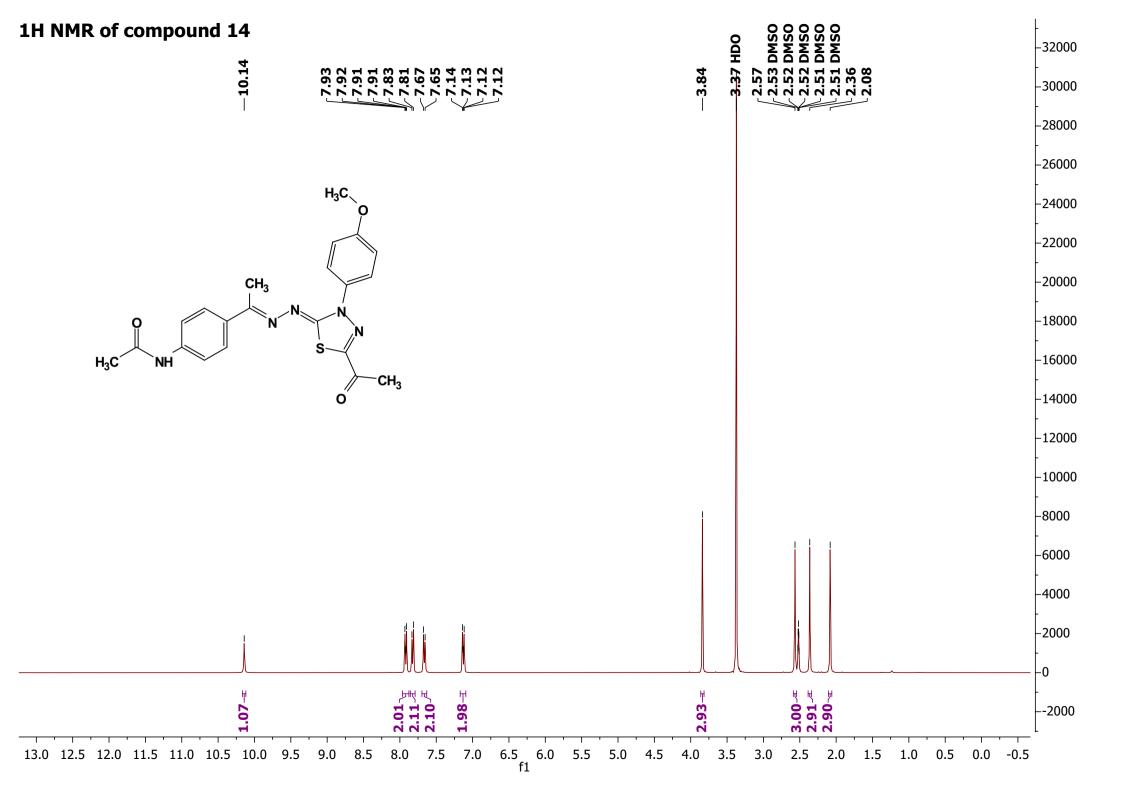
In this protocol, the small molecules panel was utilized with the activation of the toxicity prediction (extensible) option. Then, we selected the prepared compounds as the input ligands. Further, the different toxicity models were selected from the model panel. The similarity search task was activated to be true. The detailed report task was switched on as a PDF file. Then, the output of the running protocol was visualized to give the toxicity PDF report.

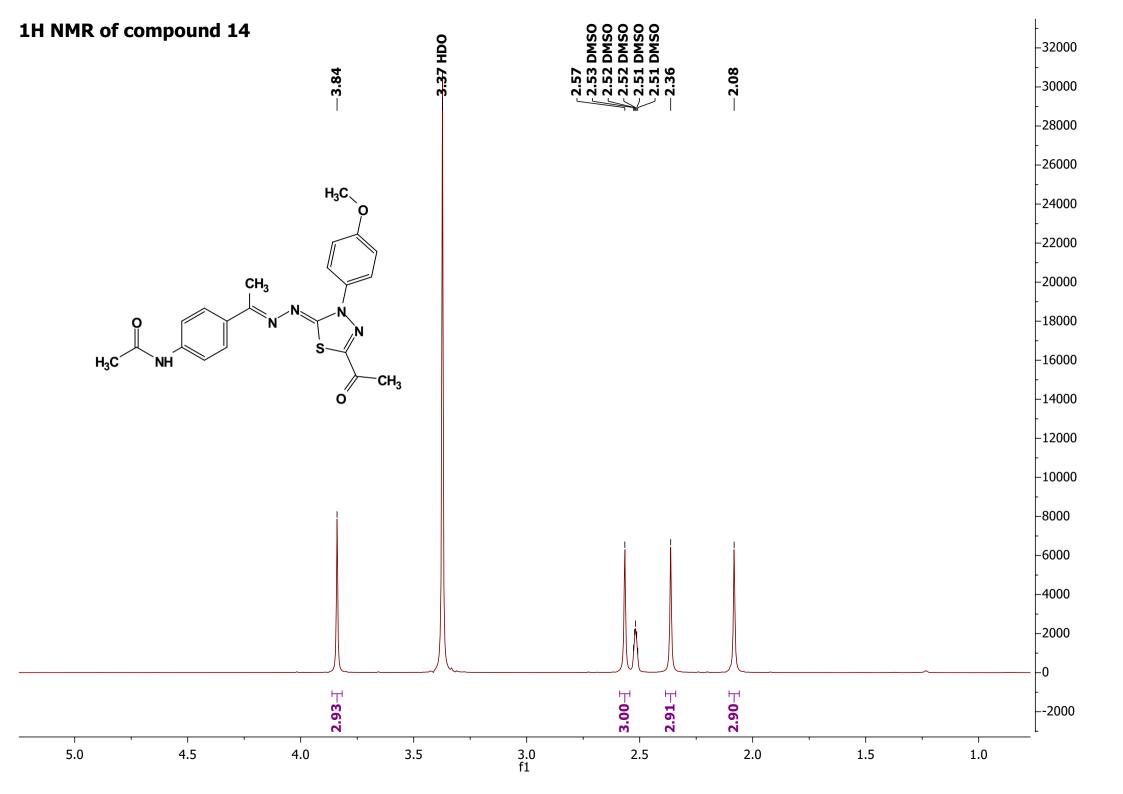


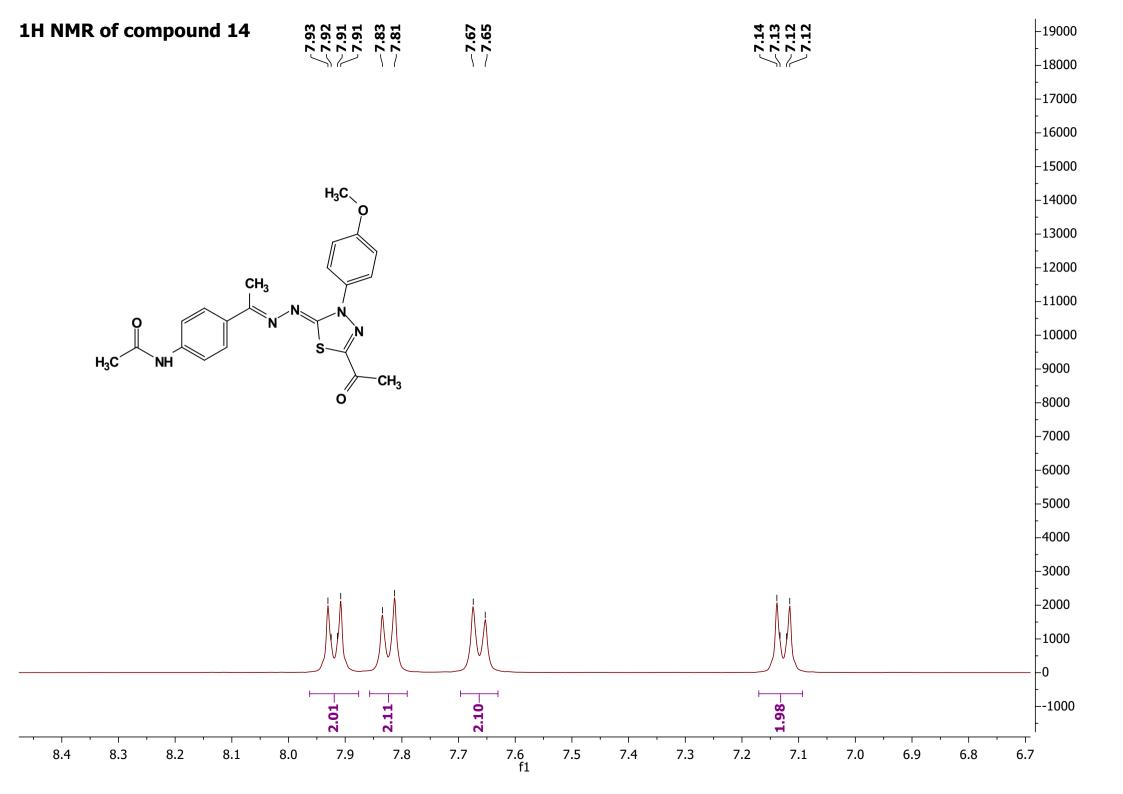


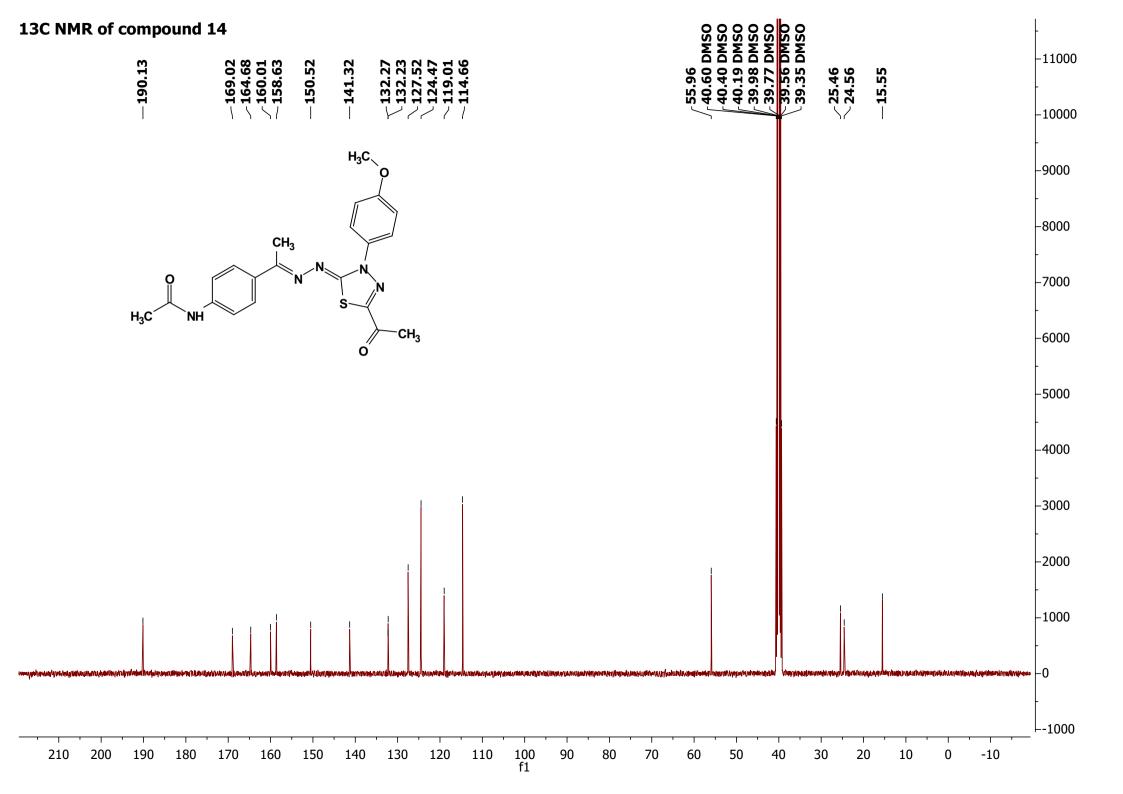


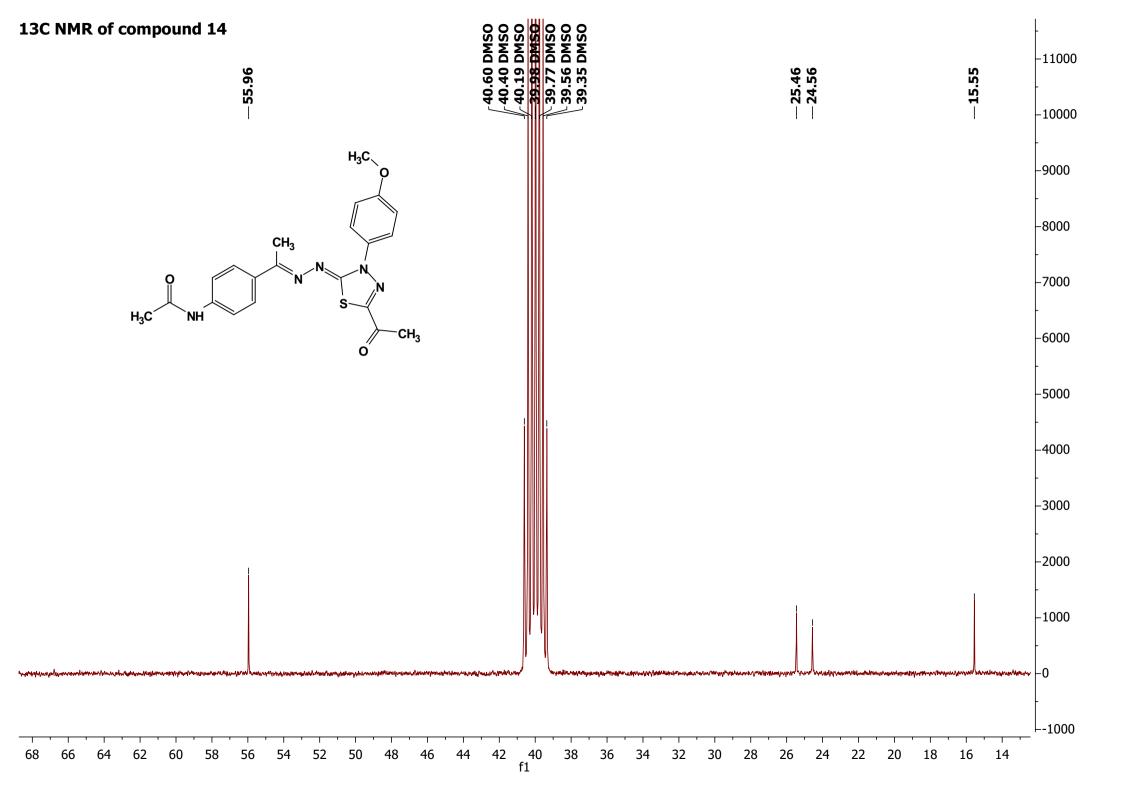


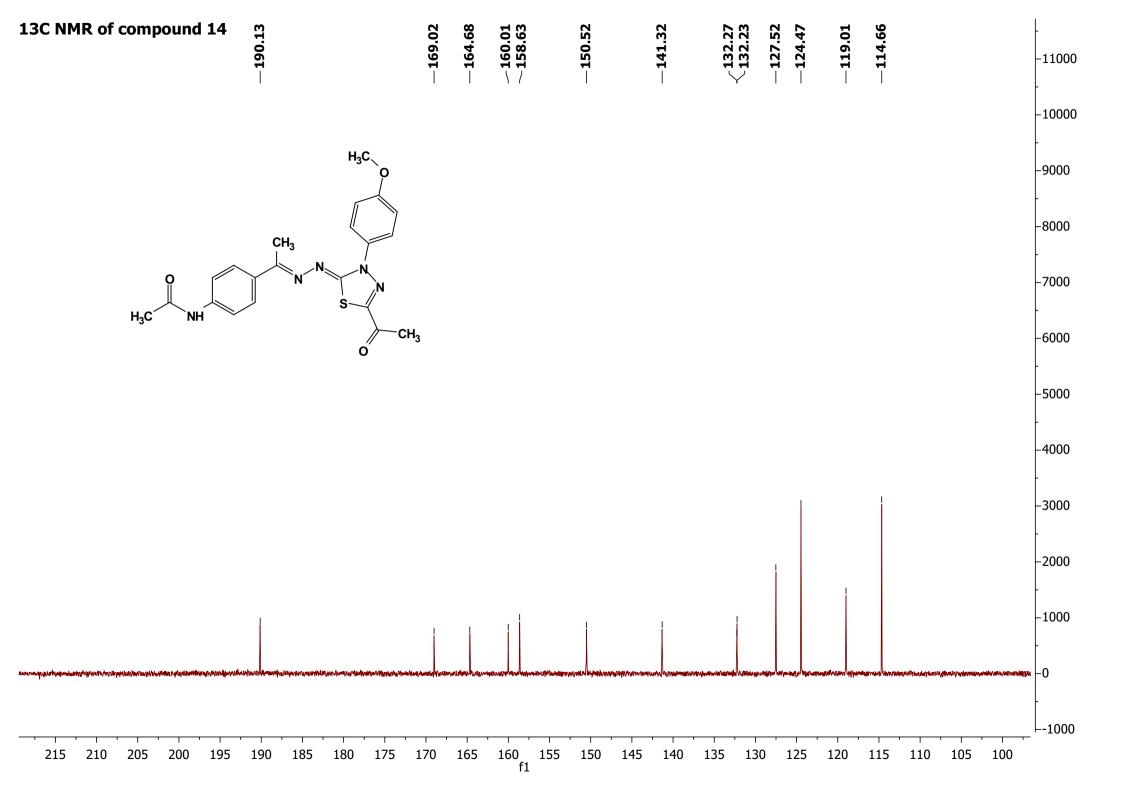

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

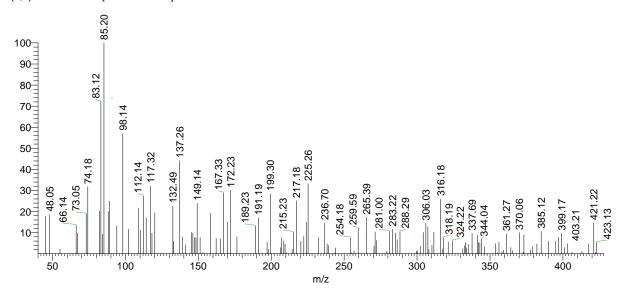


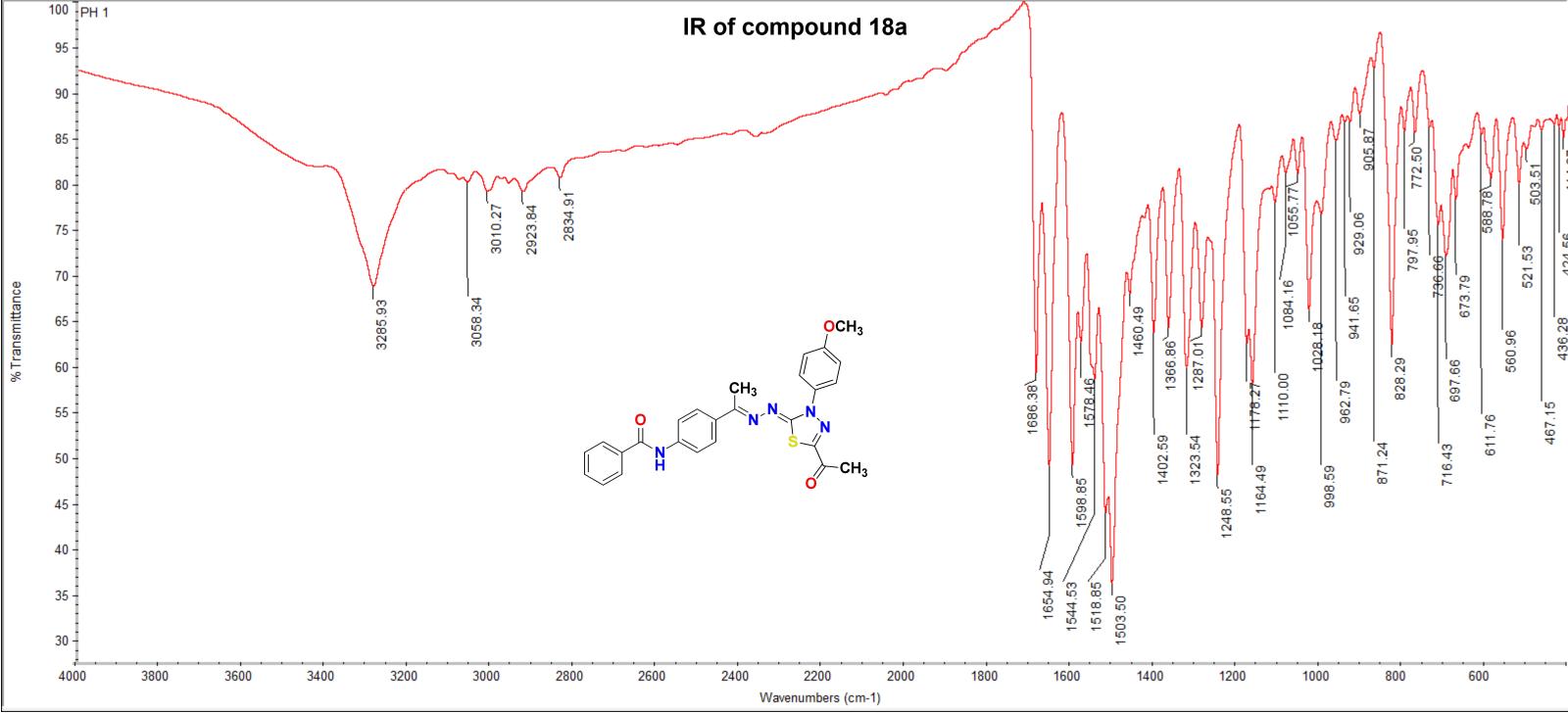


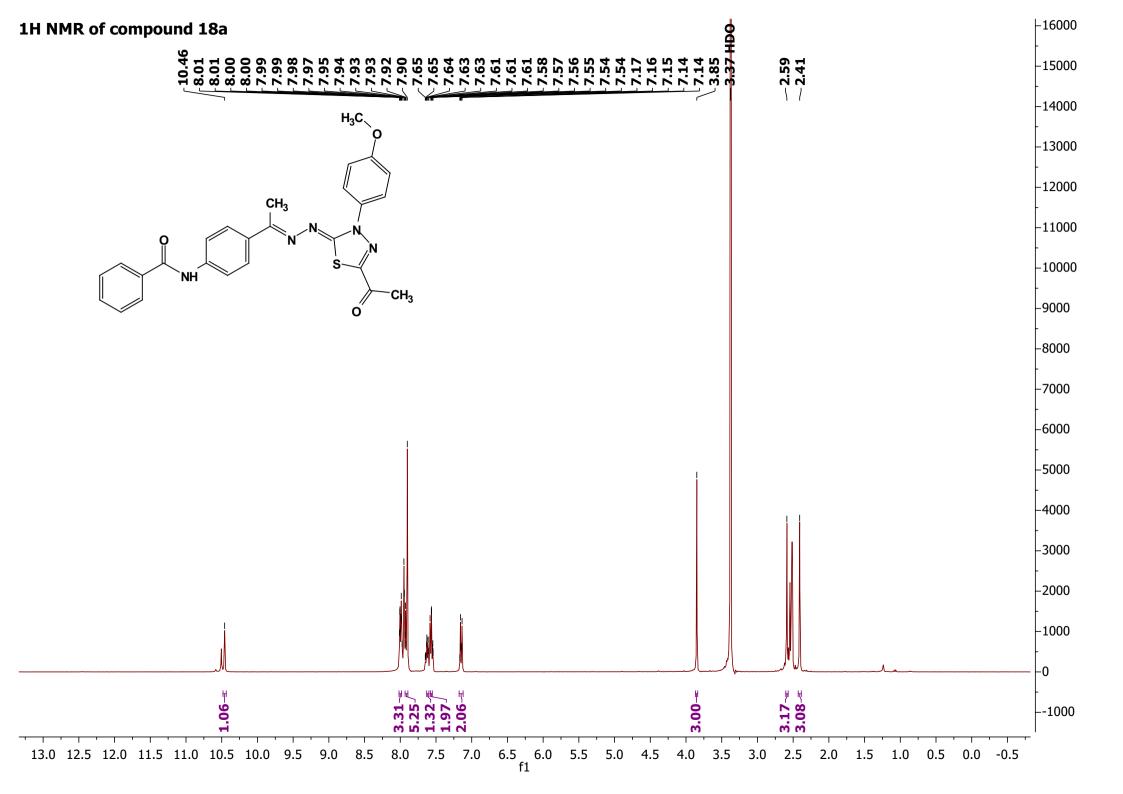


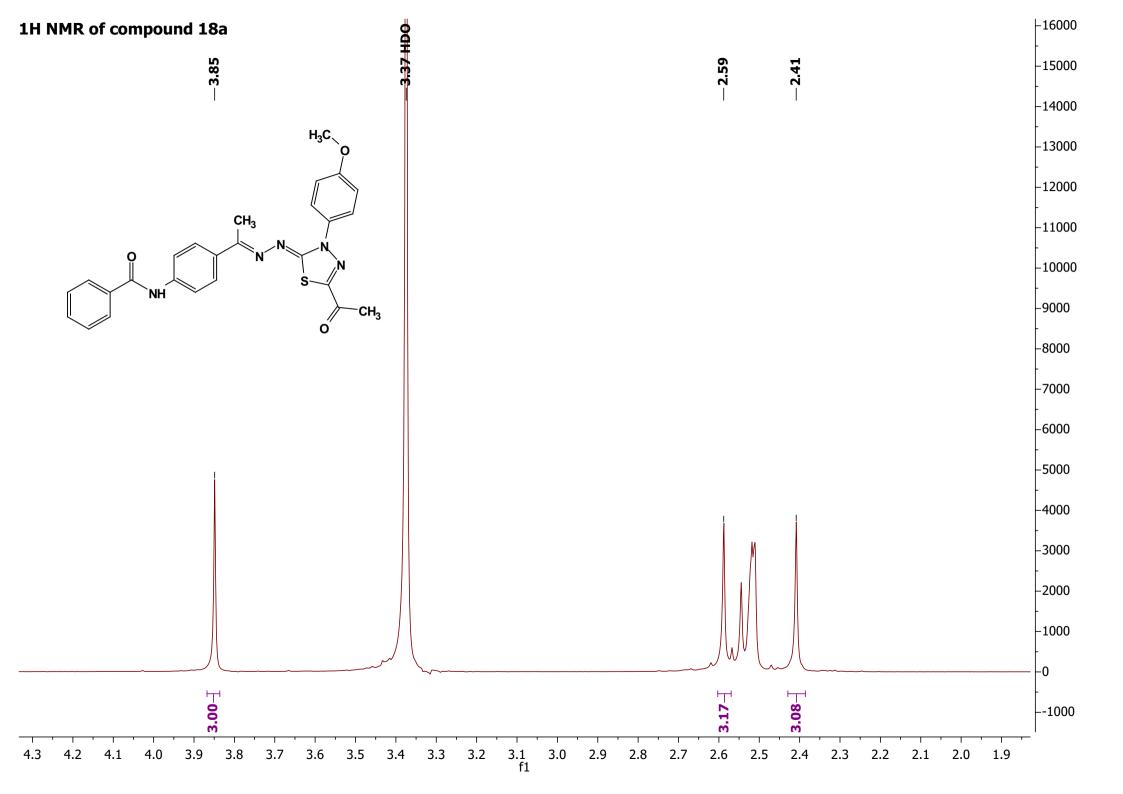


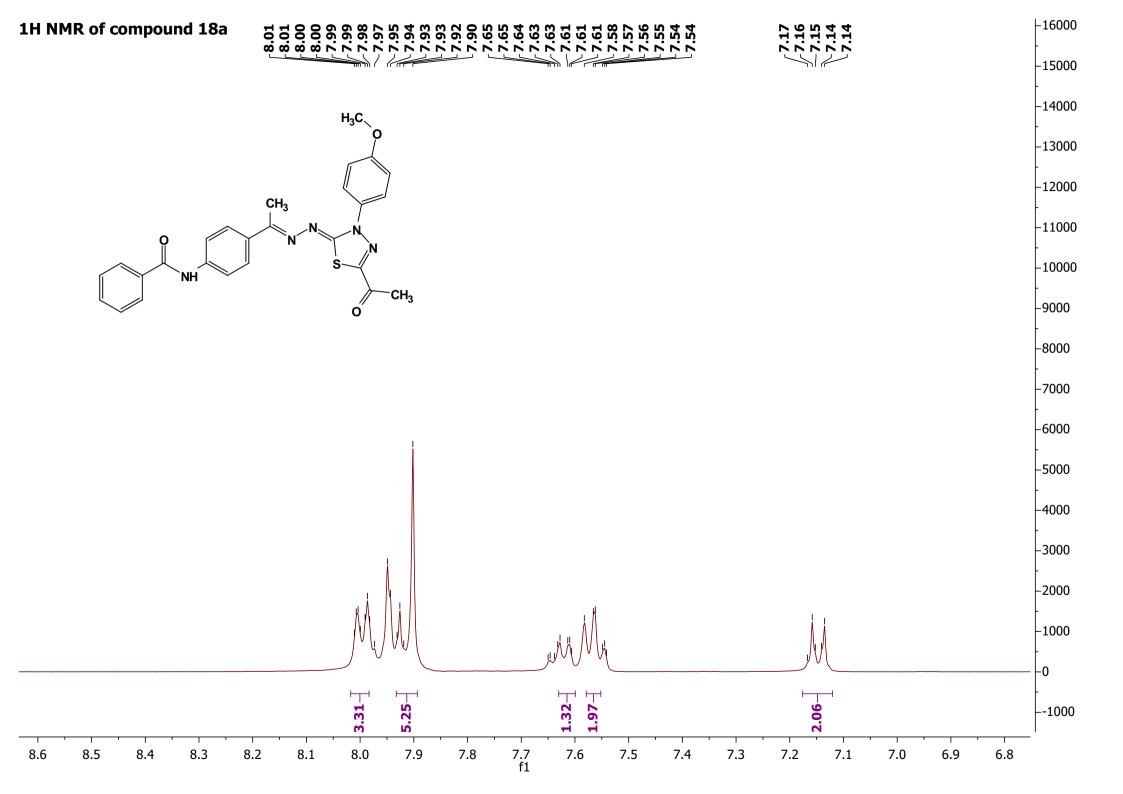




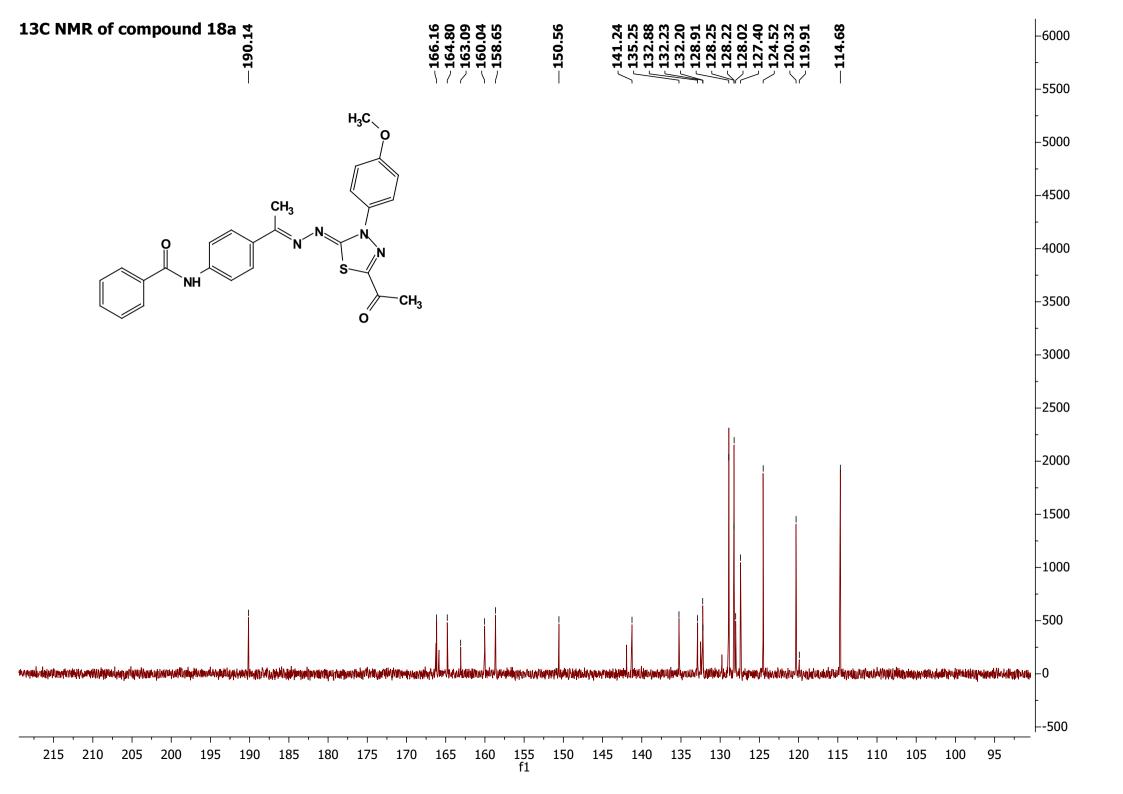


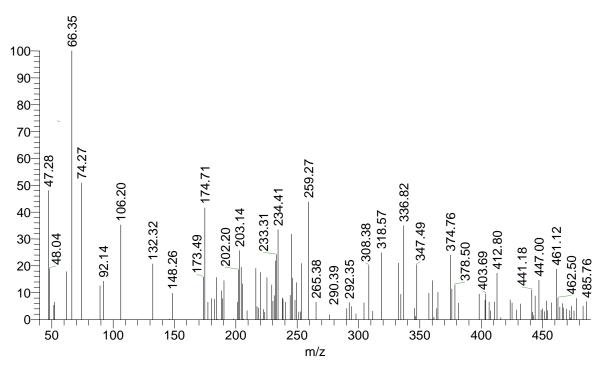


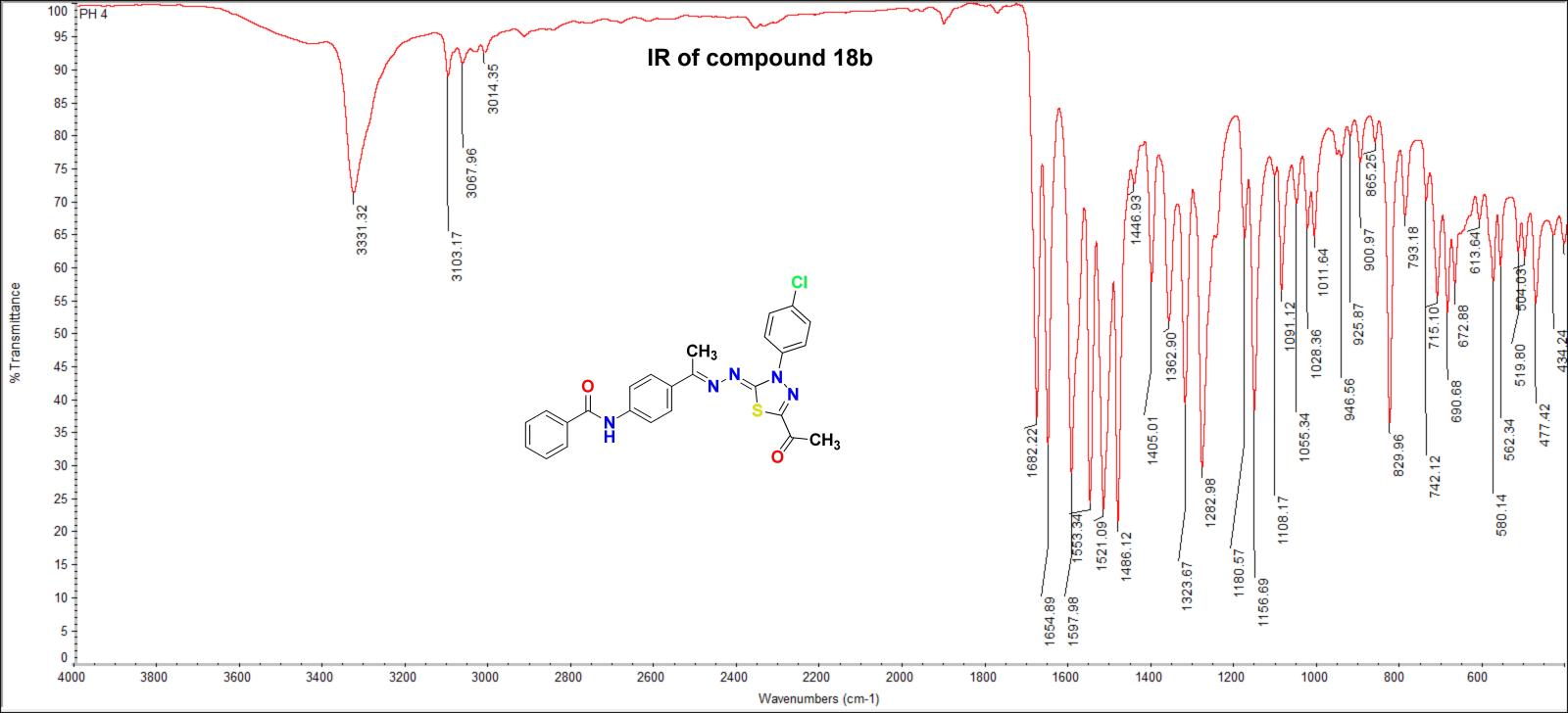

Mass spec. of compound 14

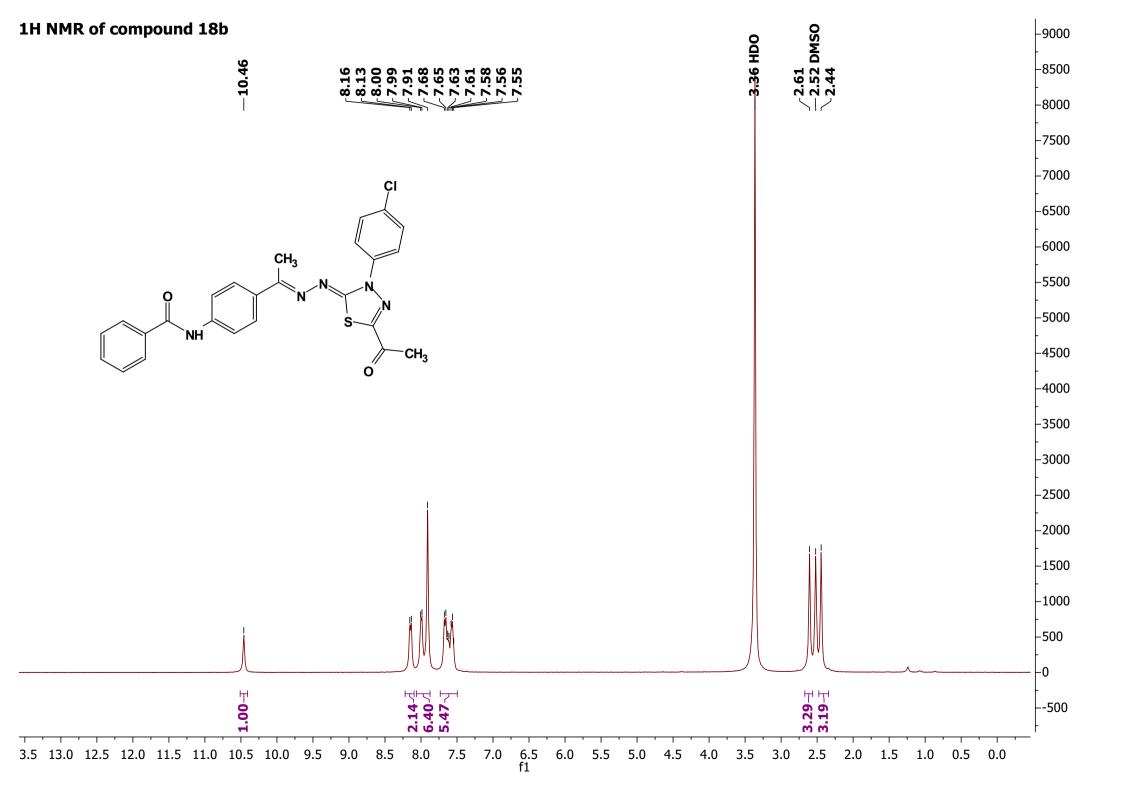

ibrahim-hassan-wa1 #195 RT: 3.28 AV: 1 SB: 2 2.59 , 2.56 NL: 7.55E3 T: $\{0,0\}$ + c EI Full ms [40.00-1000.00]

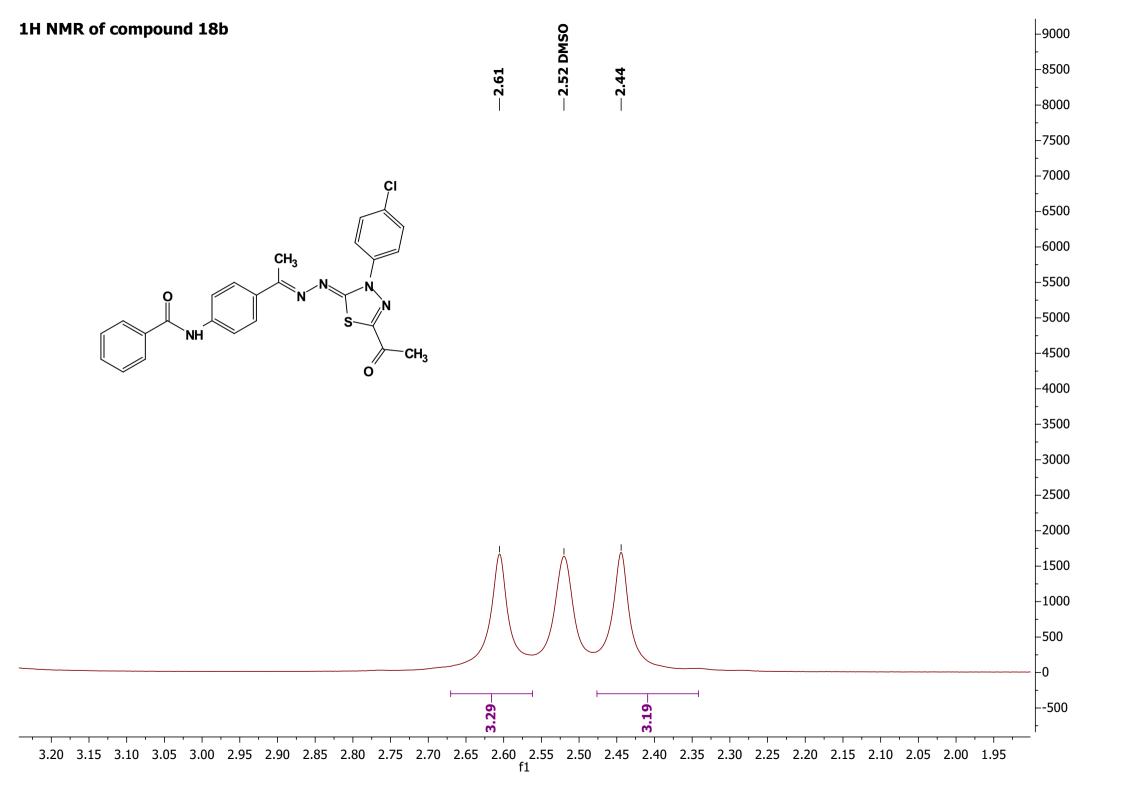


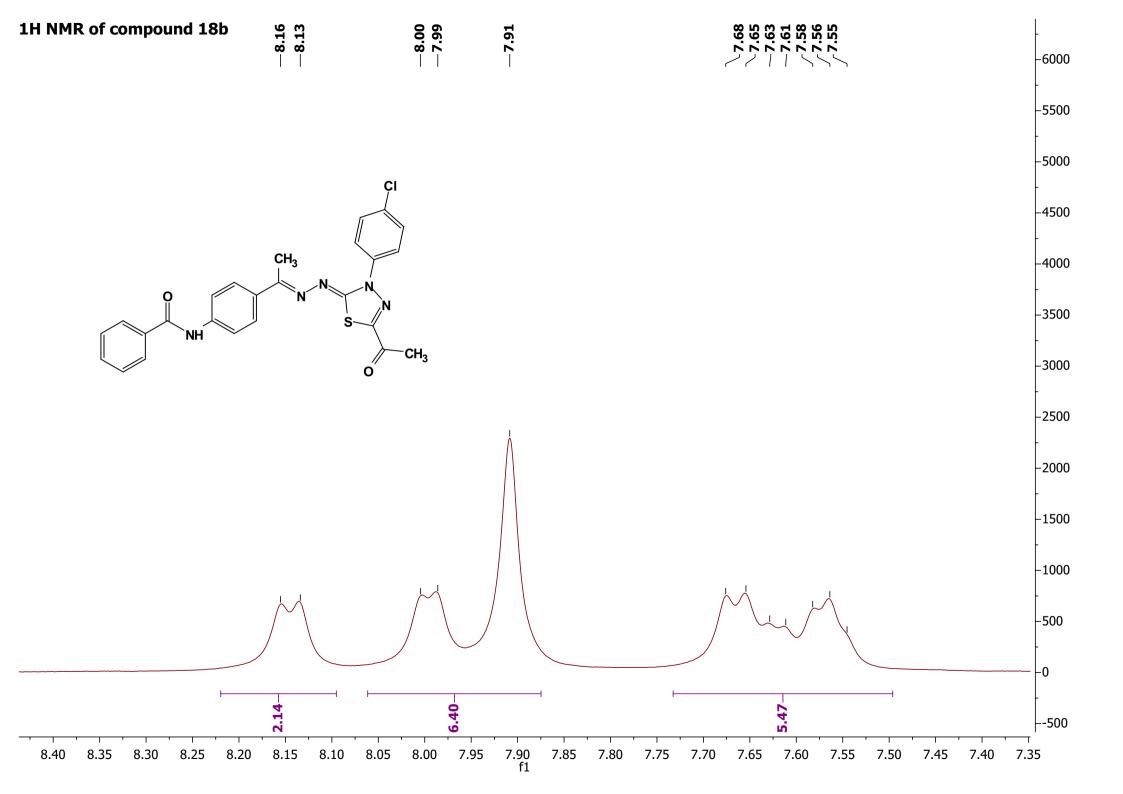


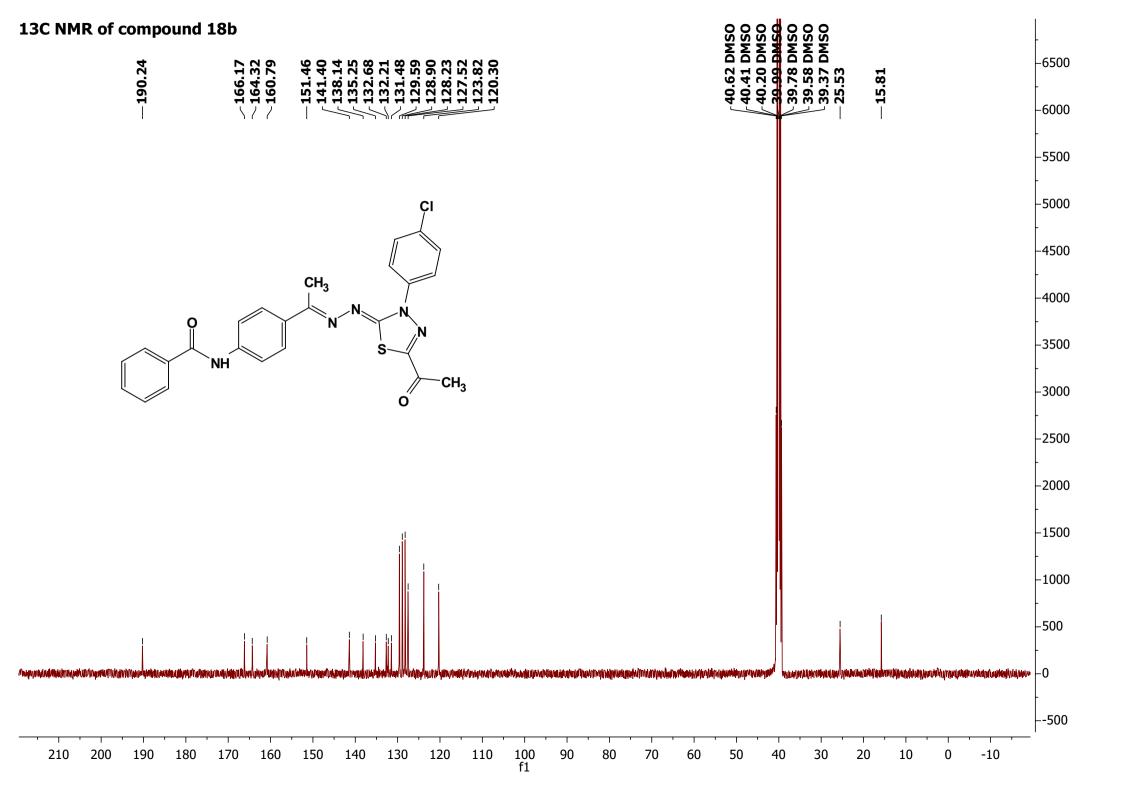


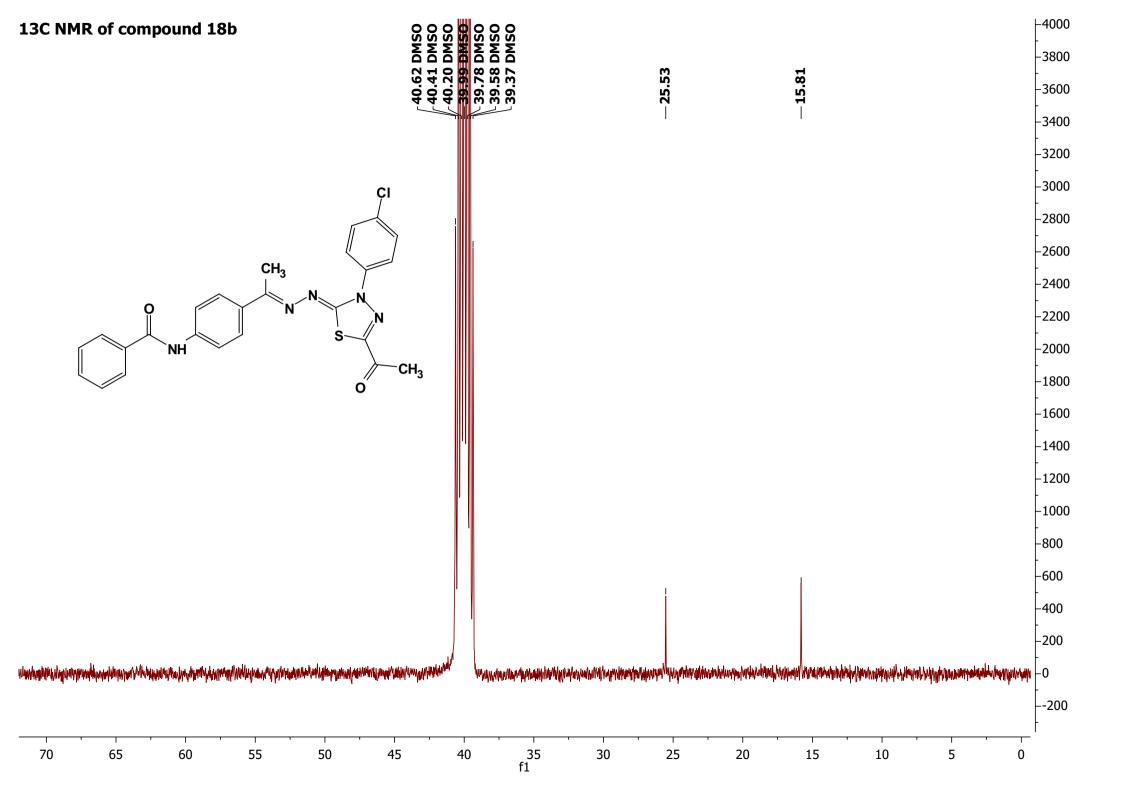


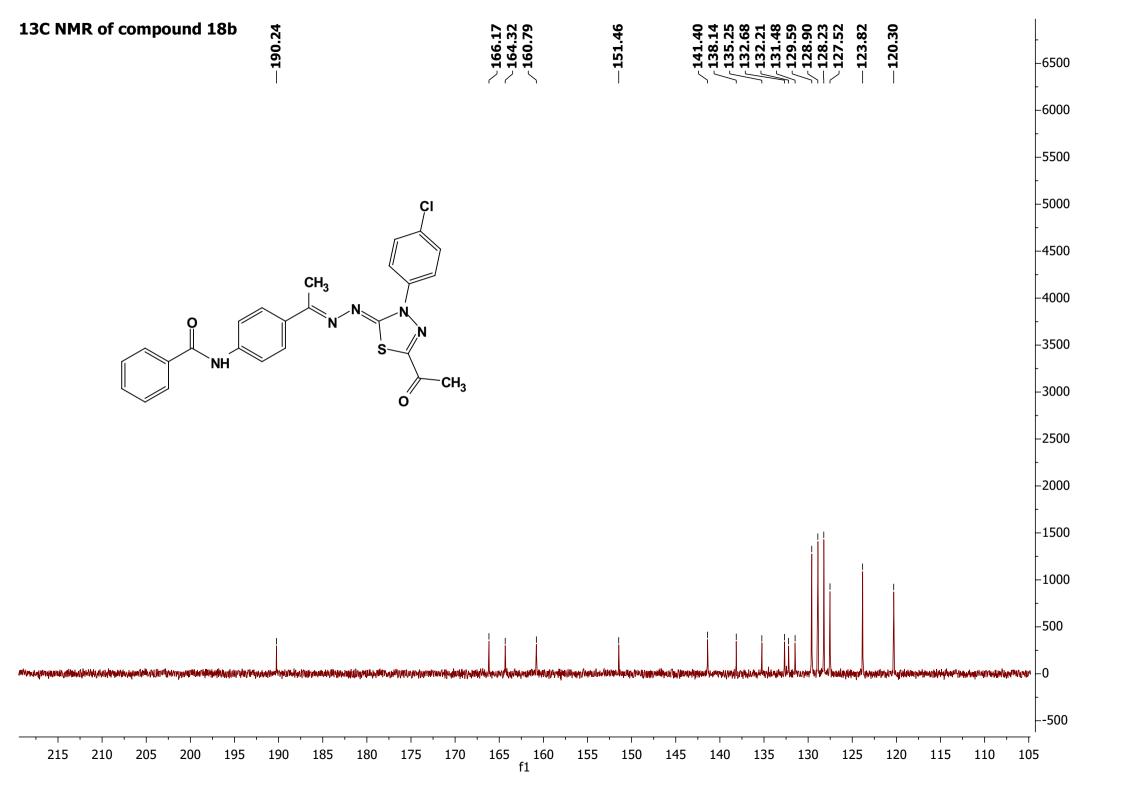


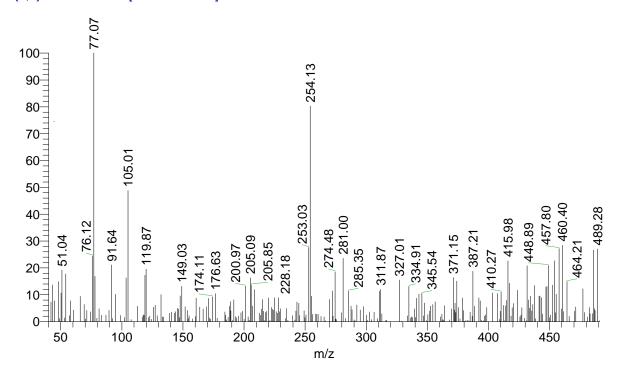

Mass spec. of compound 18a

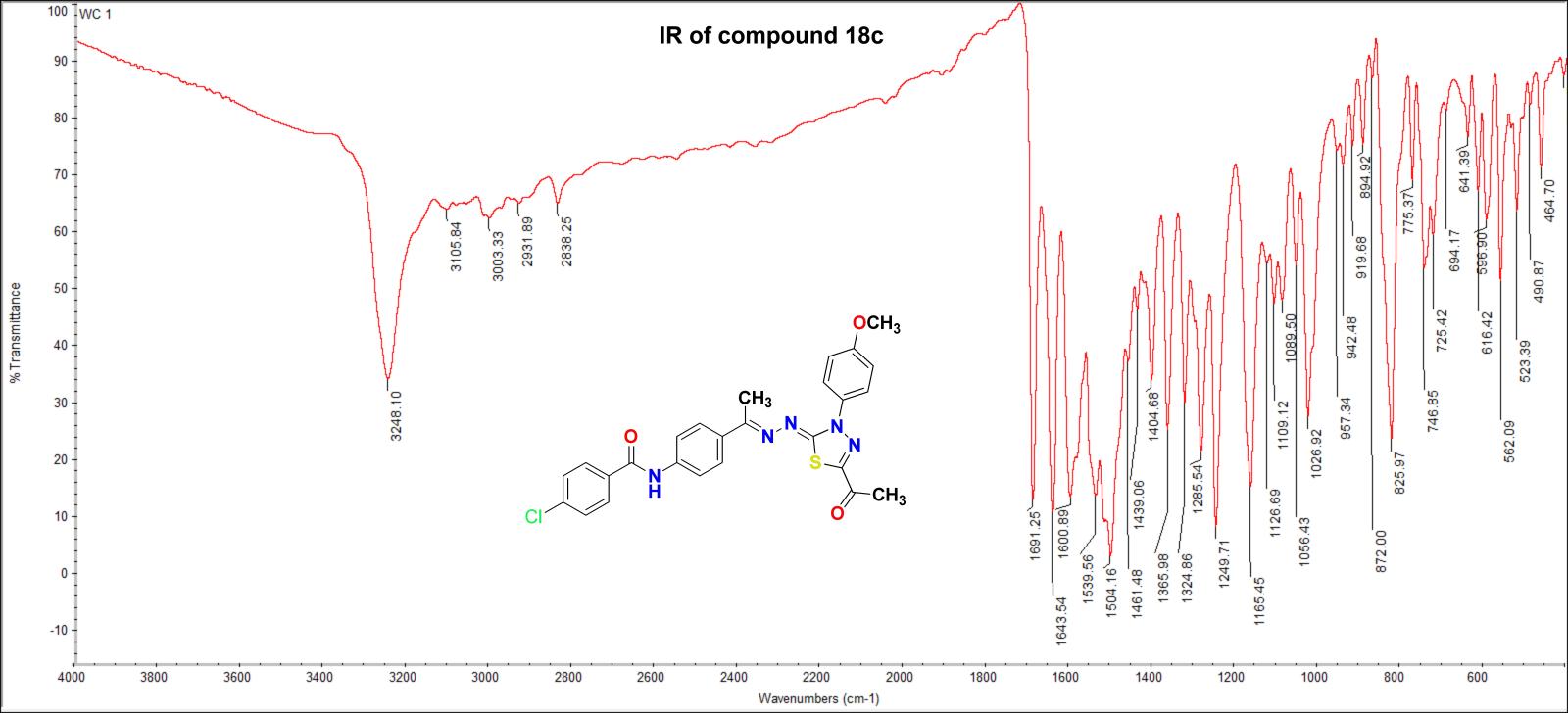

ibrahim-hassan-PH-1 #4-20 RT: 0.08-0.35 AV: 17 SB: 26 1.21-1.34 , 0.87-1.14 NL: 4.76E2 T: $\{0,0\}$ + c EI Full ms [40.00-1000.00]

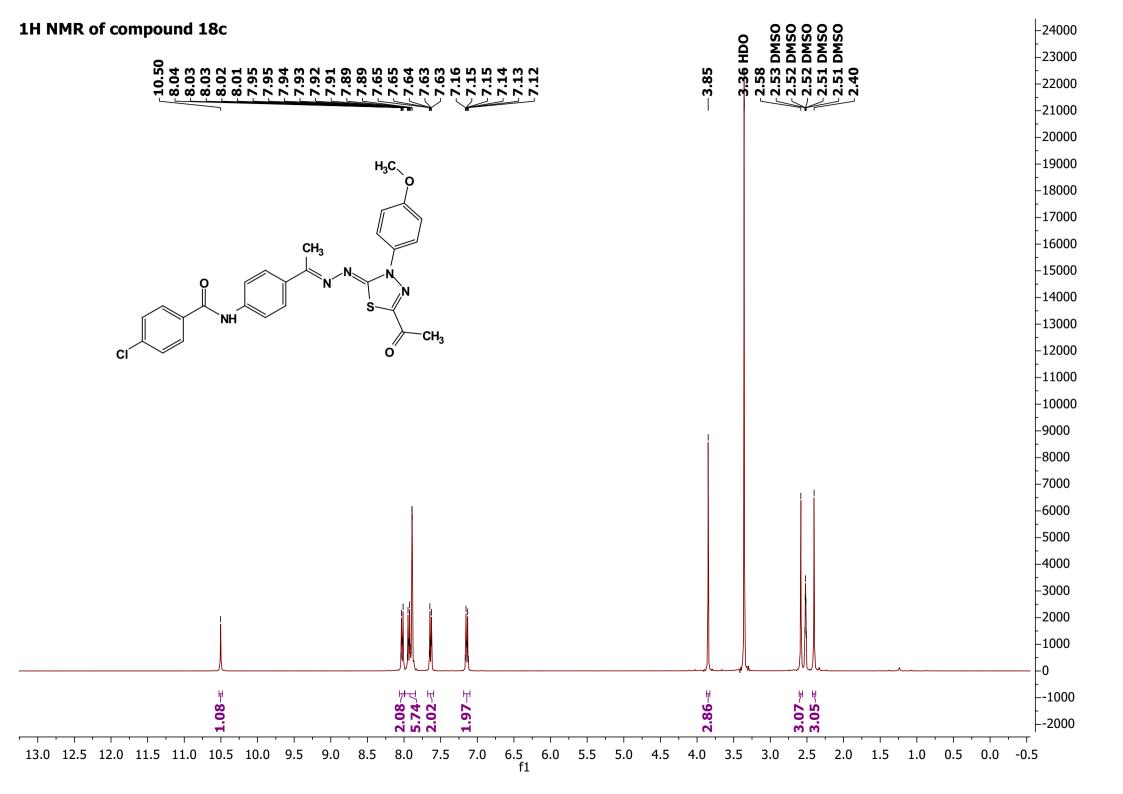


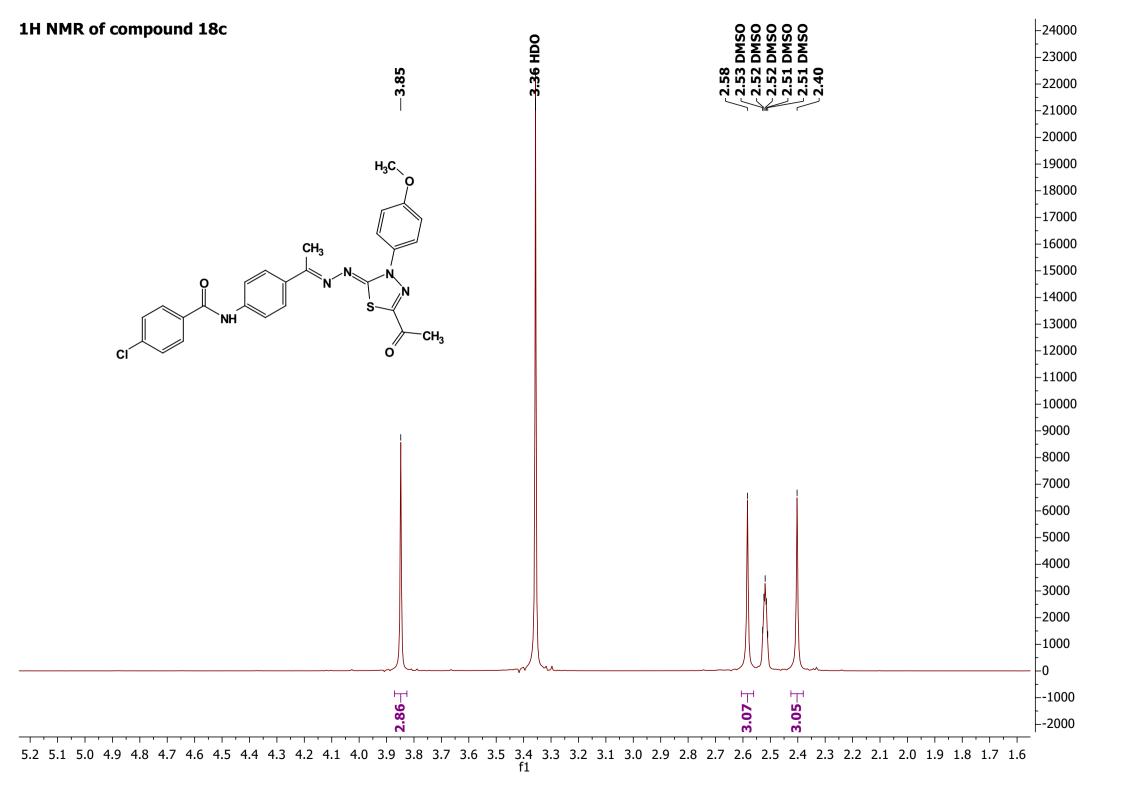


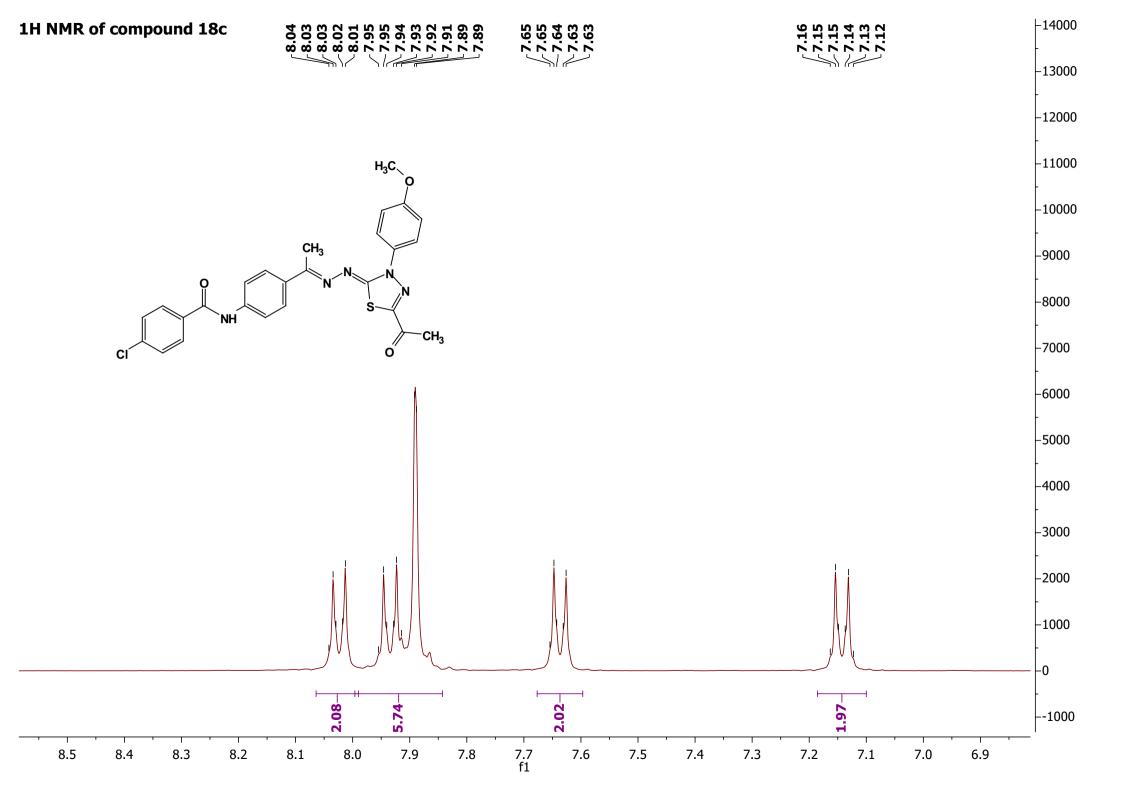


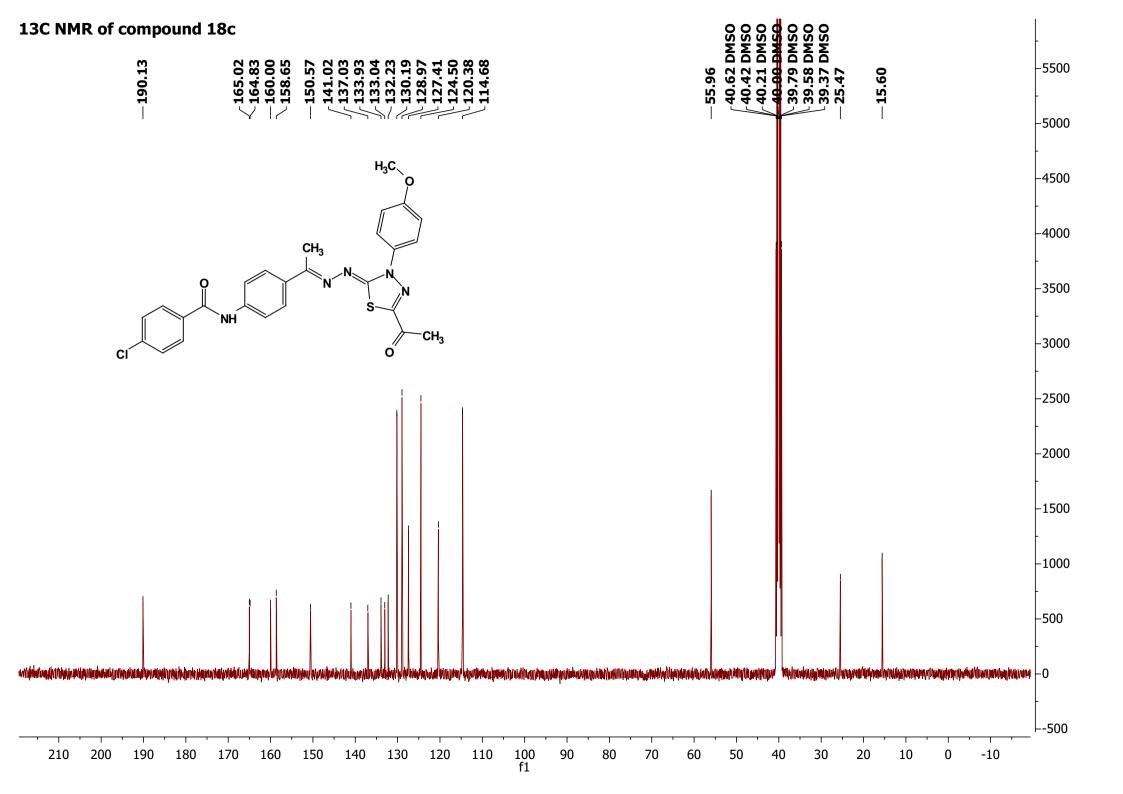


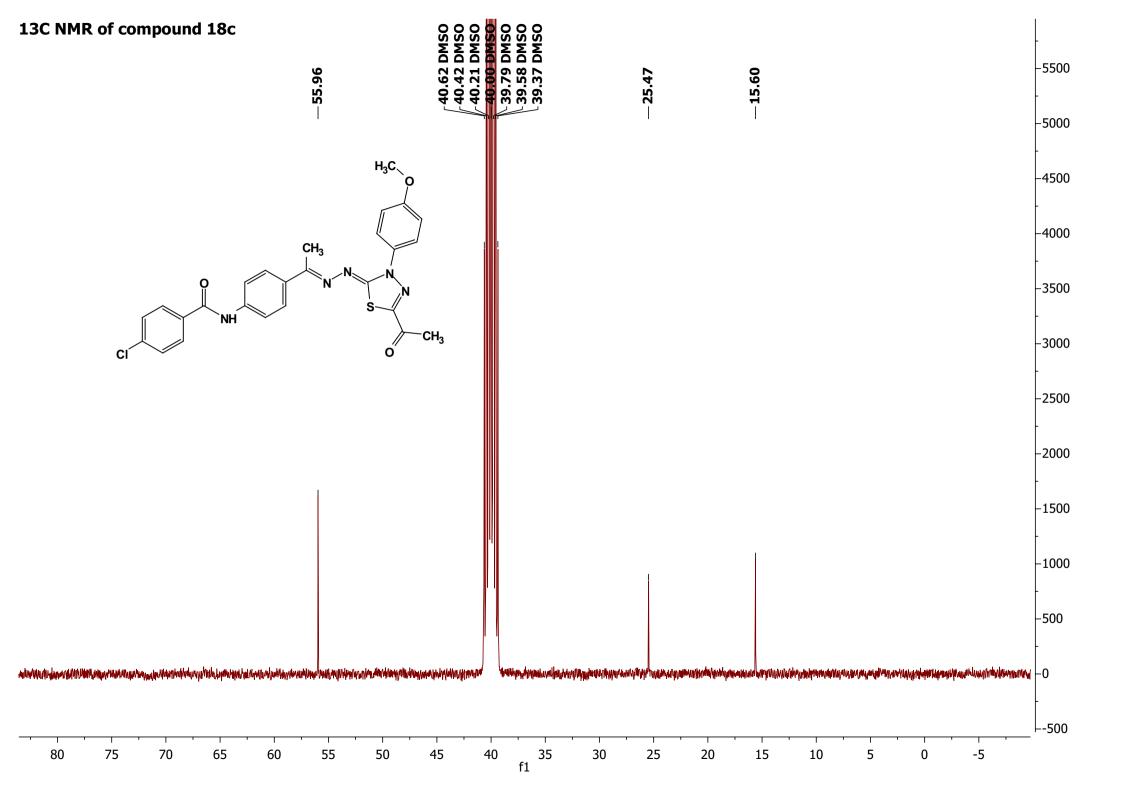


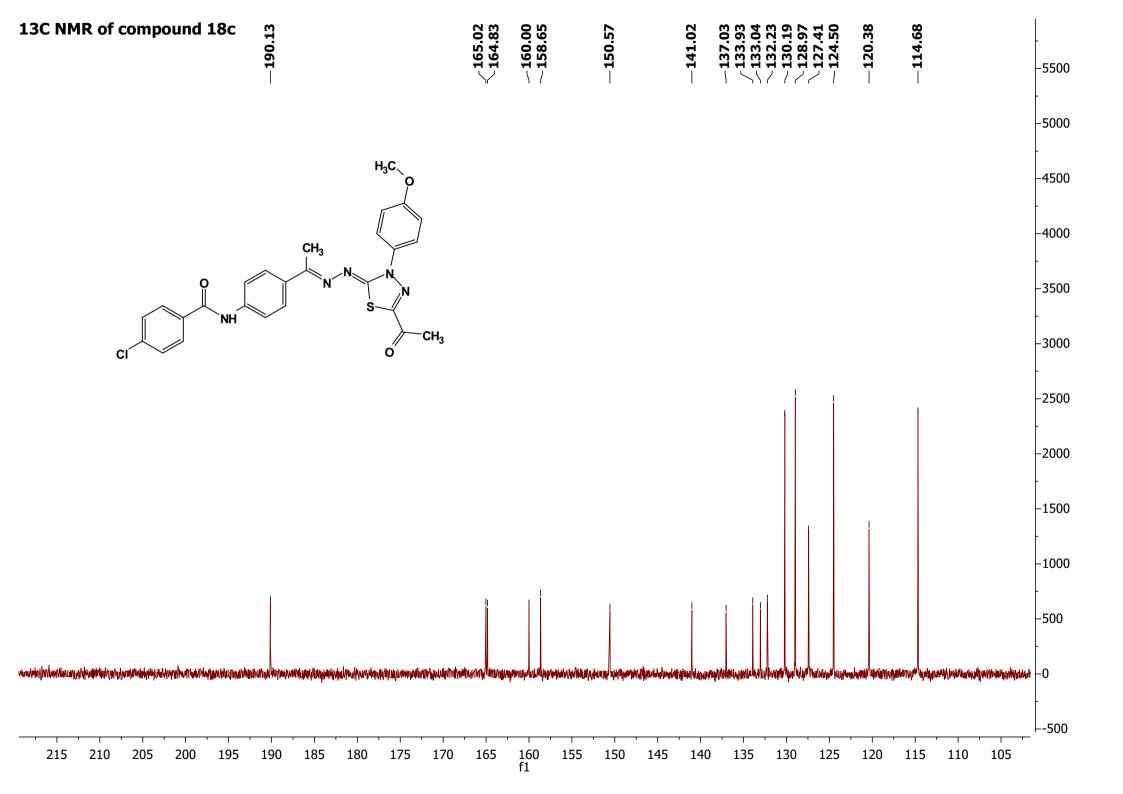


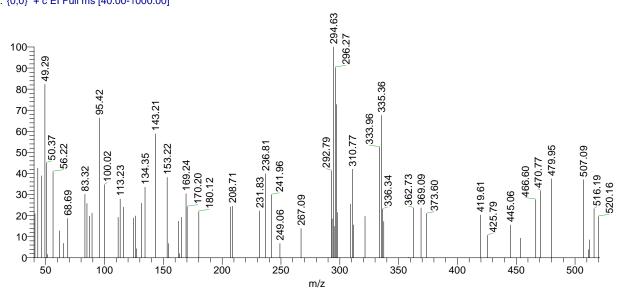

Mass spec. of compound 18b

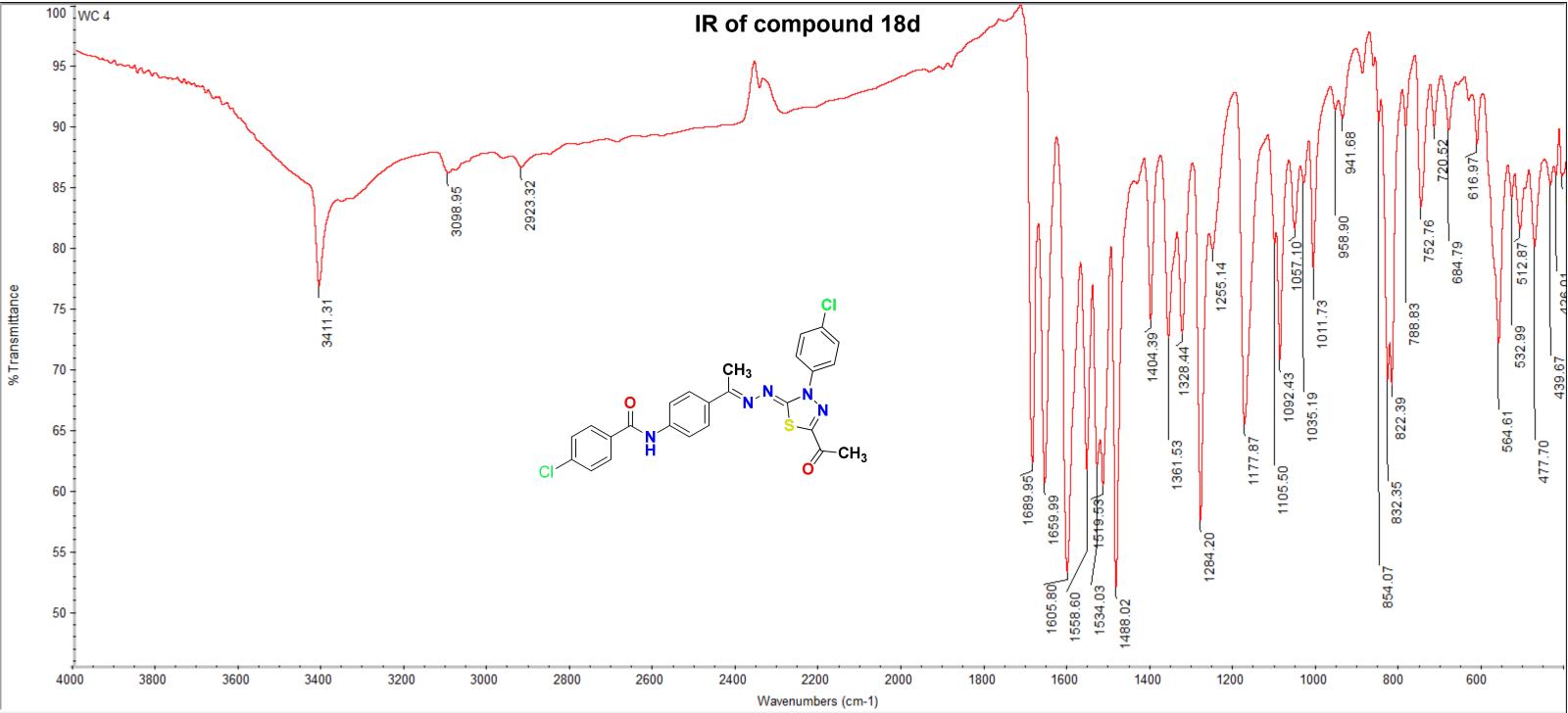

ibrahim-hassan-ph4 #87 RT: 1.47 AV: 1 SB: 26 1.21-1.34, 0.87-1.14 NL: 3.38E3 T: {0,0} + c El Full ms [40.00-1000.00]

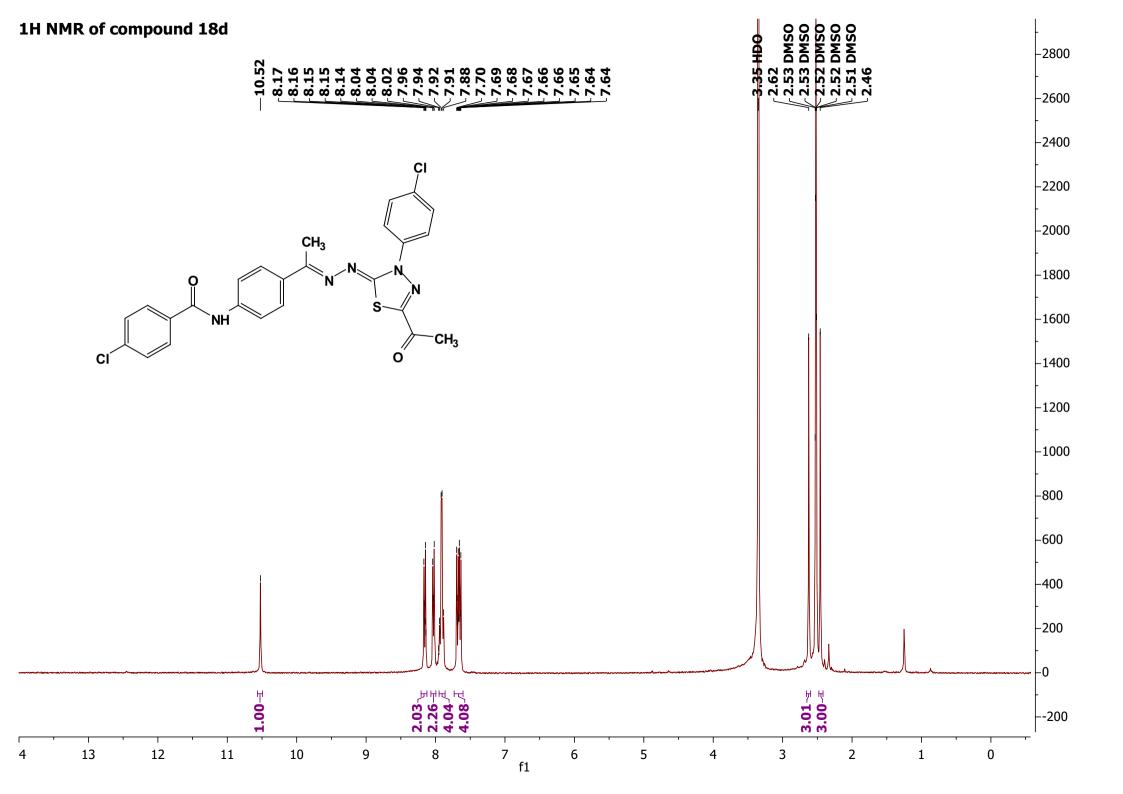


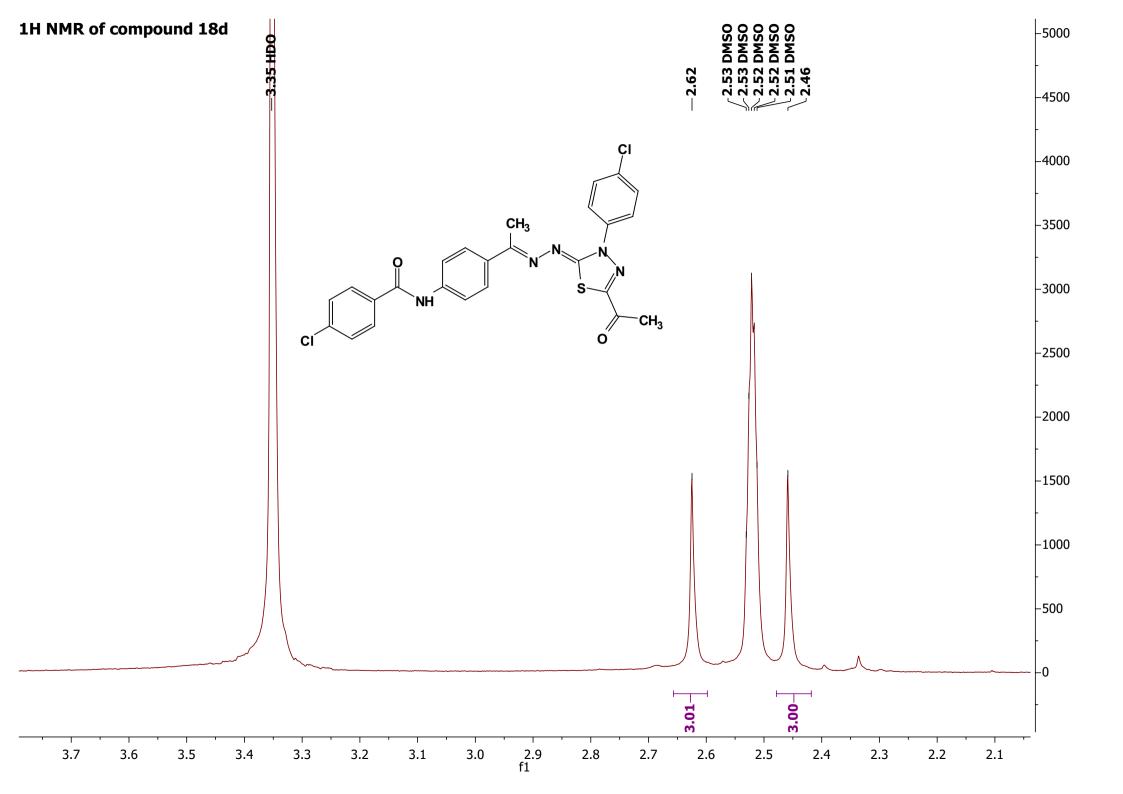


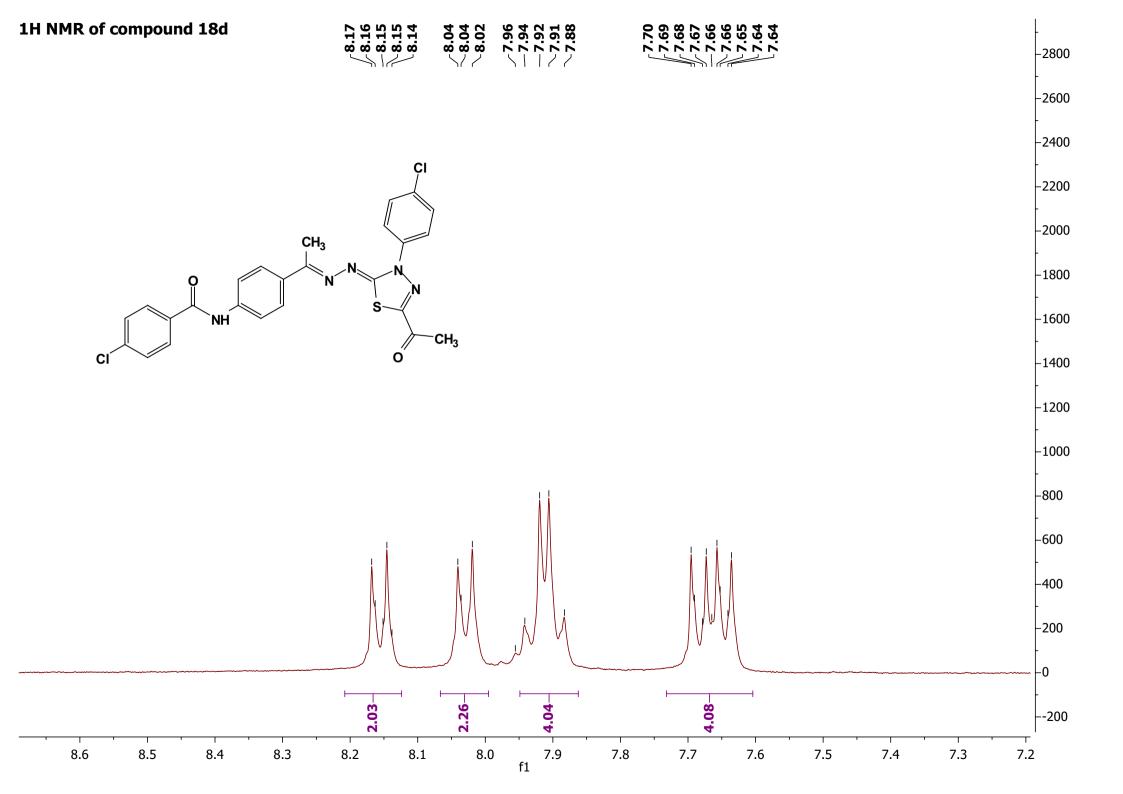


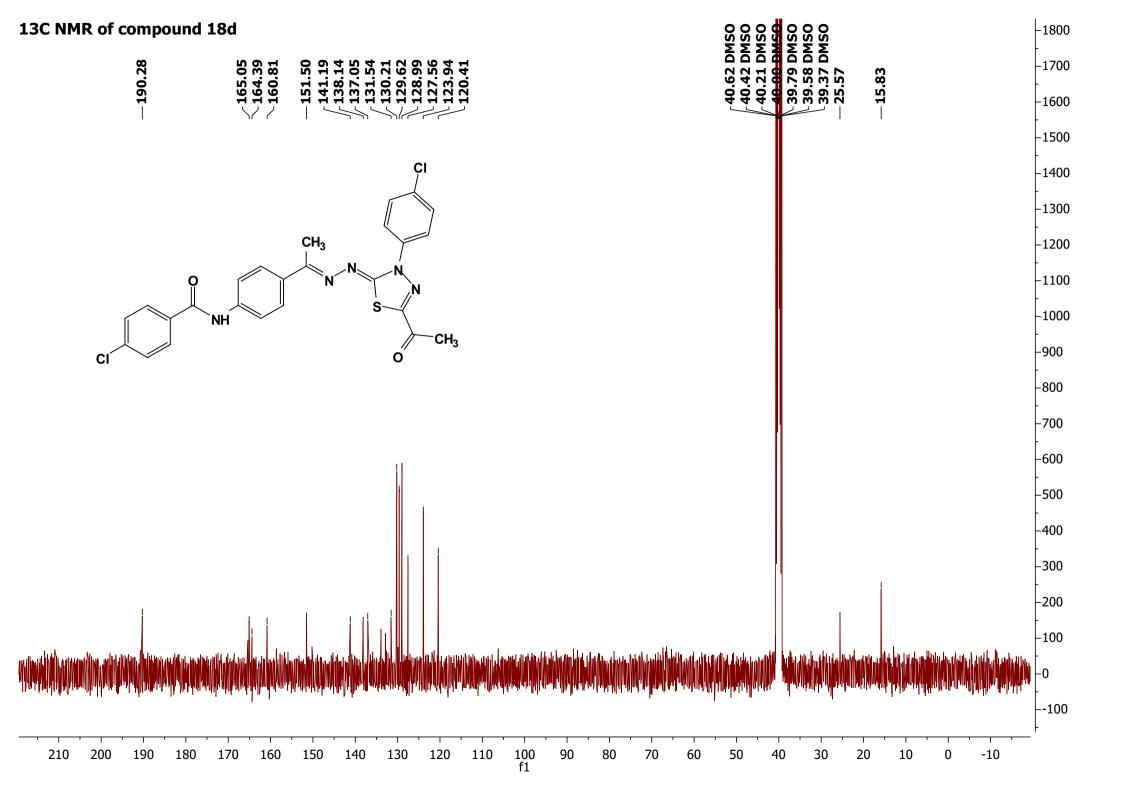


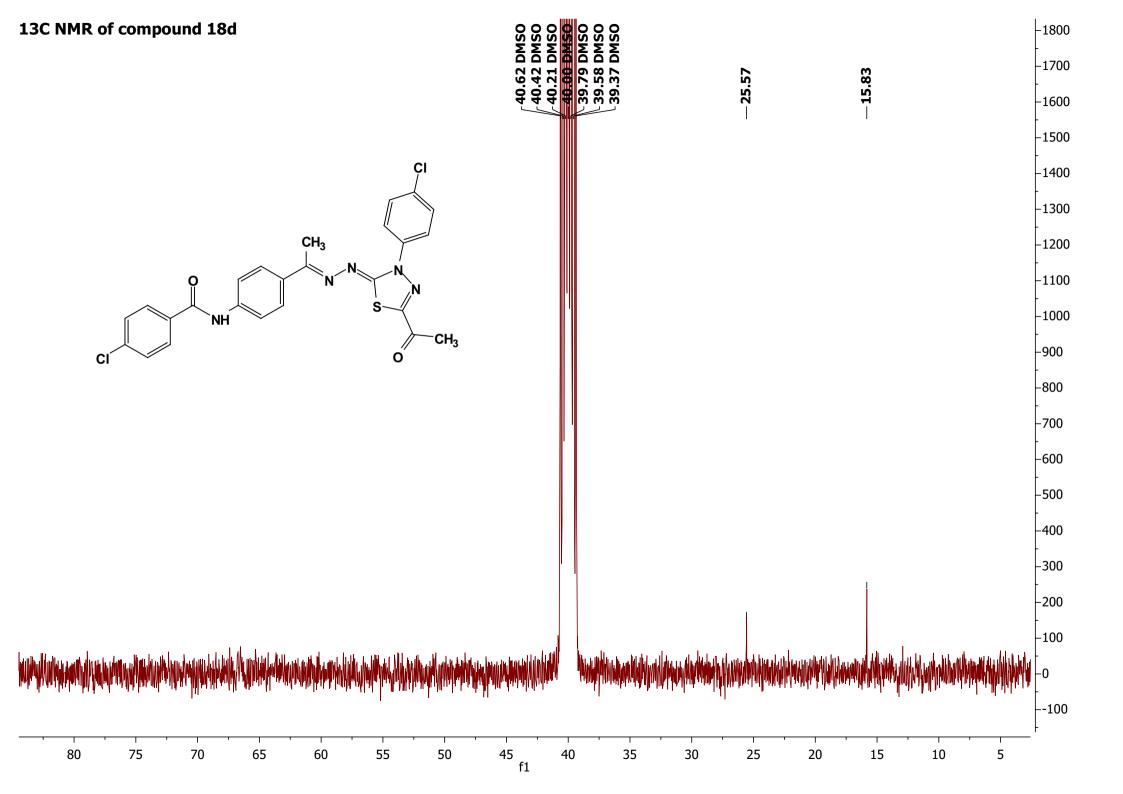


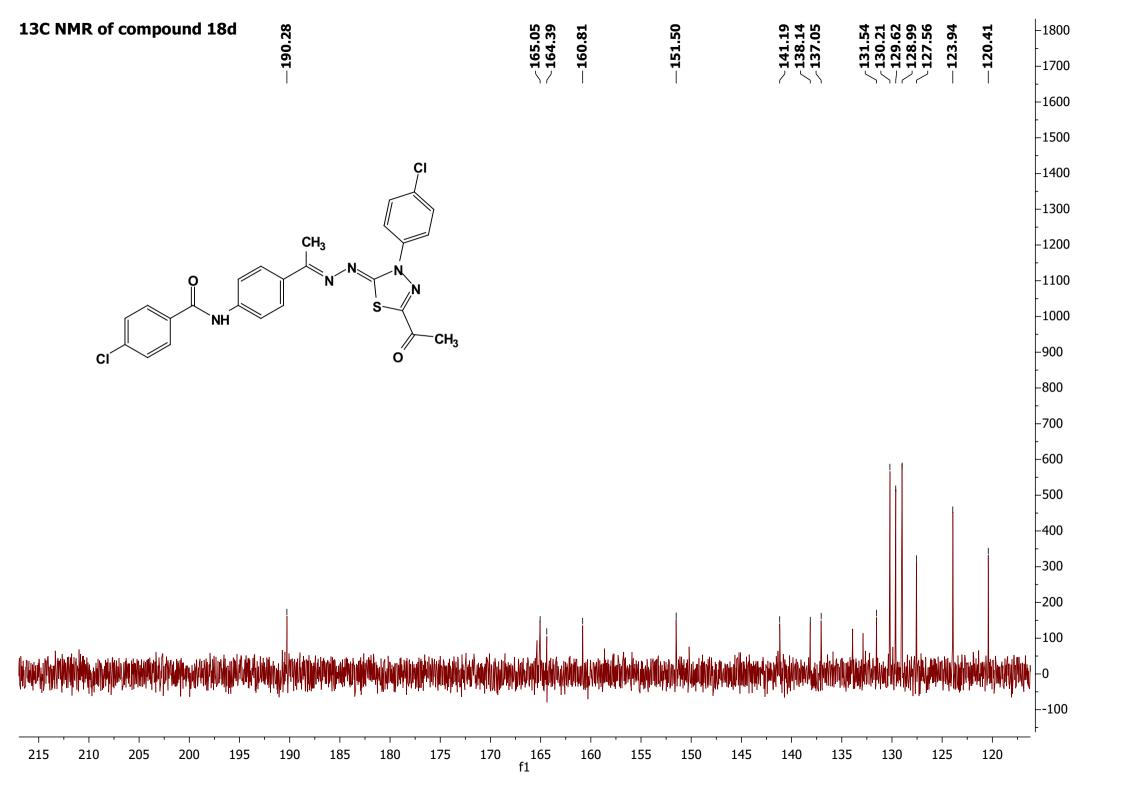


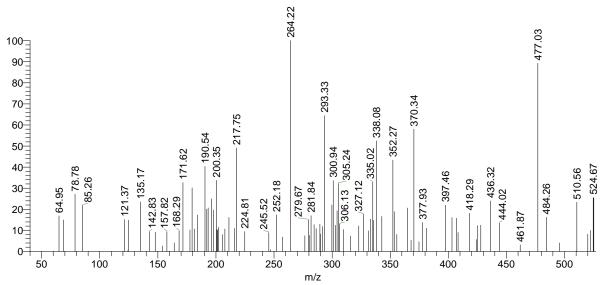

Mass spec. of compound 18c

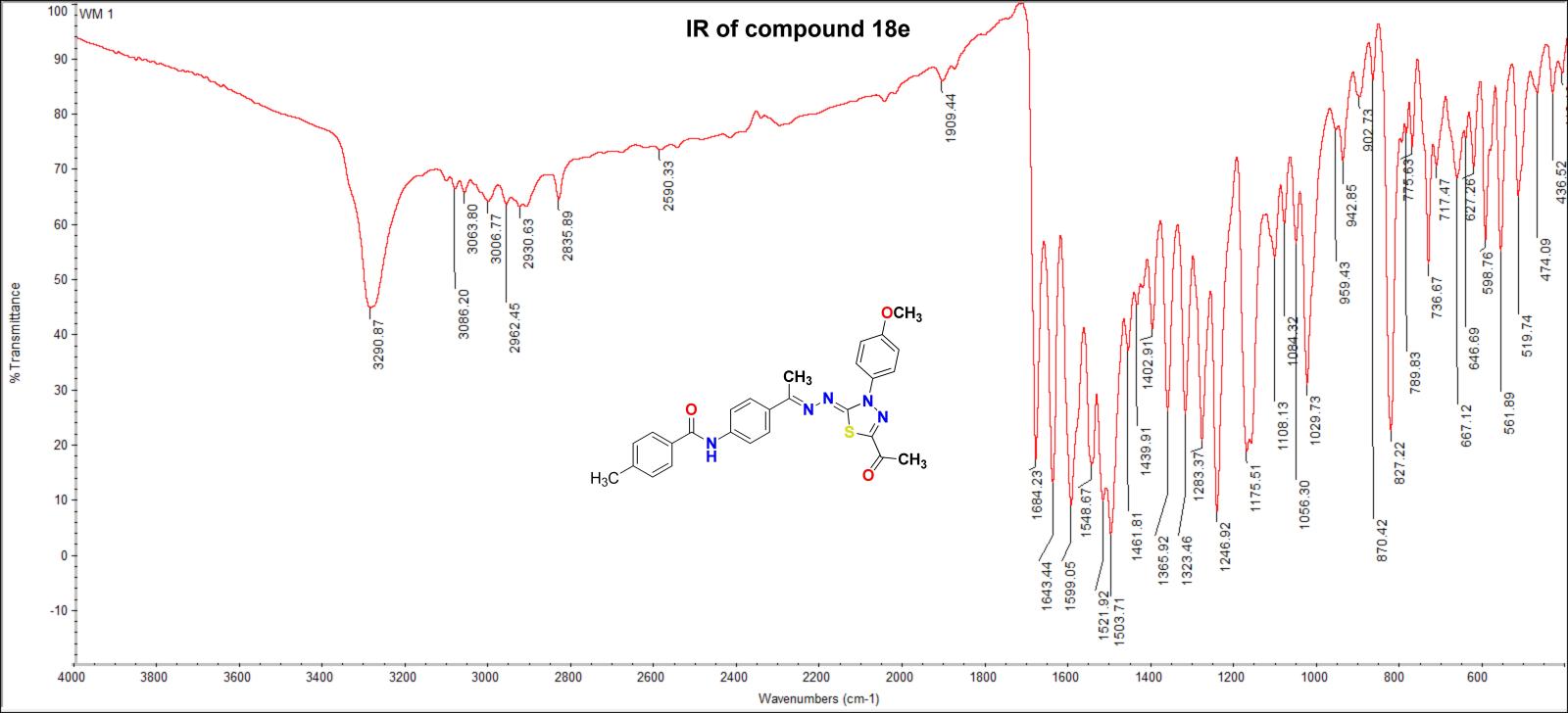

ibrahim-hassan-wc1 #180-182 RT: 3.03-3.06 AV: 3 SB: 15 3.53-3.63 , 3.46-3.58 NL: 1.78E2 T: $\{0,0\}$ + c El Full ms [40.00-1000.00]

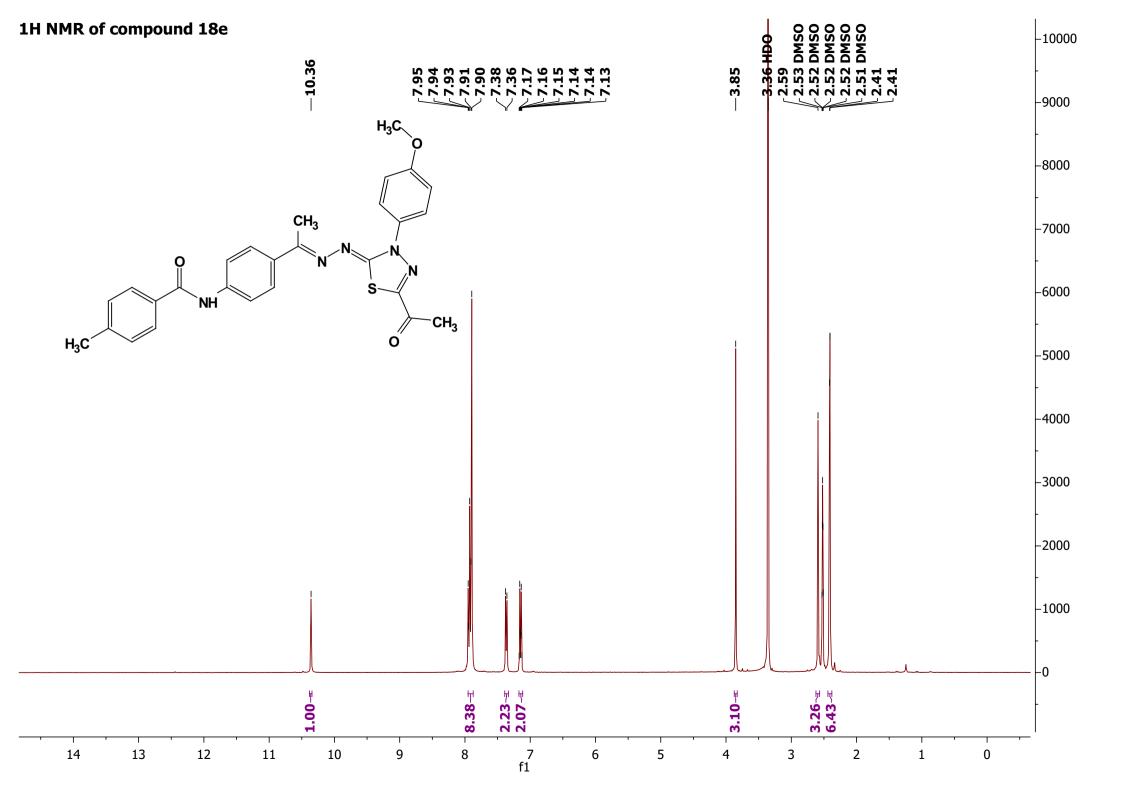


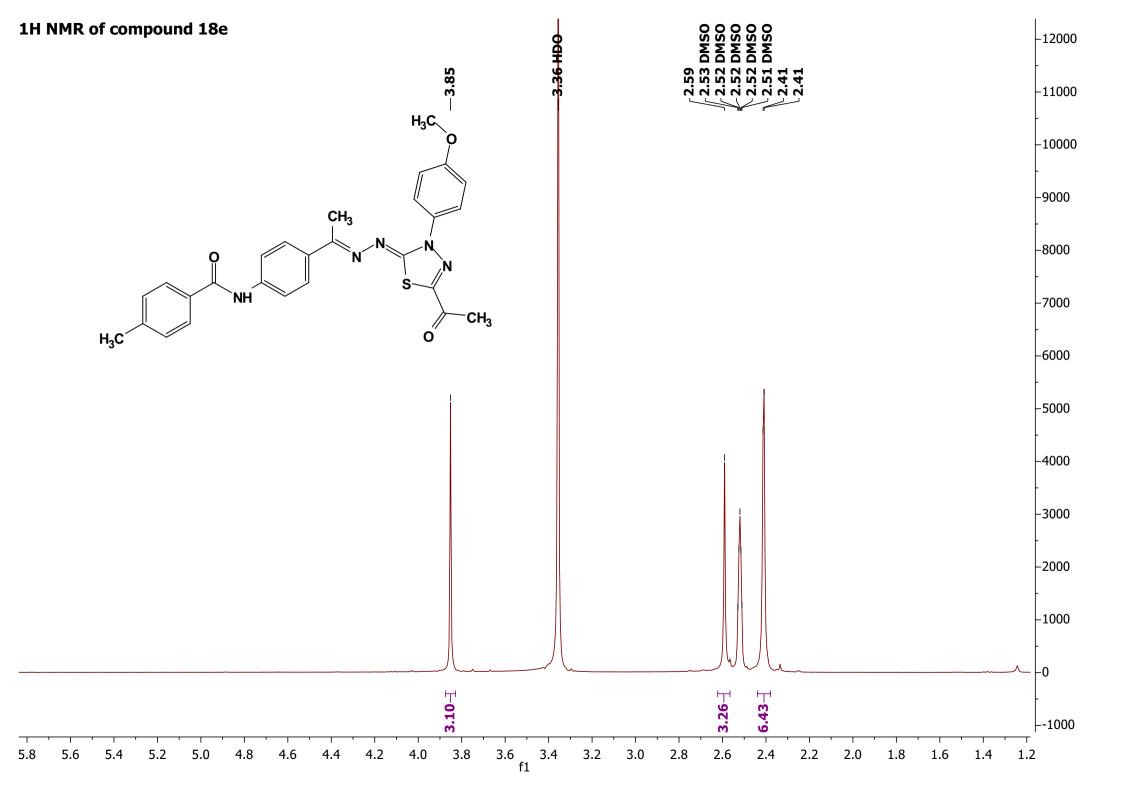


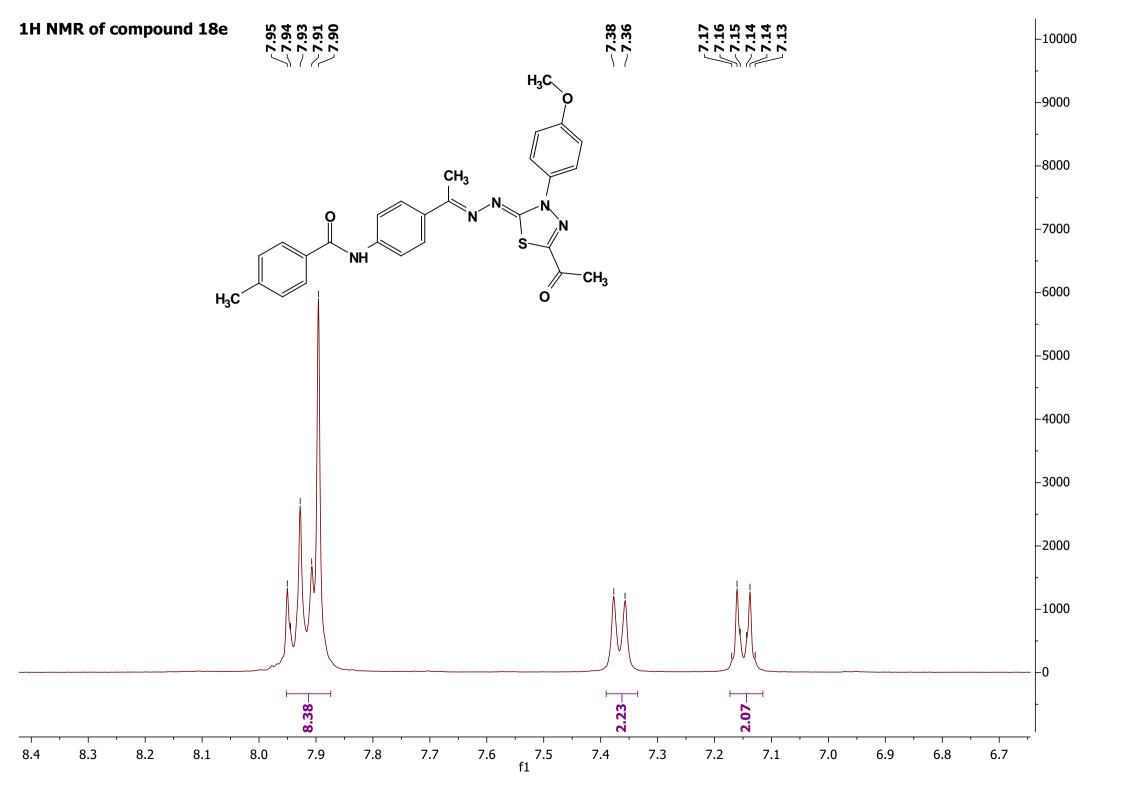


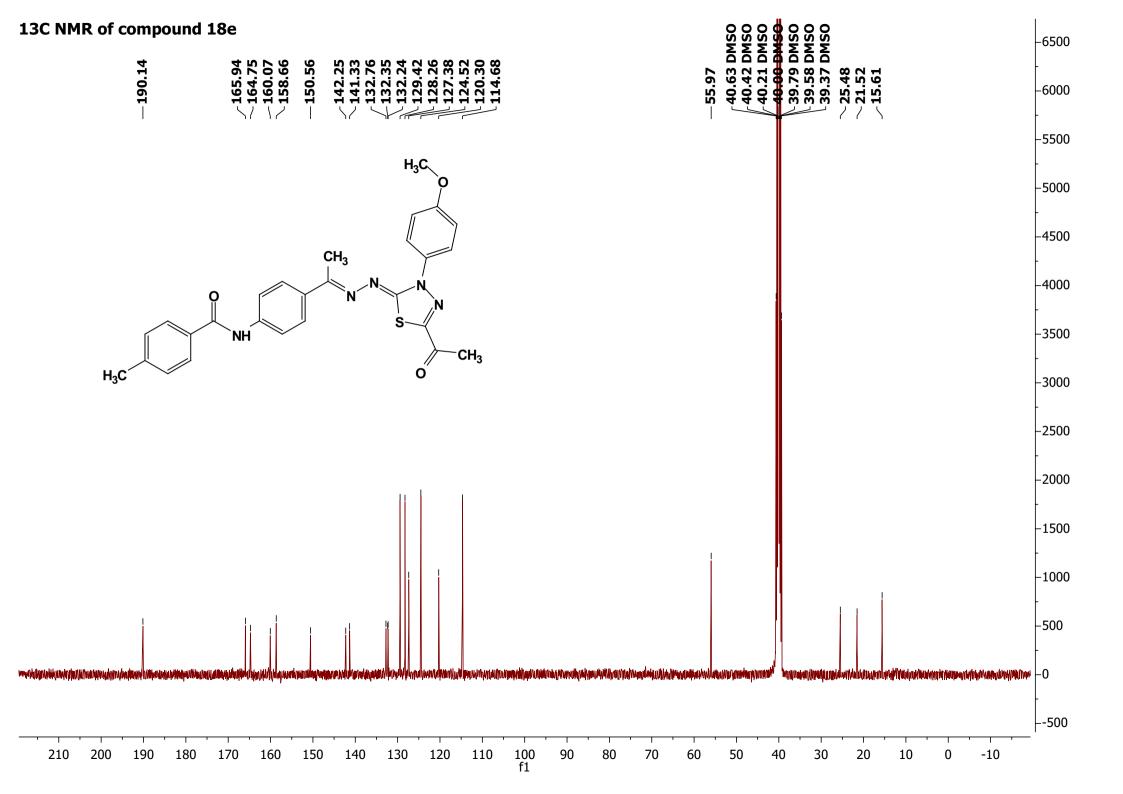


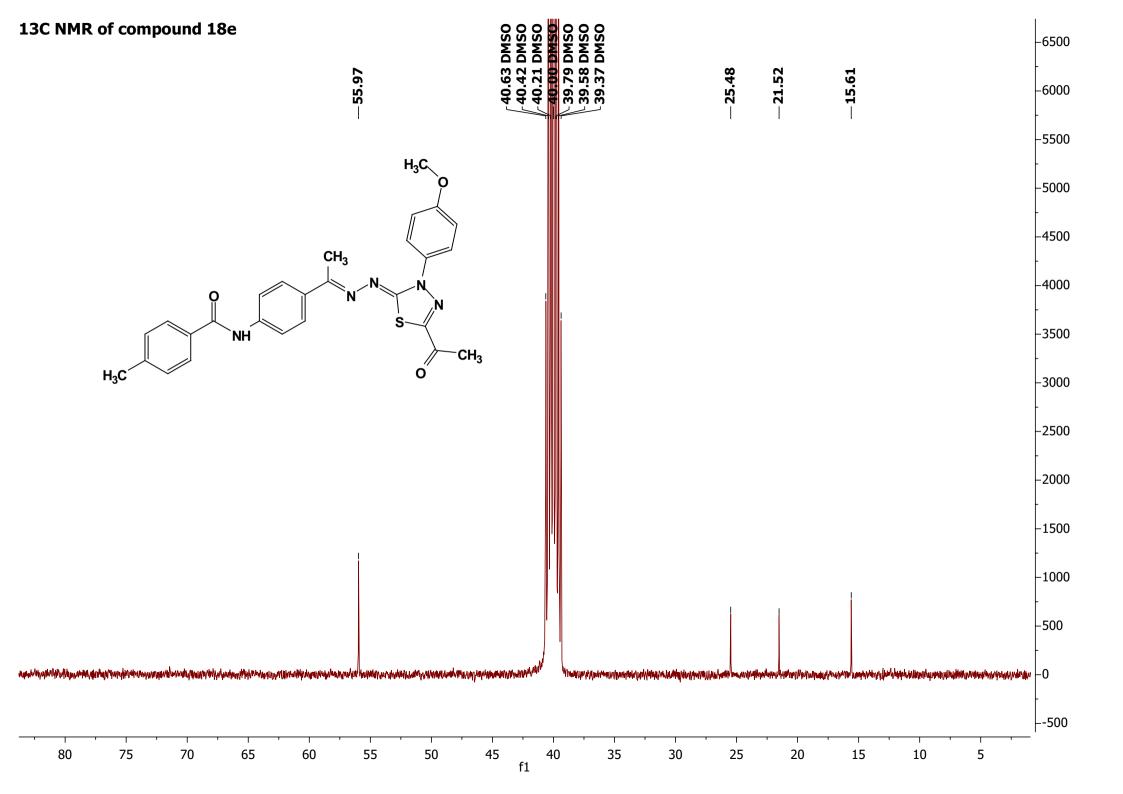


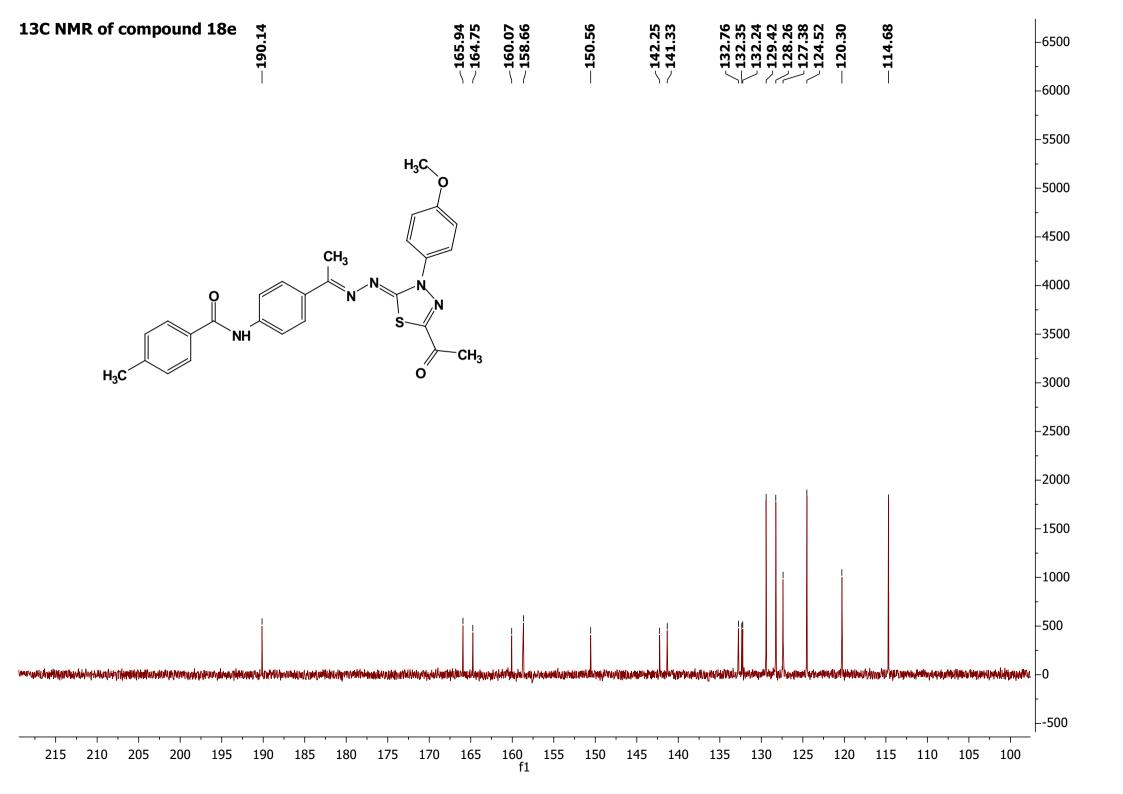


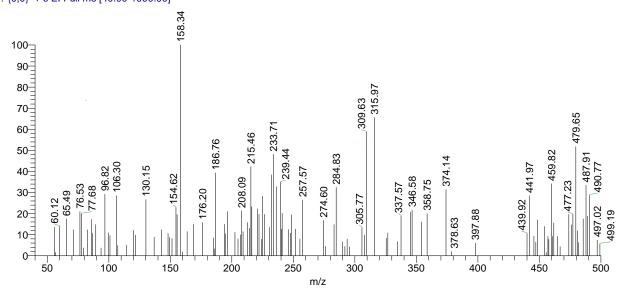

Mass spec. of compound 18d

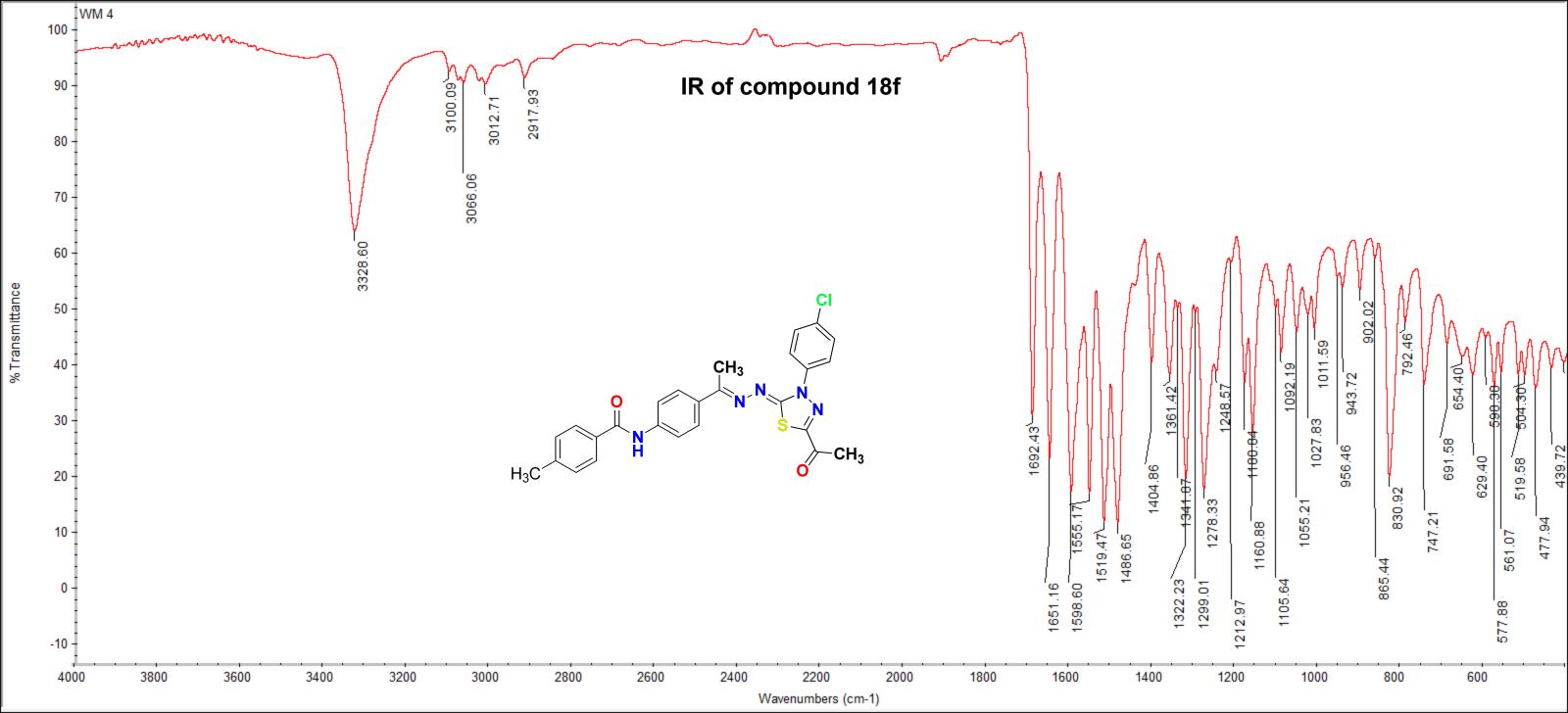

ibrahim-hassan-wc4 #119-120 RT: 2.01-2.03 AV: 2 SB: 26 1.21-1.34 , 0.87-1.14 NL: 3.05E2 T: $\{0,0\}$ + c El Full ms [40.00-1000.00]

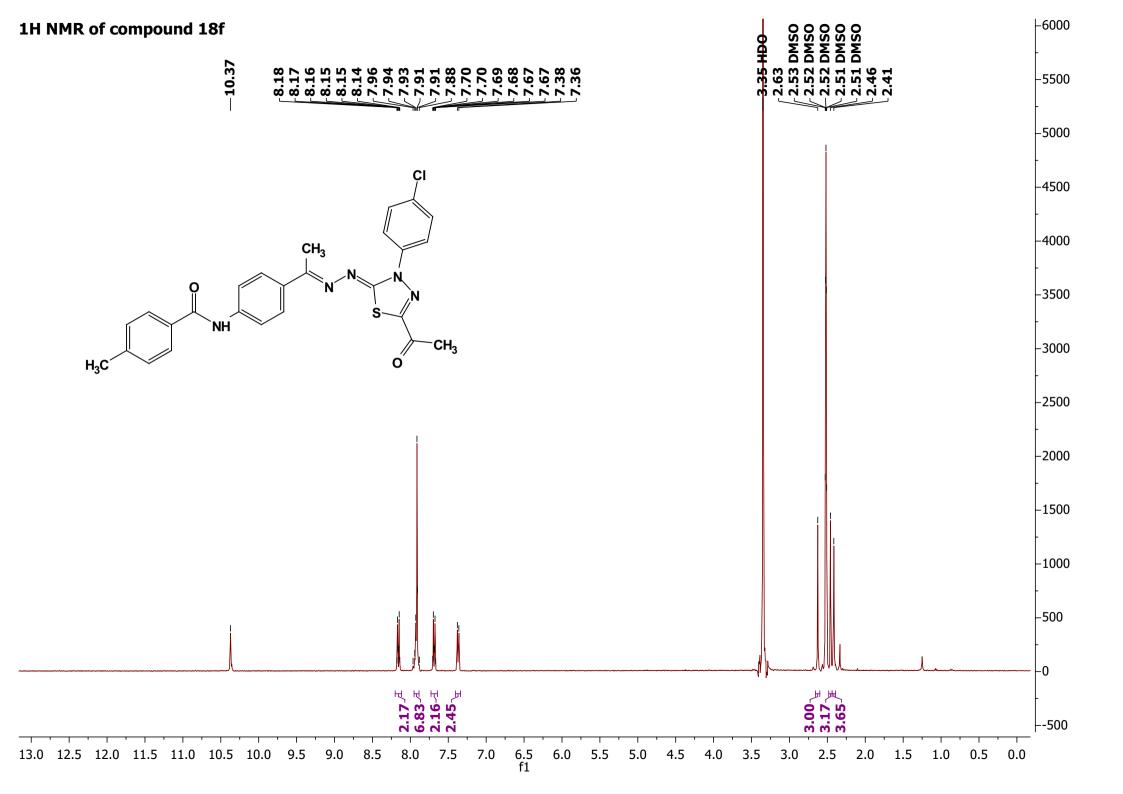


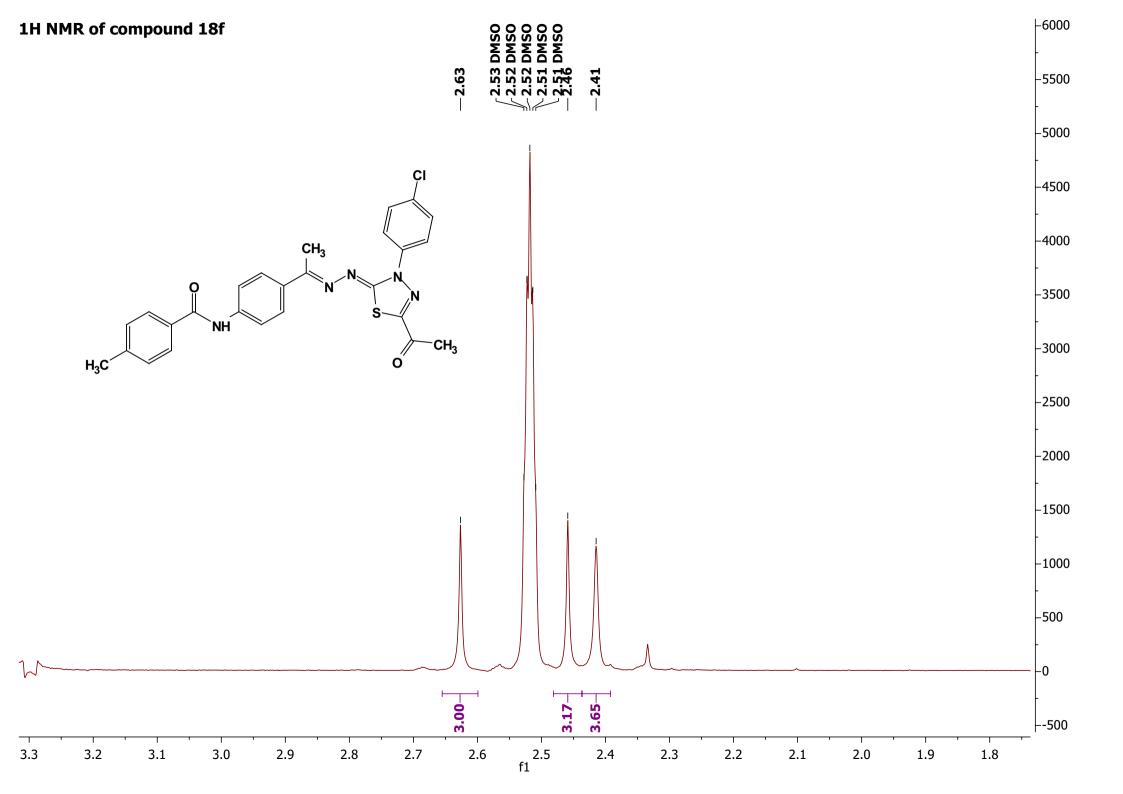


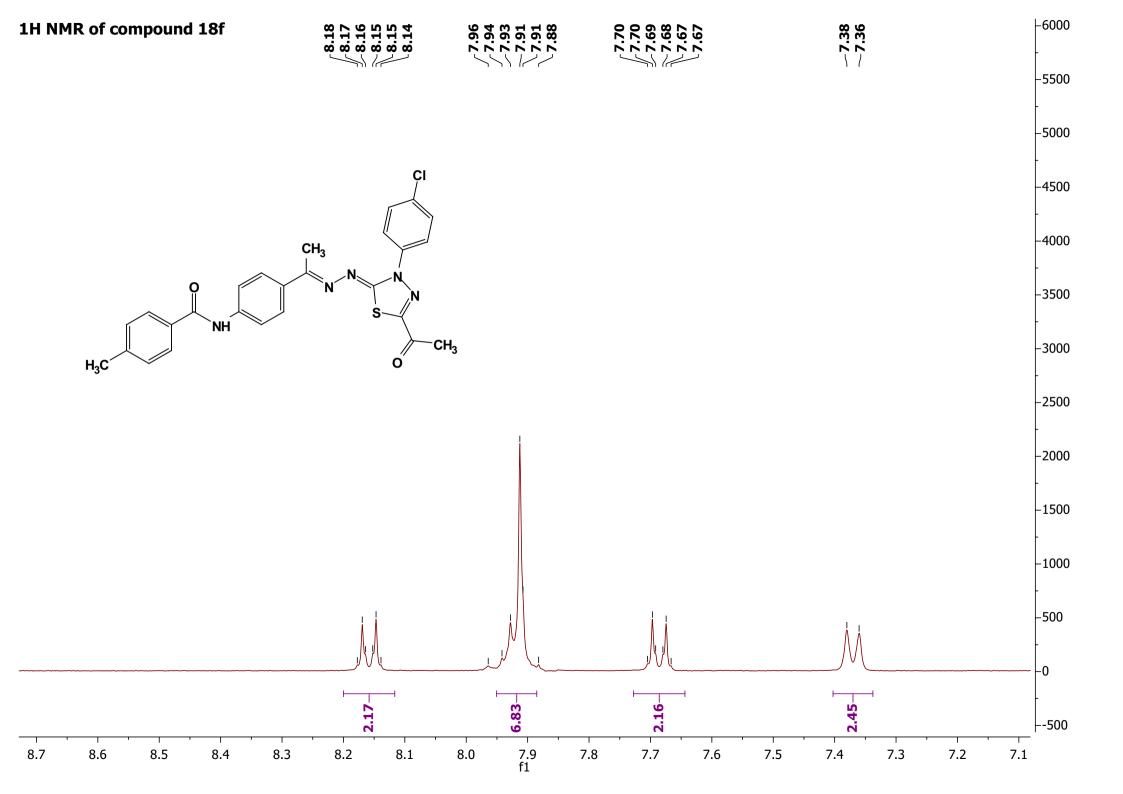


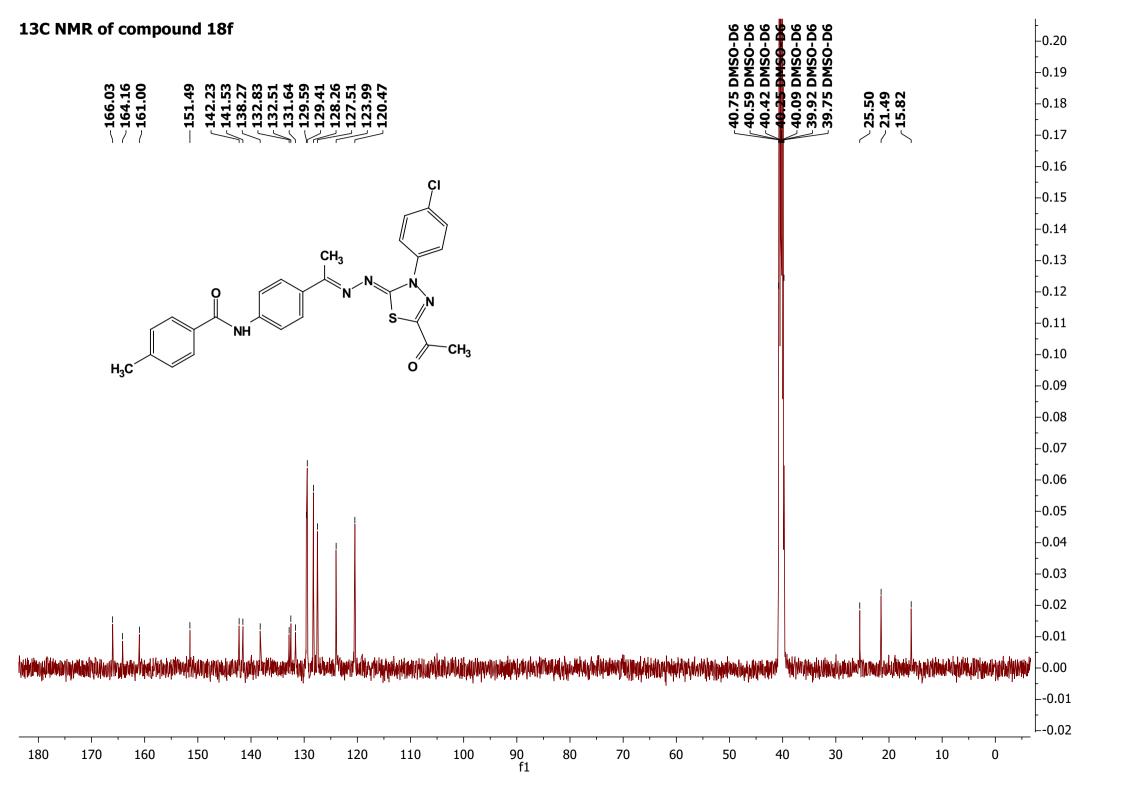


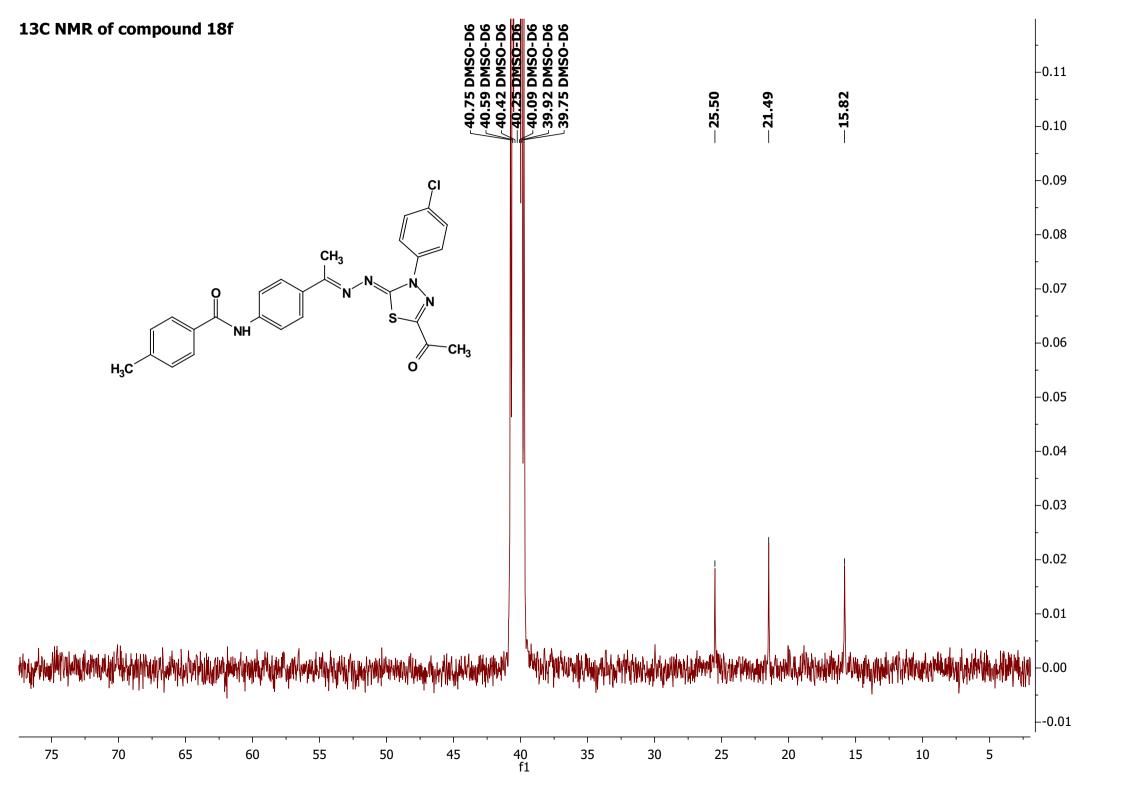


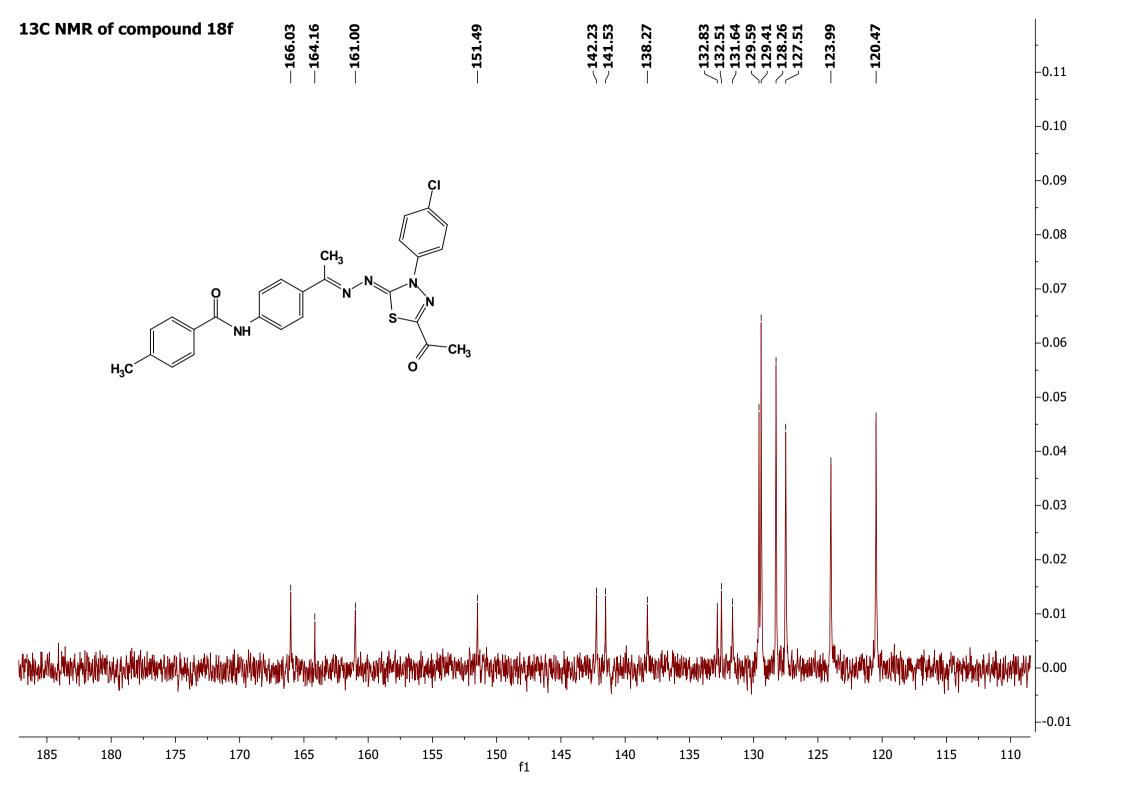


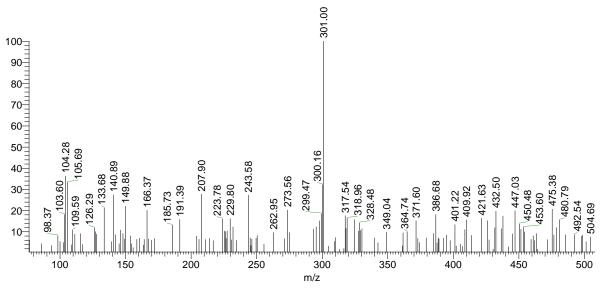

Mass spec. of compound 18e


ibrahim-hassan-wm1 #28-29 RT: 0.49-0.50 AV: 2 SB: 26 1.21-1.34 , 0.87-1.14 NL: 2.91E2 T: $\{0,0\}$ + c EI Full ms [40.00-1000.00]









Mass spec. of compound 18f

ibrahim-hassan-wm4 #156 RT: 2.63 AV: 1 SB: 26 1.21-1.34 , 0.87-1.14 NL: 1.18E3 T: $\{0,0\}$ + c EI Full ms [40.00-1000.00]

Helma, C., Cramer, T.,

Kramer, S., and De Raedt, L., J. Chem. Inf. Comput.

Sci., 2004, pp. 1402-1411

C₂₁H₂₁N₅O₃S

Molecular Weight: 423.48813

ALogP: 3.064 Rotatable Bonds: 6

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Non-Mutagen

Probability: 0.679
Enrichment: 1.22
Bayesian Score: -2.56
Mahalanobis Distance: 12.5

Mahalanobis Distance p-value: 7.78e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	C.I. Pigment Yellow 74	6358-31-2	1936-15-8
Structure	- O - O - O - O - O - O - O - O - O - O		Na O O O O O O O O O O O O O O O O O O O
Actual Endpoint	Non-Mutagen	Non-Mutagen	Non-Mutagen
Predicted Endpoint	Non-Mutagen	Non-Mutagen	Non-Mutagen
Distance	0.559	0.560	0.594

Model Applicability

Reference

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Kazius et. al., J. Med.

Chem. (2005) 48, 312-320

1. All properties and OPS components are within expected ranges.

EMIC

Feature Contribution							
	Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set			
SCFP_12	-1325991669	[*]N1[*][*]C(=N1)[*]	0.362	7 out of 8			

SCFP_12	10	[*]N([*])[*]	0.306	1774 out of 2287
SCFP_12	-1380909229	[*]N([*])[c]1:[c#;[*]:[c]([*]):[cH]:[cH]	0.304	957 out of 1235
	Top Feat	ures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set
SCFP_12	-1630519606	[*]C1=[*][*]C(=[*])S1	-0.998	0 out of 3
SCFP_12	-331724199	NN	-0.762	0 out of 2
SCFP_12	571795252	[*]C(=[*])C(=O)C	-0.663	31 out of 107

 $C_{26}H_{23}N_{5}O_{3}S$

Molecular Weight: 485.55751

ALogP: 4.728 Rotatable Bonds: 7

Acceptors: 8 Donors: 1

Model Prediction

Prediction: Non-Mutagen

Probability: 0.725 Enrichment: 1.3

Bayesian Score: -0.696 Mahalanobis Distance: 12.7

Mahalanobis Distance p-value: 1.91e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediction. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	3567-69-9	99522-79-9	83621-06-1
Structure	Na . O S I A TO OH	HN	OH OH

Actual Endpoint	Mutagen	Non-Mutagen	Non-Mutagen
Predicted Endpoint	Non-Mutagen	Non-Mutagen	Non-Mutagen
Distance	0.588	0.612	0.613
Reference	Helma, C., Cramer, T., Kramer, S., and De Raedt, L., J. Chem. Inf. Comput. Sci., 2004, pp. 1402-1411	Kazius et. al., J. Med. Chem. (2005) 48, 312-320	Kazius et. al., J. Med. Chem. (2005) 48, 312-320

Model Applicability

Structural Similar Compounds

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

All properties and OPS components are within expected ranges.

i data d							
	Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set			
SCFP_12	555539852	[*]:[cH]:[c](:[cH]);[c])C(=0)N[c]1:[cH]:[c H]:[*]:[cH]:[cH]:1	0.447	22 out of 24			

SCFP_12	818445224	[*][c]1:[cH]:[cH][t] (NC(=O)[c](:[*]):[*]):[cH]:[cH]:1	0.434	12 out of 13
SCFP_12	124026986	[*]:[cH]:[c](:[cH])])C(=O)N[c](:[*]):[*	0.429	33 out of 37
		tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set
SCFP_12	-1630519606	[*]C1=[*][*]C(=[*])S1	-0.998	0 out of 3
SCFP_12	-331724199	[*]NN=C(/C)/[c](:[*)) [:[*]	-0.762	0 out of 2
SCFP_12	571795252	[*]C(=[*])C(=O)C	-0.663	31 out of 107

C₂₅H₂₀CIN₅O₂S

Molecular Weight: 489.97659

ALogP: 5.409 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Non-Mutagen

Probability: 0.668
Enrichment: 1.2
Bayesian Score: -2.95

Mahalanobis Distance: 12.6

Mahalanobis Distance p-value: 4.07e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	83621-06-1	FLUTICASONE	110004-69-8
Structure		HO 3. AND	http://www.nichard.com/
	i i	Y } Y	NAME OF THE PROPERTY OF THE PR

		F	" o
Actual Endpoint	Non-Mutagen	Non-Mutagen	Mutagen
Predicted Endpoint	Non-Mutagen	Non-Mutagen	Mutagen
Distance	0.614	0.628	0.629
Reference	Kazius et. al., J. Med. Chem. (2005) 48, 312-320	PDR 1994	Kazius et. al., J. Med. Chem. (2005) 48, 312-320

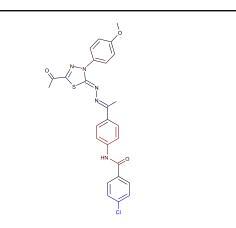
Model Applicability

Structural Similar Compounds

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set	
SCFP_12	555539852	[*]:[cH]:[c](:[cH]):[c H]:[*]:[cH]:[cH]:1	0.447	22 out of 24	


SCFP_12	818445224	[*][c]1:[cH]:[cH][c] (NC(=O)[c](:[*]):[*]):[cH]:[cH]:1	0.434	12 out of 13
SCFP_12	2096901122	[*]:[cH]:[c](NC(=0)][c](:[*]):[cH]:[*	0.429	33 out of 37
	Top Feat	tures for negative of	contribution	1
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set
SCFP_12	-1630519606	[*]C1=[*][*]C(=[*])S1	-0.998	0 out of 3
SCFP_12	-331724199	[*]\N=C(/C)\[c](:[*]) :[*]	-0.762	0 out of 2
SCFP_12	571795252	[*]C(=[*])C(=O)C	-0.663	31 out of 107

Mutagen

Kazius et. al., J. Med.

Chem. (2005) 48, 312-320

0.641

C₂₆H₂₂CIN₅O₃S

Molecular Weight: 520.00258

ALogP: 5.392 Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Non-Mutagen

Probability: 0.643
Enrichment: 1.15
Bayesian Score: -3.78
Mahalanobis Distance: 13

Mahalanobis Distance p-value: 4.69e-006

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	3567-69-9	83621-06-1	6471-49-4
Structure	Na .O O O O O O O O O O O O O O O O O O O	CI C	DE TOUR DE TOU
Actual Endpoint	Mutagen	Non-Mutagen	Mutagen

Non-Mutagen

Kazius et. al., J. Med.

Chem. (2005) 48, 312-320

0.633

Model Applicability

Predicted Endpoint

Distance

Reference

Structural Similar Compounds

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Helma, C., Cramer, T.,

Kramer, S., and De Raedt,

L., J. Chem. Inf. Comput.

Sci., 2004, pp. 1402-1411

Non-Mutagen

0.618

Feature Co	Feature Contribution Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set		
SCFP_12	555539852	[*]:[cH]:[c](:[cH]:[c])C(=0)N[c]1:[cH]:[c H]:[*]:[cH]:[cH]:1	0.447	22 out of 24		

SCFP_12	818445224	[*][c]1:[cH]:[cH];[cH];[cH]:[cH]:1	0.434	12 out of 13
SCFP_12	2096901122	[']:[cH]:[c](NC(=0)[c Cl [']:[']):[cH]:[']	0.429	33 out of 37
		tures for negative of	contribution	n į
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set
SCFP_12	-1630519606	[*]C1=[*][*]C(=[*])S1	-0.998	0 out of 3
SCFP_12	-331724199	[*]\N=C(/C)\[c](:[*]) :[*]	-0.762	0 out of 2
SCFP_12	571795252	[*]C(=[*])C(=O)C	-0.663	31 out of 107

C₂₅H₁₉Cl₂N₅O₂S

Molecular Weight: 524.42166

ALogP: 6.073 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Non-Mutagen

Probability: 0.639
Enrichment: 1.14
Bayesian Score: -3.91
Mahalanobis Distance: 12.6

Mahalanobis Distance p-value: 3.32e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

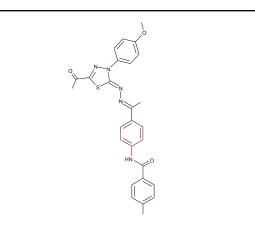
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	83621-06-1	633-03		

Name	83621-06-1	633-03-4	316-42-7
Structure	OH OH	OH OF OH	ANS Exedence HCI HCI
Actual Endpoint	Non-Mutagen	Mutagen	Non-Mutagen
Predicted Endpoint	Non-Mutagen	Mutagen	Non-Mutagen
Distance	0.670	0.671	0.675
Reference	Kazius et. al., J. Med. Chem. (2005) 48, 312-320	Kazius et. al., J. Med. Chem. (2005) 48, 312-320	Kazius et. al., J. Med. Chem. (2005) 48, 312-320


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set	
SCFP_12	555539852	[*]:[cH]:[c](:[cH]:[c])C(=O)N[c]1:[cH]:[c H]:[*]:[cH]:[cH]:1	0.447	22 out of 24	

SCFP_12	818445224	[*][c]1:[cH]:[cH]:[cH]:[cH]:[cH]:1	0.434	12 out of 13
SCFP_12	2096901122	[*]:[cH]:[c](NC(=0)][c Cl][(:[*]):[cH]:[c]	0.429	33 out of 37
		tures for negative of	contribution	1
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set
SCFP_12	-1630519606	[*]C1=[*][*]C(=[*])S1	-0.998	0 out of 3
SCFP_12	-331724199	[*]\N=C(/C)\[c](:[*]) :[*]	-0.762	0 out of 2
SCFP_12	571795252	[*]C(=[*])C(=O)C	-0.663	31 out of 107

C₂₇H₂₅N₅O₃S

Molecular Weight: 499.58409

ALogP: 5.214 Rotatable Bonds: 7 Acceptors: 8

Donors: 1

Model Prediction

Prediction: Non-Mutagen

Probability: 0.711 Enrichment: 1.27 Bayesian Score: -1.3

Mahalanobis Distance: 12.7

Mahalanobis Distance p-value: 1.81e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

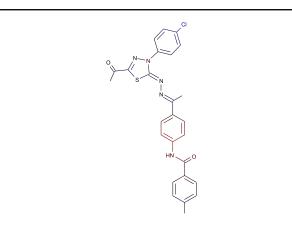
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Simila	r Compounds
-------------------	-------------

•				
Name	3567-69-9	110004-69-8	6471-49-4	
Structure	Na O HOH	N H N H N N	HN AND CONTRACTOR OF THE PART	
Actual Endpoint	Mutagen	Mutagen	Mutagen	
Predicted Endpoint	Non-Mutagen	Mutagen	Mutagen	
Distance	0.608	0.634	0.637	
Reference	Helma, C., Cramer, T., Kramer, S., and De Raedt, L., J. Chem. Inf. Comput. Sci., 2004, pp. 1402-1411	Kazius et. al., J. Med. Chem. (2005) 48, 312-320	Kazius et. al., J. Med. Chem. (2005) 48, 312-320	


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

	Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set			
SCFP_12	555539852	[*]:[cH]:[c](:[cH]*])C(=0)N[c]1:[cH]:[c H]:[*]:[cH]:[cH]:1	0.447	22 out of 24			

SCFP_12	818445224	[*][c]1:[cH]:[cH][P] (NC(=0)[c](:[*]):[*]):[cH]:[cH]:1	0.434	12 out of 13
SCFP_12	124026986	[*]:[cH]:[c](:[cH]*])C(=O)N[c](:[*]):[*]	0.429	33 out of 37
		tures for negative		1
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set
SCFP_12	-1630519606	[*]C1=[*][*]C(=[*])S1	-0.998	0 out of 3
SCFP_12	-1555568408	[*]NC(=0)[c]1:[cH]:[c H]:[c](C):[cH]:[cH]:	-0.762	0 out of 2
SCFP_12	-331724199	[*]\N=C(\/C)\[c](:[*]) :[*]	-0.762	0 out of 2

C₂₆H₂₂CIN₅O₂S

Molecular Weight: 504.00318

ALogP: 5.895 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Non-Mutagen

Probability: 0.634
Enrichment: 1.14
Bayesian Score: -4.05
Mahalanobis Distance: 12.6

Mahalanobis Distance p-value: 3.63e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar	Compounds
---------------------------	-----------

Name	83621-06-1	110004-69-8	633-03-4	
Structure	OH	N. H.	OH O N O OH	
Actual Endpoint	Non-Mutagen	Mutagen	Mutagen	
Predicted Endpoint	Non-Mutagen	Mutagen	Mutagen	
Distance	0.654	0.654	0.663	
Reference	Kazius et. al., J. Med. Chem. (2005) 48, 312-320	Kazius et. al., J. Med. Chem. (2005) 48, 312-320	Kazius et. al., J. Med. Chem. (2005) 48, 312-320	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set
SCFP_12	555539852	[*]:[cH]:[c](:[cH]:[c H]:[*]:[cH]:[cH]:1	0.447	22 out of 24

SCFP_12	818445224	[*][c]1:[cH]:[cH]*[e] (NC(=O)[c](:[*]):[*]):[cH]:[cH]:1	0.434	12 out of 13
SCFP_12	124026986	[*]:[cH]:[c](:[cH]**])C(=O)N[c](:[*]):[*	0.429	33 out of 37
		tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set
SCFP_12	-1630519606	[*]C1=[*][*]C(=[*])S1	-0.998	0 out of 3
SCFP_12	-331724199	[*] N=C(/C)/[c](:[*])	-0.762	0 out of 2
SCFP_12	-1555568408	[*]NC(=0)[e]1:[eH]:[e H]:[e](C):[eH]:[eH]:	-0.762	0 out of 2

US Environmental

I.html

Protection Agency at http://www.epa.gov/NCCT/

dsstox/sdf isscan externa

HN O HN O

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4 Donors: 3

Name	GLYBURIDE	38914-96-4	93957-54-1
Structure	HN OO O	NH HCI HCI H ₂ O	AND Enantomer N OH OH
Actual Endpoint	Non-Mutagen	Mutagen	Non-Mutagen
Predicted Endpoint	Non-Mutagen	Mutagen	Non-Mutagen
Distance	0.590	0.592	0.600

Model Prediction

Prediction: Non-Mutagen

Probability: 0.0531
Enrichment: 0.0951
Bayesian Score: -19.7
Mahalanobis Distance: 13.1

Mahalanobis Distance p-value: 2.73e-006

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

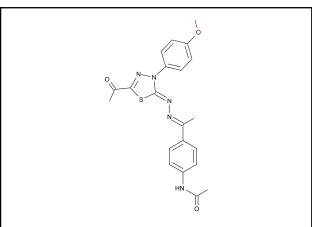
Model Applicability

Reference

Structural Similar Compounds

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Kazius et. al., J. Med.


Chem. (2005) 48, 312-320

1. All properties and OPS components are within expected ranges.

PDR 1994

Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score Mutagen in training set SCFP_12 -347281112 0.337 18 out of 22

SCFP_12	1208843554	[*]N[6] f*[cH]:[cH]:[c](O[c](:[*]):[*]):[c H]:[cH]:1	0.337	6 out of 7
SCFP_12	-1943080297	[*]N[라](cH]:[cH]:[c](O[c]2:[cH]:[cH]:[*]:[c]([*]):[cH]:2):[cH]:[cH]:1	0.304	5 out of 6
	Top Feat	ures for negative of	contribution	1
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set
SCFP_12	816802409	F F C! [']NC(=0)N[c]1:[cH]:[cH]:[c]([']):[cH]:[c H]:1	-1.82	0 out of 9
SCFP_12	-1903175541	[*] C F)(F)F	-1.51	3 out of 30
SCFP_12	-300280774	[*]:[c](:[*])C(F)(F)F	-1.51	3 out of 30

 $C_{21}H_{21}N_5O_3S$

Molecular Weight: 423.48813

ALogP: 3.064 Rotatable Bonds: 6

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Toxic
Probability: 0.553
Enrichment: 1.05
Bayesian Score: 0.136
Mahalanobis Distance: 10.7

Mahalanobis Distance p-value: 0.00314

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Bunazosin .HCI (Free base form)	Acemetacin	Prazosin .HCI (Free base form)	
Structure	ON NH 2	OH CI	N N N N N N N N N N N N N N N N N N N	
Actual Endpoint	Toxic	Non-Toxic	Toxic	
Predicted Endpoint	Toxic	Non-Toxic	Toxic	
Distance	0.590	0.612	0.613	
Reference	Kiso to Rinsho 17:914- 924; 1983	Oyo Yakuri 22(6):777-786; 1981	Oyo Yakuri 17:57-62; 197	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Feature Contribution Top features for positive contribution				
SCFP_6	1237755852	CO[c]1:[cH]:[cH]:1	0.453	8 out of 9

SCFP_6	591469355	[*]:[cH]:[c](OC):[cH]	0.411	10 out of 12
SCFP_6	-331724199	[,]N=c(\c)\[e](:[,])	0.271	1 out of 1
	Top Fea	tures for negative of	contribution	1
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set
SCFP_6	-1380909229	[*]N([*])[c]1:[c];[*]:[c]([*]):[cH]:[cH] :1	-0.449	6 out of 19
SCFP_6	2097618059	[*]:[cH]:[c](NC(=O)C) :[cH]:[1]	-0.422	0 out of 1
SCFP_6	-704135030	O-N-N S N N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	-0.422	0 out of 1

 $C_{26}H_{23}N_5O_3S$

Molecular Weight: 485.55751

ALogP: 4.728 Rotatable Bonds: 7 Acceptors: 8

Donors: 1

Model Prediction

Prediction: Toxic
Probability: 0.602
Enrichment: 1.15
Bayesian Score: 1.42
Mahalanobis Distance: 11.8

Mahalanobis Distance p-value: 7.25e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

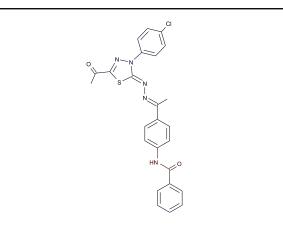
Name	Beclomethasone Dipropionate	Acemetacin	Hydrocortisone-17- butyrate-21-propionate
Structure	HO		HO to the total of

	<i>></i>	OH OH	
Actual Endpoint	Toxic	Non-Toxic	Toxic
Predicted Endpoint	Toxic	Non-Toxic	Toxic
Distance	0.614	0.616	0.644
Reference	Oyo Yakuri 18(6):1021- 1038; 1979	Oyo Yakuri 22(6):777-786; 1981	Oyo Yakuri 21:441-466 1981

Model Applicability

Structural Similar Compounds

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.


1. OPS PC17 out of range. Value: 3.4886. Training min, max, SD, explained variance: -2.7025, 2.8536, 1.067, 0.0167.

Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score Toxic in training set SCFP_6 1237755852 0.453 8 out of 9

CO[c]1:[cH]:[cH]:[

[cH]:[cH]:1

SCFP_6	282594097	[*]NC(=0)[c]1:[cH]:[c H]:[*]:[cH]:1	0.441	3 out of 3
SCFP_6	591469355	[*]:[cH]:[c](OC):[cH] :[t]	0.411	10 out of 12
		tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set
SCFP_6	-1380909229	[*]N([*])[c]1:[ctt]:[cH]::[cH]::1	-0.449	6 out of 19
SCFP_6	-704135030	[*]C(=[*])C1=N[*][*]S	-0.422	0 out of 1
SCFP_6	1334669481	[*]N([*])[c](:[cH]:[*]	-0.355	10 out of 28

C₂₅H₂₀CIN₅O₂S

Molecular Weight: 489.97659

ALogP: 5.409 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Non-Toxic
Probability: 0.533

Enrichment: 1.01

Bayesian Score: -0.387 Mahalanobis Distance: 11.4

Mahalanobis Distance p-value: 0.000251

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a

a normal distribution ar cutoff.

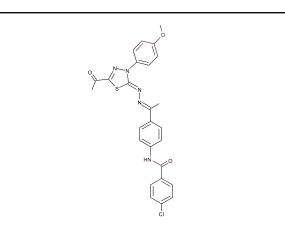
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Simila	r Compounds
-------------------	-------------

	<u> </u>		
Name	Acemetacin	Beclomethasone Dipropionate	Estramustine Phosphate Disodium (Free acid form)
Structure	OH C	HO C	ON COMMITTEE OF THE COM
Actual Endpoint	Non-Toxic	Toxic	Non-Toxic
Predicted Endpoint	Non-Toxic	Toxic	Non-Toxic
Distance	0.630	0.662	0.662
Reference	Oyo Yakuri 22(6):777-786; 1981	Oyo Yakuri 18(6):1021- 1038; 1979	Oyo Yakuri 20(6):1219- 1236; 1980


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set	
SCFP_6	282594097	[*]NC(=0)[c]1:[cH]:[cH]:1	0.441	3 out of 3	

SCFP_6	1257084377	[*]NC(=O)[c](:[*]):[*	0.362	14 out of 18
SCFP_6	-331724199	[*]\N=C(\C)\(e)(:[*]) :[*]	0.271	1 out of 1
		tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set
SCFP_6	-1380909229	[*]N([*])[c]1:[ctt][*]:[c]([*]):[cH]:[cH]	-0.449	6 out of 19
SCFP_6	-704135030	[*]C(=[*])C1=N[*][*]S	-0.422	0 out of 1
SCFP_6	1334669481	[*]N([*])[c](:[cH]:[*]	-0.355	10 out of 28

C₂₆H₂₂CIN₅O₃S

Molecular Weight: 520.00258

ALogP: 5.392 Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Toxic
Probability: 0.61
Enrichment: 1.16
Bayesian Score: 1.62
Mahalanobis Distance: 11

Mahalanobis Distance p-value: 0.00117

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Sim	ilar Compounds
----------------	----------------

Name	Beclomethasone Dipropionate	Acemetacin	Estramustine Phosphate Disodium (Free acid form)	
Structure	HO	OH CI	ON ON HO OH	
Actual Endpoint	Toxic	Non-Toxic	Non-Toxic	
Predicted Endpoint	Toxic	Non-Toxic	Non-Toxic	
Distance	0.637	0.639	0.657	
Reference	Oyo Yakuri 18(6):1021- 1038; 1979	Oyo Yakuri 22(6):777-786; 1981	Oyo Yakuri 20(6):1219- 1236; 1980	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

	Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set			
SCFP_6	1237755852	CO[c]1:[cH]:[cH]:1	0.453	8 out of 9			

SCFP_6	282594097	NN NN NN NN NN NN NN N	0.441	3 out of 3
SCFP_6	591469355	[*]:[cH]:[c](OC):[6H]	0.411	10 out of 12
		tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set
SCFP_6	-1380909229	[*]N([*])[c]1:[c]:[*]:[c]([*]):[cH]:[cH] :1	-0.449	6 out of 19
SCFP_6	1915307678	[*]C(=[*])[c]1:[cH]:[cH]:[cH]:[c]	-0.422	0 out of 1
SCFP_6	-704135030	[*]C(=[*])C1=N[*][*]S	-0.422	0 out of 1

C₂₅H₁₉Cl₂N₅O₂S

Molecular Weight: 524.42166

ALogP: 6.073 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Toxic Probability: 0.543 Enrichment: 1.03

Bayesian Score: -0.127 Mahalanobis Distance: 10.7

Mahalanobis Distance p-value: 0.0025

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

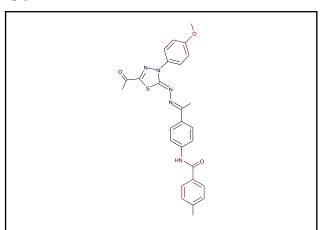
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Brovanexine .HCl (Free base form)	Brovanexine .HCl (Free base form) Estramustine Phosphate Disodium (Free acid form)			
Structure	Br HN N	ON OH	OH CI		
Actual Endpoint	Toxic	Non-Toxic	Non-Toxic		
Predicted Endpoint	Toxic	Non-Toxic	Non-Toxic		
Distance	0.651	0.669	0.693		
Reference	Kiso to Rinsho	Oyo Yakuri 20(6):1219-	Oyo Yakuri 22(6):777-786;		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.


1236; 1980

1. All properties and OPS components are within expected ranges.

16(13):7179-7195; 1982

Feature Contribution					
	Top fe	atures for positive of	ontribution		
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set	
SCFP_6	282594097	[*]NC(=0)[c]1:[cH]:[c H]:[*]:[cH]:[cH]:1	0.441	3 out of 3	

SCFP_6	1257084377	[*]NC(=O)[c](:[*]);[*	0.362	14 out of 18
SCFP_6	-232641495	[*]:[cH]:[e](NC(=O)[c Cl]1:[cH]:[cH]:[r][cH]:[cH]:[*]	0.271	1 out of 1
		tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set
SCFP_6	-1380909229	[*]N([*])[c]1:[c];[*]:[c]([*]):[cH]:[cH]	-0.449	6 out of 19
SCFP_6	1915307678	[*]C(=[*])[c]1:[cH]:[cH]:[cH]:[c]	-0.422	0 out of 1
SCFP_6	-704135030	[*]C(=[*])C1=N[*][*]S	-0.422	0 out of 1

 $C_{27}H_{25}N_5O_3S$

Molecular Weight: 499.58409

ALogP: 5.214 Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Toxic
Probability: 0.64
Enrichment: 1.22
Bayesian Score: 2.38
Mahalanobis Distance: 11.5

Mahalanobis Distance p-value: 0.000188

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

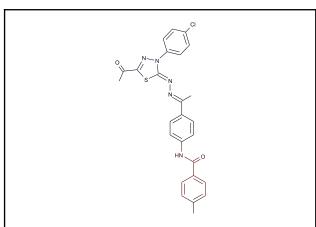
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Simila	r Compounds
-------------------	-------------

Name	Name Beclomethasone Dipropionate		Estramustine Phosphate Disodium (Free acid form)
Structure	HO TO THE TOTAL	OH CC	ON HO OH
Actual Endpoint	Toxic	Non-Toxic	Non-Toxic
Predicted Endpoint	Toxic	Non-Toxic	Non-Toxic
Distance	0.631	0.639	0.654
Reference	Oyo Yakuri 18(6):1021- 1038; 1979	Oyo Yakuri 22(6):777-786; 1981	Oyo Yakuri 20(6):1219- 1236; 1980

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

	Top footures for positive contribution						
Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score Toxic in set							
SCFP_6	1237755852	CO[c]1:[cH]:[cH]:[*]: [cH]:[cH]:1	0.453	8 out of 9			

SCFP_6	282594097	[*]NC(=0)[c]1:[cH]:[c H]:[*]:[cH]:1	0.441	3 out of 3
SCFP_6	591469355	[*]:[cH]:[c](OC):[cH] :[*]	0.411	10 out of 12
		tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set
SCFP_6	-1380909229	[*]N([*])[c]1:[c]+]:[c]]:[c]([*]):[cH]:[cH]	-0.449	6 out of 19
SCFP_6	-704135030	[*]C(=[*])C1=N[*][*]S	-0.422	0 out of 1
SCFP_6	1334669481	[*]N([*])[c](:[cH]:[*]):[cH]:[*]	-0.355	10 out of 28

1981

C₂₆H₂₂CIN₅O₂S

Molecular Weight: 504.00318

ALogP: 5.895 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Toxic
Probability: 0.578
Enrichment: 1.1

Bayesian Score: 0.793 Mahalanobis Distance: 11.2

Mahalanobis Distance p-value: 0.000554

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds						
Name	Brovanexine .HCl (Free base form)	Estramustine Phosphate Disodium (Free acid form)	Acemetacin			
Structure	Br HN O	O HO OH	OH CI			
Actual Endpoint	Toxic	Non-Toxic	Non-Toxic			
Predicted Endpoint	Toxic	Non-Toxic	Non-Toxic			
Distance	0.656	0.659	0.665			
Reference	Kiso to Rinsho	Oyo Yakuri 20(6):1219-	Oyo Yakuri 22(6):777-786;			

Model Applicability

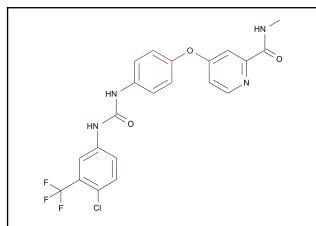
Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1236; 1980

1. OPS PC2 out of range. Value: 6.7281. Training min, max, SD, explained variance: -4.772, 6.5229, 2.509, 0.0922.

16(13):7179-7195; 1982

2. OPS PC14 out of range. Value: 4.4177. Training min, max, SD, explained variance: -3.5766, 3.955, 1.214, 0.0216.


Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score Toxic in training set SCFP_6 282594097 0.441 3 out of 3

SCFP_6	1257084377	[*]NC(=0)[c](:[*]):[*	0.362	14 out of 18
SCFP_6	795925860	[*][c]1:[cH]:[cH]:[c] (C):[cH]:[cH]:1	0.271	1 out of 1
	Top Feat	ures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set
SCFP_6	-1380909229	[*]N([*])[c]1:[cH]:[cH]::1	-0.449	6 out of 19
SCFP_6	-704135030	[*]C(=[*])C1=N[*][*]S	-0.422	0 out of 1
SCFP_6	1334669481	[*]N([*])[c](:[cH]:[*]):[cH]:[*]	-0.355	10 out of 28

0.644

Toxicol Appl Pharmacol

37(2):331-8; 1976

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4
Donors: 3

Model Prediction

Prediction: Toxic
Probability: 0.592
Enrichment: 1.13
Bayesian Score: 1.15
Mahalanobis Distance: 12.6

Mahalanobis Distance p-value: 2.07e-006

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Chenodiol	Amsacrine	Ochratoxin a			
OH OH		OH OH HOW CI			
Toxic	Toxic	Toxic			
Toxic	Toxic	Toxic			
	Chenodiol OH OH OH OH Toxic	Chenodiol Amsacrine Toxic Toxic			

Model Applicability

Distance

Reference

Christian Cimilar Campainda

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

0.637

Fundam Appl Toxicol 7(2):214-20; 1986

1. All properties and OPS components are within expected ranges.

Arch Int Pharm 246:149-

0.631

158: 1980

Feature Co	Feature Contribution						
	Top fea	atures for positive o	ontribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set			
SCFP_6	1559190850	[*]Č([*])([*])([]1:[c H]:[*]:[cH]:[cH]:[c] :1Cl	0.441	3 out of 3			

SCFP_6	-488587948	[*]:[e](q*))O[c]1:[c H]:[cH]:[*]:[cH]:[cH	0.381	2 out of 2
SCFP_6	-975241316	[7][c]1:[cH]:[c] (O[c](:[cH]:[*]):[cH]:[*]):[cH]:1	0.381	2 out of 2
	Top Feat	ures for negative of	contribution	1
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set
SCFP_6	-1794974220	[*]C([*])([*])F	-0.55	2 out of 8
SCFP_6	-937094999	[*][c]1:[*]:[c]([*]): n:[cH]:[cH]:1	-0.358	3 out of 9
SCFP_6	-496201075	[*]:[cH]:n:[*]	-0.289	8 out of 21

TOPKAT_Mouse_Female_FDA_None_vs_Carcinogen

 $C_{21}H_{21}N_5O_3S$

Molecular Weight: 423.48813

ALogP: 3.064
Rotatable Bonds: 6

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.225
Enrichment: 0.701
Bayesian Score: -2.52
Mahalanobis Distance: 11.7

Mahalanobis Distance p-value: 0.0223

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Nisoldipine	Isradipine	Moricizine
Structure	H N O	N NH	N N N N N N N N N N N N N N N N N N N
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Distance	0.605	0.608	0.624
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. OPS PC4 out of range. Value: 4.791. Training min, max, SD, explained variance: -4.7116, 4.7287, 2.103, 0.0450.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 6. Unknown ECFP 2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]

Feature Contribution Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score Carcinogen in training set

ECFP_6	-1087070950	OF S N N N N N N N N N N N N N N N N N N	0.724	10 out of 14
ECFP_6	-847011520	[*][c]1:[cH]:[cH]:[cH]: (NC(=0)C):[cH]:[cH]:	0.617	2 out of 2
ECFP_6	738938915	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	0.617	2 out of 2

Top Features for negative contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_6	-1271104377	CO[c]1:[cH]:[cH]:[r]: [cH]:[cH]:1	-0.805	0 out of 4
ECFP_6	-175021654	[*]N([*])[c](:[cH]:[*]	-0.805	0 out of 4

ECFP_6	693720869	·	-0.805	0 out of 4
		O S N		
		> ≥23		
		[*][c]1:[cH]:[cH]:[c] (OC):[cH]:[cH]:1		
		(00).[61].[61]. 1		

 $C_{26}H_{23}N_5O_3S$

Molecular Weight: 485.55751

ALogP: 4.728 Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.206 Enrichment: 0.641 Bayesian Score: -5.52 Mahalanobis Distance: 12.8

Mahalanobis Distance p-value: 0.00101

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Fluticasone	Moricizine	Mycophenolate		
Structure	HO state of the st	N N N N N N N N N N N N N N N N N N N	HO		
Actual Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen		
Predicted Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen		
Distance	0.672	0.696	0.721		
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 6. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]

Top features for positive contribution							
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set			

ECFP_6	-1087070950	[*]N=[*]	0.724	10 out of 14
ECFP_6	738938915	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	0.617	2 out of 2
ECFP_6	-223149939	[*]NC(=0)[c]1:[cH]:[c H]:[*]:[cH]:[cH]:1	0.442	2 out of 3

Top Features for negative contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
ECFP_6	-1271104377	CO[c]1:[cH]:[cH]:[1]: [cH]:[cH]:1	-0.805	0 out of 4	
ECFP_6	-175021654	[*]N([*])[c](:[cH]:[*]	-0.805	0 out of 4	

out of 4

Non-Carcinogen

Non-Carcinogen

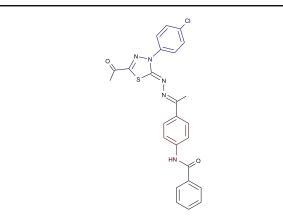
Res.) Sept. 1997

US FDA (Centre for Drug

Eval.& Res./Off. Testing &

0.692

Carcinogen


Carcinogen

Res.) Sept. 1997

US FDA (Centre for Drug

Eval.& Res./Off. Testing &

0.698

C₂₅H₂₀CIN₅O₂S

Molecular Weight: 489.97659

ALogP: 5.409 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.21 Enrichment: 0.655 Bayesian Score: -4.37 Mahalanobis Distance: 14.6

Mahalanobis Distance p-value: 1.1e-006

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Fluticasone	Emetine	Moricizine
Structure	HO to the total of	o share the shar	N NH NH

Model Applicability

Actual Endpoint

Distance

Reference

Predicted Endpoint

Structural Similar Compounds

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

US FDA (Centre for Drug

Eval.& Res./Off. Testing &

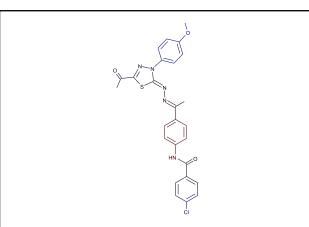
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]

Non-Carcinogen

Non-Carcinogen

Res.) Sept. 1997

0.632


- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 6. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]

Top features for positive contribution							
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set			

ECFP_6	-1087070950	° NN	0.724	10 out of 14
ECFP_6	738938915	[*]C(=[*])N[c]1:[cH]: [cH]:[cH]:[cH]:1	0.617	2 out of 2
ECFP_6	-223149939	[*]NC(=0)[c]1:[cH]:[c H]:[*]:[cH]:[cH]:1	0.442	2 out of 3

Top Features for negative contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
ECFP_6	-175021654	[*]N([*])[c](:[cH];[*]	-0.805	0 out of 4	
ECFP_6	129482634	[*]C(=[*])C(=O)C	-0.657	0 out of 3	

ECFP_6	912478223	O_NN CI	-0.638	1 out of 9
		S N		
		ŽĘ O		
		[*]S[*]		

 $C_{26}H_{22}CIN_5O_3S$

Molecular Weight: 520.00258

ALogP: 5.392 Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.205
Enrichment: 0.639
Bayesian Score: -6.56
Mahalanobis Distance: 14.1

Mahalanobis Distance p-value: 9.92e-006

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Fluticasone	Reserpine	Emetine		
Structure	HO state of the st	O To Low O T			
Actual Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen		
Predicted Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen		
Distance	0.697	0.717	0.730		
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. OPS PC4 out of range. Value: 5.0431. Training min, max, SD, explained variance: -4.7116, 4.7287, 2.103, 0.0450.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]\N1[*]
- 6. Unknown ECFP 2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]

Feature Contribution Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score Carcinogen in training set

ECFP_6	-1087070950	[*]N=[*]	0.724	10 out of 14
ECFP_6	738938915	[*]C(=[*])N[c]1:[cH]: [cH]:[cH]:[cH]:1	0.617	2 out of 2
ECFP_6	-223149939	[*]NC(=0)[c]1:[cH]:[c H]:[*]:[cH]:1	0.442	2 out of 3

Top Features for negative contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
ECFP_6	693720869	[*][c]1:[cH]:[cH]?[c] (OC):[cH]:[cH]:1	-0.805	0 out of 4	
ECFP_6	-175021654	[*]N([*])[c](:[cH]:[*]	-0.805	0 out of 4	

ECFP_6	-1271104377	S Ö	-0.805	0 out of 4
		O-NN S N		
		\$		
		, , ,		
		CO[c]1:[cH]:[cH]:[*]:		
		[cH]:[cH]:1		

TOPKAT_Mouse_Female_FDA_None_vs_Carcinogen

 $|C_{25}H_{19}CI_2N_5O_2S|$

Molecular Weight: 524.42166

ALogP: 6.073 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.212
Enrichment: 0.662
Bayesian Score: -3.98
Mahalanobis Distance: 14.2

Mahalanobis Distance p-value: 6.17e-006

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

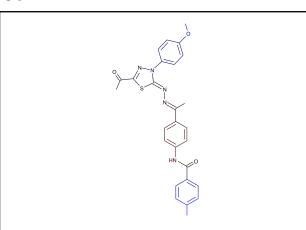
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Fluticasone	Emetine	Ketoconazole		
Structure	HO to the total of				
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen		
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen		
Distance	0.686	0.714	0.757		
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.


- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 6. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set

ECFP_6	-1087070950	[*]N=[*]	0.724	10 out of 14
ECFP_6	738938915	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:1	0.617	2 out of 2
ECFP_6	-223149939	[*]NC(=0)[c]1:[cH]:[c H]:[*]:[cH]:[a	0.442	2 out of 3

Top Features for negative contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
ECFP_6	-175021654	[*]N([*])[c](:[cH]:[*]):[cH]:[*]	-0.805	0 out of 4	
ECFP_6	129482634	[*]C(=[*])C(=O)C	-0.657	0 out of 3	

ECFP_6	912478223	€ NN CCI	-0.638	1 out of 9
		Fs ►s		
		N N N N N N N N N N N N N N N N N N N		
		[*]S[*]		

 $|C_{27}H_{25}N_5O_3S|$

Molecular Weight: 499.58409

ALogP: 5.214 Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.224 Enrichment: 0.698 Bayesian Score: -10

Mahalanobis Distance: 12.6

Mahalanobis Distance p-value: 0.00212

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Fluticasone	Emetine	Bitolterol		
Structure	HO starts to the start of the s		H N OH		
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen		
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen		
Distance	0.686	0.720	0.737		
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing &	US FDA (Centre for Drug Eval.& Res./Off. Testing &	US FDA (Centre for Drug Eval.& Res./Off. Testing &		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Res.) Sept. 1997

Res.) Sept. 1997

- 1. OPS PC4 out of range. Value: 5.1129. Training min, max, SD, explained variance: -4.7116, 4.7287, 2.103, 0.0450.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]

Res.) Sept. 1997

- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]\N1[*]
- 6. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]

Feature Contribution						
Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set		
				•		

ECFP_6	-1087070950	[*]N=[*]	0.724	10 out of 14
ECFP_6	738938915	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	0.617	2 out of 2
ECFP_6	-223149939	[*]NC(=0)[c]1:[cH]:[c H]:[*]:[cH]:[d	0.442	2 out of 3

Top Features for negative contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
ECFP_6	-179515162	[*]:[cH]:[c](C):[cH]: [*]	-1.41	0 out of 10	
ECFP_6	-210573707	[*][c]1:[*]:[cH]:[c](C):[cH]:[cH]:1	-1.25	0 out of 8	

ECFP_6	-533780882	Δ°	-1.05	0 out of 6
		S S S S S S S S S S S S S S S S S S S		
) 2° 10° 10° 10° 10° 10° 10° 10° 10° 10° 10		
		C[c]1:[cH]:[cH]:[*]:[cH]:[cH]:1		

TOPKAT_Mouse_Female_FDA_None_vs_Carcinogen

C₂₆H₂₂CIN₅O₂S

Molecular Weight: 504.00318

ALogP: 5.895 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.216
Enrichment: 0.674
Bayesian Score: -9.2
Mahalanobis Distance: 14.2

Mahalanobis Distance p-value: 7.52e-006

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

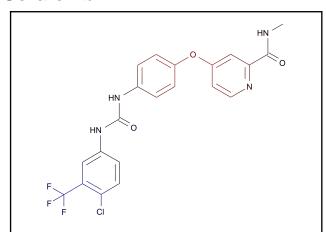
Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds						
Name	Fluticasone	Emetine	Bitolterol			
Structure	HO to the total of	THE	THE SHAPE OF THE S			
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen			
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen			
Distance	0.668	0.699	0.745			
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997			

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]\N1[*]
- 6. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]


Feature Contribution

Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score Carcinogen in training set

ECFP_6	-1087070950	[*]N=[*]	0.724	10 out of 14
ECFP_6	738938915	[*]C(=[*])N[o]1:[oH]: [cH]:[*]:[cH]:[cH]:1	0.617	2 out of 2
ECFP_6	-223149939	[*]NC(=0)[c]1:[cH]:[c H]:[']:[cH]:[cH]:1	0.442	2 out of 3

Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_6	-179515162	[*]:[cH]:[c](C):[cH]: [*]	-1.41	0 out of 10
ECFP_6	-210573707	[*][c]1:[*]:[cH]:[c](C):[cH]:[cH]:1	-1.25	0 out of 8

ECFP_6	-1926229349	Q_NN CI	-1.05	0 out of 6
		T _s z _N		
		, so		
		[*][c]1:[cH]:[cH]:[c] (C):[cH]:[cH]:1		

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4
Donors: 3

Model Prediction

Prediction: Carcinogen

Probability: 0.257 Enrichment: 0.801 Bayesian Score: -0.321 Mahalanobis Distance: 14.9

Mahalanobis Distance p-value: 4.21e-007

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	Glimepride	Glyburide	Fluvastatin	
Structure	NH NH NH	HN TO HIN	HO HO	
Actual Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen	
Predicted Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen	
Distance	0.605	0.615	0.625	
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing &	US FDA (Centre for Drug Eval.& Res./Off. Testing &	US FDA (Centre for Drug Eval.& Res./Off. Testing &	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Res.) Sept. 1997

Res.) Sept. 1997

Res.) Sept. 1997

1. OPS PC20 out of range. Value: -3.3309. Training min, max, SD, explained variance: -3.1862, 4.4571, 1.28, 0.0167.

Feature Contribution					
	Top fe	atures for positive o	contribution		
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
ECFP_6	738938915		0.617	2 out of 2	

ECFP_6	-834094296	F _F C _I [*]C(=[*])NC	0.442	2 out of 3
		[*]:[ḗH)Ḥc](O[c](:[c H]:[*]):[cH]:[*]):[c H]:[*]		
	-	tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_6	1335691903	[*][c](:[*]):[c](CI): [cH]:[*]	-0.669	3 out of 22
ECFP_6	-1952889961	[*]:[c](:[*])C(F)(F)F	-0.657	0 out of 3
ECFP_6	1336678434	[*][c](:[*]))([*])[*]	-0.657	0 out of 3

HN O N

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4
Donors: 3

Model Prediction

Prediction: Single-Carcinogen

Probability: 0.283
Enrichment: 0.691
Bayesian Score: -3.89
Mahalanobis Distance: 11.1

Mahalanobis Distance p-value: 0.00221

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	Glimepride	Glimepride Labetalol		
Structure	NH NH NH	HO 47 NH 2	N H S O	
Actual Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen	
Predicted Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen	
Distance	0.599	0.808	0.820	
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 1336678434: [*][c](:[*]):[c](C([*])([*])[*]):c:[*]
- 3. Unknown ECFP_2 feature: -1952889961: [*]:[c](:[*])C(F)(F)F

Feature Contribution				
Top fea	atures for positive o	ontribution		
Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set	
-834094296	[*]:[cH]?[c](O[c](:[c H]:[*]):[cH]:[*]):[c H]:[*]	0.351	1 out of 1	
	Top fea	Top features for positive of Bit/Smiles Feature Structure -834094296 [*]:[eH]:[c]:[o](O[c](:[c]H]:[*]):[c]	Top features for positive contribution Bit/Smiles Feature Structure Score -834094296 0.351	

ECFP_4	1407472008	[*]:[e](q*))O[c]1:[c H]:[cH]:[*]:[cH]:[cH	0.351	1 out of 1
ECFP_4	143734695	[*][6]14**]:[cH]:[cH] :[c](O[c](:[*]):[*]) :[cH]:1	0.351	1 out of 1
	Top Fea	tures for negative c	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
ECFP_4	888054369	[*]N[c]1:[cH]:[*]:[c] ([*]):[cH]:[cH]:1	-0.8	0 out of 3
ECFP_4	1335691903	[*][c](:[*]):[c](CI): [cH]:[*]	-0.8	0 out of 3
ECFP_4	1338334141	F CI [*]C(=[*])NC	-0.597	0 out of 2

TOPKAT_Mouse_Male_FDA_None_vs_Carcinogen

 $C_{21}H_{21}N_5O_3S$

Molecular Weight: 423.48813

ALogP: 3.064 Rotatable Bonds: 6

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Carcinogen

Probability: 0.408
Enrichment: 1.39
Bayesian Score: 3.23
Mahalanobis Distance: 14.3

Mahalanobis Distance p-value: 1.62e-006

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Nisoldipine Isradipine		Podofilox		
Structure	H N O O O O O O O O O O O O O O O O O O	N NH	HO IN THE O		
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen		
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen		
Distance	0.575	0.587	0.593		
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution				
	Top fea	atures for positive o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
FCFP_6	-1944671191	[*]:[c](:[*])NC(=O)C	0.891	4 out of 4

FCFP_6	1907952166	CC(=0)N[c]1:[cH]:[cH]: :[1]:[cH]:[cH]:	0.805	3 out of 3
FCFP_6	-451043714	[*][c]1:[cH]:[cH]:[cH]: (NC(=O)C):[cH]:[cH]:	0.676	2 out of 2
		tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
FCFP_6	-9847677	[*][c]1:[cH]:[cH]:[c] (OC):[cH]:[cH]:1	-0.719	0 out of 4
FCFP_6	356782498	[*]N([*])[c]1:[cH]t[o H]:[c](OC):[cH]:[cH]	-0.582	0 out of 3
FCFP_6	-1549192822	[*]N=C(/C))[c](:[*]) HO	-0.489	3 out of 21

 $C_{26}H_{23}N_5O_3S$

Molecular Weight: 485.55751

ALogP: 4.728 Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Carcinogen

Probability: 0.283
Enrichment: 0.963
Bayesian Score: -0.858
Mahalanobis Distance: 16.9

Mahalanobis Distance p-value: 9.73e-012

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	Fluticasone	Moricizine	Mycophenolate	
Structure	HO starts to the start of the s	N N N N N N N N N N N N N N N N N N N	HO	
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen	
Predicted Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen	
Distance	0.661	0.684	0.704	
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing &	US FDA (Centre for Drug Eval.& Res./Off. Testing &	US FDA (Centre for Drug Eval.& Res./Off. Testing &	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Res.) Sept. 1997

Res.) Sept. 1997

1. All properties and OPS components are within expected ranges.

Feature Co	Feature Contribution					
	Top fe	atures for positive o	ontribution			
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set		
FCFP_6	-581879738	[*]NC(=0)[c]1:[cH]:[c H]:[']:[cH]:1	0.77	4 out of 5		

FCFP_6	-1838187238	[*]C(=[*])N[c]1:[cH]: [cH]:[cH]:[cH]:1	0.565	4 out of 7
FCFP_6	675799546	[*]=C1[*][*]=NN1[6](: [7]):[*]	0.46	1 out of 1
	Top Fea	tures for negative		
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
FCFP_6	-9847677	[*][c]1:[cH]:[cH]:[c] (OC):[cH]:[cH]:1	-0.719	0 out of 4
FCFP_6	356782498	[*]N([*])[c]1:[cH] H]:[c](OC):[cH]:[cH]	-0.582	0 out of 3
FCFP_6	-1549192822	[1]/N=C(/C)/[G](:[1) .:[1]	-0.489	3 out of 21

C₂₅H₂₀CIN₅O₂S

Molecular Weight: 489.97659

ALogP: 5.409 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Carcinogen

Probability: 0.301 Enrichment: 1.02

Bayesian Score: -0.185 Mahalanobis Distance: 17.5

Mahalanobis Distance p-value: 4.16e-013

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

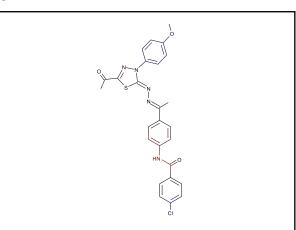
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Fluticasone	Emetine	Moricizine	
Structure	HO to the total of	O state of the sta	N N N N N N N N N N N N N N N N N N N	
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen	
Predicted Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen	
Distance	0.615	0.672	0.684	
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing &	US FDA (Centre for Drug Eval.& Res./Off. Testing &	US FDA (Centre for Drug Eval.& Res./Off. Testing &	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.


Res.) Sept. 1997

Res.) Sept. 1997

1. All properties and OPS components are within expected ranges.

Feature Co	Feature Contribution				
	Top fe	atures for positive o	ontribution		
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
FCFP_6	-581879738	[*]NC(=0)[c]1:[cH]:[c H]:[*]:[cH]:[cH]:1	0.77	4 out of 5	

FCFP_6	-1838187238	[*]C(=[*])N[c]1:[cH]: [cH]:[cH]:[cH]:1	0.565	4 out of 7
FCFP_6	675799546	[*]=C1[*][*]=NN1[6](: [*]):[*]	0.46	1 out of 1
		tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
FCFP_6	-1549192822	[*] N=C(/C) (o)(:[*])	-0.489	3 out of 21
FCFP_6	551850122	[*][c]1:[*]:[cH]:[6](CI):[cH]:[cH]:1	-0.433	8 out of 49
FCFP_6	71476542	[*]:[c](:[*])CI	-0.406	10 out of 59

C₂₆H₂₂CIN₅O₃S

Molecular Weight: 520.00258

ALogP: 5.392 Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Carcinogen

Probability: 0.262
Enrichment: 0.892
Bayesian Score: -1.73
Mahalanobis Distance: 16.7

Mahalanobis Distance p-value: 3e-011

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Fluticasone	Emetine	Reserpine
Structure	HO to the total control of the	O stands and the stands are stands as the stan	

Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Predicted Endpoint	Carcinogen	Non-Carcinogen	Carcinogen
Distance	0.684	0.708	0.709
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Structural Similar Compounds

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Co	Feature Contribution				
	Top fea	atures for positive o	ontribution		
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
FCFP_6	-581879738	NN NN NN NN NN NN NN N	0.77	4 out of 5	

FCFP_6	-1838187238	[*]C(=[*])N[c]1:[cH]: [cH]:[cH]:[cH]:1	0.565	4 out of 7
FCFP_6	-319371573	[*]=C1[*][*]=NN1[c] ₂ ; [cH]:[cH]:[1]:[cH]:[cH]:2	0.46	1 out of 1
		tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
FCFP_6	-9847677	[*][c]1:[cH]:[cH]![c] (OC):[cH]:[cH]:1	-0.719	0 out of 4
FCFP_6	356782498	[*]N([*])[c]1:[cH][c H]:[c](OC):[cH]:[cH]	-0.582	0 out of 3
FCFP_6	-1549192822	[*]\N=C(\/C)\(c)(c)(:*))	-0.489	3 out of 21

TOPKAT_Mouse_Male_FDA_None_vs_Carcinogen

C₂₅H₁₉Cl₂N₅O₂S

Molecular Weight: 524.42166

ALogP: 6.073 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Carcinogen

Probability: 0.325
Enrichment: 1.11
Bayesian Score: 0.689
Mahalanobis Distance: 17.6

Mahalanobis Distance p-value: 3.41e-013

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

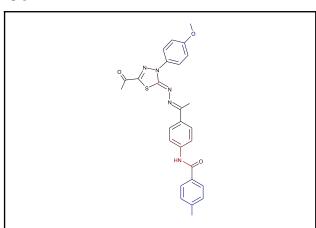
Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Fluticasone	Emetine	Ketoconazole
Structure	HO and the second secon		
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen
Predicted Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen
Distance	0.669	0.695	0.737
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution				
	Top fea	atures for positive o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
FCFP_6	-581879738	[*]NC(=0)[c]1:[cH]:[c H]:[*]:[cH]:[cH]:1	0.77	4 out of 5


FCFP_6	-1838187238	[*]C(=[*])N[c]1:[cH]: [cH]:[cH]:[cH]:1	0.565	4 out of 7
FCFP_6	675799546	[*]=C1[*][*]=NN1[t](: [*]):[*]	0.46	1 out of 1
	Top Feat	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
FCFP_6	-1549192822	[*] N=C(/C) (c](:[*]) [*]	-0.489	3 out of 21
FCFP_6	551850122	[*][c]1:[*]:[cH]:[cH]:1	-0.433	8 out of 49
FCFP_6	71476542	[*]:[c](:[*])Cl	-0.406	10 out of 59

Eval.& Res./Off. Testing &

Res.) Sept. 1997

Eval.& Res./Off. Testing &

Res.) Sept. 1997

 $C_{27}H_{25}N_5O_3S$

Molecular Weight: 499.58409

ALogP: 5.214 Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.24 Enrichment: 0.814 Bayesian Score: -2.78 Mahalanobis Distance: 17.2

Mahalanobis Distance p-value: 2.63e-012

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Fluticasone	Emetine	Bitolterol		
Structure	HO sa F		H OH		
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen		
Predicted Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen		
Distance	0.676	0.698	0.724		
Reference	US FDA (Centre for Drug	US FDA (Centre for Drug	US FDA (Centre for Drug		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Eval.& Res./Off. Testing &

Feature Co	ntribution			
	Top fea	atures for positive o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
FCFP_6	-581879738	[*]NC(=0)[c]1:[cH]:[c H]:[*]:[cH]:[cH]:1	0.77	4 out of 5

FCFP_6	-1838187238	[*]C(=[*])N[c]1:[cH]: [cH]:[cH]:[cH]:1	0.565	4 out of 7
FCFP_6	1790572653	[*]NC(=0)[c]1:[cH]:[c H]:[c](C):[cH]:[cH]:	0.46	1 out of 1
		tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
FCFP_6	-1773728142	C[c]1:[cH]:[cH]:[cH]:[cH]:1	-1.29	0 out of 10
FCFP_6	632767364	[*]C(=[*])[c]1:[cH];[cH]::1	-1.04	0 out of 7
FCFP_6	2109043264	[*][c]1:[cH]:[cH]:[c] (C):[cH]:[cH]:1	-0.947	0 out of 6

C₂₆H₂₂CIN₅O₂S

Molecular Weight: 504.00318

ALogP: 5.895 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.259 Enrichment: 0.879 Bayesian Score: -1.9

Mahalanobis Distance: 18.6

Mahalanobis Distance p-value: 1.44e-015

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

	•		
Name	Fluticasone	Emetine	Bitolterol
Structure	HO to the total of		
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen
Predicted Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen
Distance	0.651	0.679	0.735
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature (Contribution
-----------	--------------

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
FCFP_6	-581879738	[*]NC(=0)[c]1:[cH]:[cH]:1	0.77	4 out of 5	

FCFP_6	-1838187238	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:1	0.565	4 out of 7
FCFP_6	1790572653	[*]NC(=0)[c]1:[cH]:[c H]:[c](G):[cH]:[cH]:	0.46	1 out of 1
		tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
FCFP_6	-1773728142	C[c]1:[cH]:[cH]:[*]:[cH]:[cH]:1	-1.29	0 out of 10
FCFP_6	632767364	[*]C(=[*])[c]1:[cH]:[cH]::1	-1.04	0 out of 7
FCFP_6	2109043264	[*][c]1:[cH]:[cH]:[c] (C):[cH]:[cH]:1	-0.947	0 out of 6

HN O N

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4
Donors: 3

Model Prediction

Prediction: Carcinogen

Probability: 0.444
Enrichment: 1.51
Bayesian Score: 4.21
Mahalanobis Distance: 20.3

Mahalanobis Distance p-value: 1.28e-019

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Glyburide	Glimepride	Fluvastatin		
Structure	HN IO HN IO	NH NH	HO HO		
Actual Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen		
Predicted Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen		
Distance	0.594	0.599	0.603		
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution						
	Top fe	atures for positive c	ontribution			
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set		
FCFP_6	71953198	[*]C([*])([*])F	0.612	12 out of 23		

FCFP_6	-1838187238	[*][cH]:[cH]:[cH]:	0.565	4 out of 7
FCFP_6	140656626	[*]\(\int_{[cH]:1}^{\int_{[cH]:n:}}\) [c](:[cH]:1)C(=[*])[*]	0.46	1 out of 1
	Top Feat	ures for negative of	contribution	1
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
FCFP_6	2104062943	[*]Ĉ([*])([*])[c]1:[c H]:[*]:[cH]:[cH]:[c] :1Cl	-1.01	1 out of 17
FCFP_6	551850122	[*][c]1:[*]:[cH]:[c](CI):[cH]:[cH]:1	-0.433	8 out of 49
FCFP_6	71476542	[*]:[c](:[*])Cl	-0.406	10 out of 59

Res.) Sept. 1997

 $|C_{21}H_{21}N_5O_3S|$

Molecular Weight: 423.48813

ALogP: 3.064 Rotatable Bonds: 6

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Single-Carcinogen

Probability: 0.148
Enrichment: 0.493
Bayesian Score: -13.7
Mahalanobis Distance: 11.3

Mahalanobis Distance p-value: 0.00212

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Bicalutamide	Griseofulvin	Lovastatin		
Structure	HN AND SEE SEE SEE SEE SEE SEE SEE SEE SEE SE		OH OH		
Actual Endpoint	Single-Carcinogen	Single-Carcinogen	Multiple-Carcinogen		
Predicted Endpoint	Single-Carcinogen	Single-Carcinogen	Multiple-Carcinogen		
Distance	0.807	0.828	0.832		
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing &	US FDA (Centre for Drug Eval.& Res./Off. Testing &	US FDA (Centre for Drug Eval.& Res./Off. Testing &		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Res.) Sept. 1997

Res.) Sept. 1997

1. OPS PC15 out of range. Value: -2.6395. Training min, max, SD, explained variance: -2.4461, 3.3002, 1.005, 0.0188.

Feature Co	ntribution			
	Top fea	atures for positive o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
FCFP_12	565998553	\(\begin{align*} \	0.194	6 out of 14

FCFP_12	565968762	[*]C(=[*])C(=O)C	0.168	3 out of 7
FCFP_12	-1977641857	°, NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	0.105	2 out of 5
		es for negative c		
Fingerprint		Feature Structure		Multiple- Carcinogen in training set
FCFP_12	1294255210	 * C(=[*])N[c](:[*]): *	-1.63	0 out of 12
FCFP_12	1175665944	[*]:[cH]:[c](NC(=O)C) :[cH]:[*]	-1.22	0 out of 7
FCFP_12	590925877	[*]N[c](:[cH]:[*]) ⁹]c H]:[*]	-0.998	1 out of 13

Multiple-Carcinogen

Multiple-Carcinogen

Res.) Sept. 1997

US FDA (Centre for Drug

Eval.& Res./Off. Testing &

0.826

Multiple-Carcinogen

Multiple-Carcinogen

Res.) Sept. 1997

US FDA (Centre for Drug

Eval.& Res./Off. Testing &

0.834

 $C_{26}H_{23}N_5O_3S$

Molecular Weight: 485.55751

ALogP: 4.728 Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Single-Carcinogen

Probability: 0.146
Enrichment: 0.484
Bayesian Score: -9.06
Mahalanobis Distance: 12.6

Mahalanobis Distance p-value: 0.000192

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Reserpine	Simvastatin	Lovastatin
Structure	O to the state of		man of o

Model Applicability

Actual Endpoint

Distance

Reference

Predicted Endpoint

Structural Similar Compounds

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Multiple-Carcinogen

Multiple-Carcinogen

Res.) Sept. 1997

US FDA (Centre for Drug

Eval.& Res./Off. Testing &

0.799

Feature Co	ntribution			
	Top fea	atures for positive o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
FCFP_12	-581879738	[*]NC(=0)[c]1:[cH]:[c H]:[']:[cH]:[cH]:1	0.239	2 out of 4

FCFP_12	565998553	[*]C(=[*])C1=N[*][*]S	0.194	6 out of 14
FCFP_12	565968762	[*]C(=[*])C(=O)C	0.168	3 out of 7
	Top Fea	tures for negative	contribution	<u> </u>
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
FCFP_12	1294255210	[*]C(=[*])N[c](:[*]): [*]	-1.63	0 out of 12
FCFP_12	590925877	[*]N[c](:[cH]:[*]):[c H]:[*]	-0.998	1 out of 13
FCFP_12	-1838187238	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	-0.859	0 out of 4

Eval.& Res./Off. Testing &

Res.) Sept. 1997

Eval.& Res./Off. Testing &

Res.) Sept. 1997

C₂₅H₂₀CIN₅O₂S

Molecular Weight: 489.97659

ALogP: 5.409 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Single-Carcinogen

Probability: 0.156
Enrichment: 0.519
Bayesian Score: -12.8
Mahalanobis Distance: 13.1

Mahalanobis Distance p-value: 7.77e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

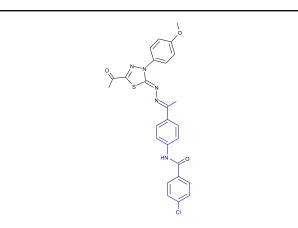
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Simvastatin	Lovastatin	Bicalutamide		
Structure	THE OH	OH OH	HO H		
Actual Endpoint	Multiple-Carcinogen	Multiple-Carcinogen	Single-Carcinogen		
Predicted Endpoint	Multiple-Carcinogen	Multiple-Carcinogen	Single-Carcinogen		
Distance	0.754	0.773	0.807		
Reference	US FDA (Centre for Drug	US FDA (Centre for Drug	US FDA (Centre for Drug		

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC2 out of range. Value: 4.6015. Training min, max, SD, explained variance: -5.2888, 4.2744, 2.566, 0.1229.

Eval.& Res./Off. Testing &

Feature Co	ntribution			
	Top fea	atures for positive o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
FCFP_12	-581879738	[*]NC(=0)[c]1:[cH]:[c H]:[*]:[cH]:[cH]:1	0.239	2 out of 4

FCFP_12	565998553	[*]C(=[*])C1=N[*][*]S	0.194	6 out of 14
FCFP_12	567484887	[*]N([*])[c]1:[cH]. H]:[c](Cl):[cH]:[cH]	0.174	1 out of 2
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
FCFP_12	1294255210	[*]C(=[*])N[c](:[*]):	-1.63	0 out of 12
FCFP_12	590925877	[*]N[c](:[cH]:[*]):[c H]:[*]	-0.998	1 out of 13
FCFP_12	-1838187238	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	-0.859	0 out of 4

C₂₆H₂₂CIN₅O₃S

Molecular Weight: 520.00258

ALogP: 5.392 Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Single-Carcinogen

Probability: 0.156
Enrichment: 0.518
Bayesian Score: -12.9
Mahalanobis Distance: 13.2

Mahalanobis Distance p-value: 6.49e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Otractara Offinar Compounds				
Name	Reserpine	Simvastatin	Lovastatin	
Structure	O to the state of	THO OH	O OH	
Actual Endpoint	Multiple-Carcinogen	Multiple-Carcinogen	Multiple-Carcinogen	

Multiple-Carcinogen

Res.) Sept. 1997

US FDA (Centre for Drug

Eval.& Res./Off. Testing &

0.752

Model Applicability

Predicted Endpoint

Distance

Reference

Structural Similar Compounds

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Multiple-Carcinogen

Res.) Sept. 1997

US FDA (Centre for Drug

Eval.& Res./Off. Testing &

0.855

Multiple-Carcinogen

Res.) Sept. 1997

US FDA (Centre for Drug

Eval.& Res./Off. Testing &

0.872

1. OPS PC5 out of range. Value: 3.8956. Training min, max, SD, explained variance: -3.5268, 3.8048, 1.733, 0.0560.

Feature Co	ntribution			
	Top fea	atures for positive o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
FCFP_12	-581879738	[*]NC(=0)[c]1:[cH]:[c H]:(]*[cH]:[cH]:1	0.239	2 out of 4

FCFP_12	565998553	["]C(=["])C1=N["]["]S	0.194	6 out of 14
FCFP_12	-1549103449	[*]NC(=O)[c](:[*])?[*	0.168	3 out of 7
	Top Fea	tures for negative	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
FCFP_12	1294255210	[*]C(=[*])N[c](:[*])! [*]	-1.63	0 out of 12
FCFP_12	590925877	[*]N[c](:[cH]:[*]):[c H]:[*]	-0.998	1 out of 13
FCFP_12	-1508180856	[*][c]1:[cH]:[cH]:[cH]:1	-0.859	0 out of 4

C₂₅H₁₉Cl₂N₅O₂S

Molecular Weight: 524.42166

ALogP: 6.073 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Single-Carcinogen

Probability: 0.155
Enrichment: 0.514
Bayesian Score: -12.4
Mahalanobis Distance: 13.1

Mahalanobis Distance p-value: 8.92e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Simvastatin	Lovastatin	Reserpine	
Structure	THE SOLUTION OF THE SOLUTION O	o o o o o o o o o o o o o o o o o o o		
Actual Endpoint	Multiple-Carcinogen	Multiple-Carcinoger	n Multiple-Carcinogen	

Multiple-Carcinogen

Res.) Sept. 1997

US FDA (Centre for Drug

Eval.& Res./Off. Testing &

0.828

Multiple-Carcinogen

Res.) Sept. 1997

US FDA (Centre for Drug

Eval.& Res./Off. Testing &

0.851

Model Applicability

Predicted Endpoint

Distance

Reference

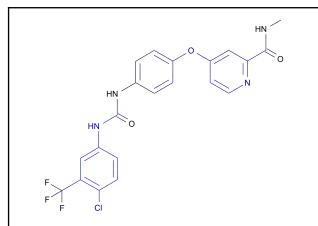
Structural Similar Compounds

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Multiple-Carcinogen

Res.) Sept. 1997


US FDA (Centre for Drug

Eval.& Res./Off. Testing &

0.802

Feature Contribution				
Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
FCFP_12	-581879738	NN N N N N N N N N	0.239	2 out of 4

FCFP_12	565998553	NN N N N N N N N N	0.194	6 out of 14		
FCFP_12	567484887	[*]N([*])[c]1:[cH]][cH] H]:[c](CI):[cH]:[cH]	0.174	1 out of 2		
Top Features for negative contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set		
FCFP_12	1294255210	[*]C(=[*])N[c](:[*]§]	-1.63	0 out of 12		
FCFP_12	590925877	[*]N[c](:[cH]:[*]):[c H]:[*]	-0.998	1 out of 13		
FCFP_12	-1838187238	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	-0.859	0 out of 4		

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4
Donors: 3

Model Prediction

Prediction: Single-Carcinogen

Probability: 0.139
Enrichment: 0.461
Bayesian Score: -14.7
Mahalanobis Distance: 21.3

Mahalanobis Distance p-value: 4.93e-011

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Glimepride	Glimepride Bicalutamide		
Structure	NH NH NH	HO H	Lansoprazole	
Actual Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen	
Predicted Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen	
Distance	0.626	0.700	0.866	
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Co	Feature Contribution				
	Top fea	atures for positive o	ontribution		
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set	
FCFP_12	1499521844	F F CI [*]NC(=0)N[*]	0.39	5 out of 9	

FCFP_12	-904785030	[*]:[c](:n:[*])C (=O)NC	0.174	1 out of 2
FCFP_12	-1549103449	FF CI [*]NC(=O)[c](:[*]):[*	0.168	3 out of 7
	Top Fea	tures for negative of	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
FCFP_12	1294255210	N	-1.63	0 out of 12
FCFP_12	590925877	[*]N[c](:[cH]:[*]):[c H]:[*]	-0.998	1 out of 13
FCFP_12	-1462709112	F _F C _I [*]C(=[*])[c]1:[cH]:[*]:[cH]:[cH]:n:1	-0.994	0 out of 5

TOPKAT_Ocular_Irritancy_Mild_vs_Moderate_Severe

 $C_{21}H_{21}N_5O_3S$

Molecular Weight: 423.48813

ALogP: 3.064 Rotatable Bonds: 6

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Mild Probability: 0.6 Enrichment: 0.871 Bayesian Score: -5.01 Mahalanobis Distance: 10.5

Mahalanobis Distance p-value: 0.0274

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly linaccurate.

Structural Similar Compounds					
Name	COLCHICINE	1;8;9- ANTHRACENETRIOL; TRIACETATE	1;4-PENTADIENE-3- ONE;1;5-BIS(4-(2;3- DIDEHYDROTRIAZIRIDINY L)PHENYL)-		
Structure	HN 124	no	N N N N N N N N N N N N N N N N N N N		
Actual Endpoint	Moderate_Severe	Moderate_Severe	Mild		
Predicted Endpoint	Moderate_Severe	Moderate_Severe	Mild		
Distance	0.622	0.783	0.801		
Reference	AJOPAA 31;837;48	BJOPAL 53;819;69	28ZPAK-;123;72		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution				
	Top fe	atures for positive of	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	346218766	CO[c]1:[cH]:[cH]:1	0.197	30 out of 37

FCFP_10	3		0.165	383 out of 491
		[*]N[*]		
	Top Fea	tures for negative	contribution	1
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	-1977641857	[*]:[cH]:[c](OC):[dH]:[*]	-0.78	4 out of 15
FCFP_10	-178394671	(*)C(=[*))(c)1:[cH]:[cH]:[c](NC(=0)C):[cH]:[cH]:1	-0.507	0 out of 1
FCFP_10	-790336137	[*]C(=[*])N[c]1:[dH]: [cH]:[c](:[cH]:[cH]: 1)C(=[*])[*]	-0.507	0 out of 1

TOPKAT_Ocular_Irritancy_Mild_vs_Moderate_Severe

 $C_{26}H_{23}N_5O_3S$

Molecular Weight: 485.55751

ALogP: 4.728 Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Mild
Probability: 0.0156
Enrichment: 0.0227
Bayesian Score: -13.9
Mahalanobis Distance: 10.9

Mahalanobis Distance p-value: 0.00761

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	COLCHICINE	ANTHRAQUINONE; 1;1'- IMINODI-	Benzoic acid; p-(N-butyl- 2-(butylamino)acetamido)- ; butyl ester;	
Structure	HN ₁ t ₂	H	H I I I I I I I I I I I I I I I I I I I	
Actual Endpoint	Moderate_Severe	Mild	Moderate_Severe	
Predicted Endpoint	Moderate_Severe	Mild	Moderate_Severe	
Distance	0.779	0.791	0.833	
Reference	AJOPAA 31;837;48	28ZPAK-;125;72	Arzneimittel-Forschung 8;609;58	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution				
	Top fe	atures for positive of	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	346218766	CO[c]1:[cH]:[cH]:1	0.197	30 out of 37

FOED 40	3		0.165	383 out of 491
FCFP_10	3	σ°	0.105	565 Out 01 49 I
		0_NN		
		N ₀		
		<u> </u>		
		[*]N[*]		
	Top Fe	atures for negative (contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	-581879738	_ 0	-1.29	0 out of 4
		€ NN CO		
		/ S N		
		Q _{NO}		
		- I		
		[*]NC(=O)[c]1:[cH]:[c H]:[*]:[cH]:[cH]:1		
FCFP_10	384221478		-1.29	0 out of 4
FOFF_IU	004221470	\mathbf{o}°	1.29	0 001 01 4
		9-NN		
		δ		
		, ho		
		[*]:[c](:[*])NC(=0)[c]1:[cH]:[cH]:[cH]:[c		
		H]:[cH]:1		
FCFP_10	-1925475824	io.	-1.29	0 out of 4
		Fs N		
		Q _{N o}		
		[*]:[cH]:[c](:[cH]		
])C(=O)N[c](:[*]):[*		

C₂₅H₂₀CIN₅O₂S

Molecular Weight: 489.97659

ALogP: 5.409 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Mild Probability: 0.0614 Enrichment: 0.0892 Bayesian Score: -11.7

Mahalanobis Distance: 11.2

Mahalanobis Distance p-value: 0.00264

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a

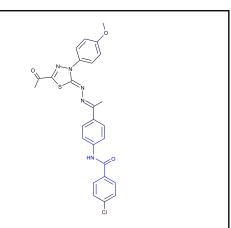
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

	<u> </u>		_
Name	ANTHRAQUINONE; 1;1'- IMINODI-	1-BENZOYLAMINO-4- METHOXY-5- CHLORANTHRAQUINONE	2-(1'-ANTHRAQUINONYL)- AMINOBENZANTHRONE
Structure	H H H H H H H H H H H H H H H H H H H	HN ALL COLOR OF THE COLOR OF TH	A NH
Actual Endpoint	Mild	Mild	Mild
Predicted Endpoint	Mild	Mild	Mild
Distance	0.697	0.762	0.807
Reference	28ZPAK-;125;72	28ZPAK-;90;72	28ZPAK-;126;72


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

	Top for	oturos for positivo s	ontribution			
Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score Moderate_Seven in training set						
FCFP_10	-1508180856	[*][c]1:[cH]:[cH]:[cH]:1	0.329	16 out of 17		

FCFP_10	-745491832	CI[c]1:[cH]:[cH]:1*]:	0.304	29 out of 32
FCFP_10	567484887	[*]N([*])[c]1:[cH] H]:[c](CI):[cH]:[cH]	0.273	9 out of 10
		tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	384221478	[*]:[c](:[*])NC(=O)[c]]1:[cH]:[cH]:[cH]:[c	-1.29	0 out of 4
FCFP_10	-581879738	[*]NC(=0)[c]1:[cH]:[c H]:[*]:[cH]:[cH]:1	-1.29	0 out of 4
FCFP_10	-1925475824	[*]:[cH]:[c](:[cH]U])C(=O)N[c](:[*]):[*	-1.29	0 out of 4

C₂₆H₂₂CIN₅O₃S

Molecular Weight: 520.00258

ALogP: 5.392 Rotatable Bonds: 7

Acceptors: 8 Donors: 1

Model Prediction

Prediction: Mild Probability: 0.169 Enrichment: 0.245 Bayesian Score: -9.72 Mahalanobis Distance: 11.6

Mahalanobis Distance p-value: 0.000456

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	ANTHRAQUINONE; 1;1'- IMINODI-	COLCHICINE	Benzoic acid; p-(N-butyl- 2-(butylamino)acetamido)- ; butyl ester;	
Structure	THIN THE	HN 711	H N N N N N N N N N N N N N N N N N N N	
Actual Endpoint	Mild	Moderate_Severe	Moderate_Severe	
Predicted Endpoint	Mild	Moderate_Severe	Moderate_Severe	
Distance	0.815	0.864	0.876	
Reference	28ZPAK-;125;72	AJOPAA 31;837;48	Arzneimittel-Forschung 8;609;58	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Co	Feature Contribution				
	Top fea	atures for positive o	ontribution		
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set	
FCFP_10	-149636017	[*]C(=[*])[c]1:[cH]:[cH]:[cH]:[c](CI):[cH]:[cH]	0.352	7 out of 7	

FCFP_10	-1508180856	[*][c]1:[cH]:[cH]:[cH]:1	0.329	16 out of 17
FCFP_10	-745491832	Cl[c]1:[cH]:[cH]:1*]: [cH]:[cH]:1	0.304	29 out of 32
		tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	1175232969	"]:[cH]:[c](NC(=0)[c Cl [:["]:["]):[cH]:["]	-1.29	0 out of 4
FCFP_10	-1925475824	[*]:[cH]:[c](:[cH];[*])[*]	-1.29	0 out of 4
FCFP_10	-581879738	[*]NC(=0)[c]1:[cH]:[c H]:[*]:[cH]:[cH]:1	-1.29	0 out of 4

TOPKAT_Ocular_Irritancy_Mild_vs_Moderate_Severe

 $C_{25}H_{19}CI_2N_5O_2S$

Molecular Weight: 524.42166

ALogP: 6.073 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Mild Probability: 0.297 Enrichment: 0.431 Bayesian Score: -8.23 Mahalanobis Distance: 11.4

Mahalanobis Distance p-value: 0.000955

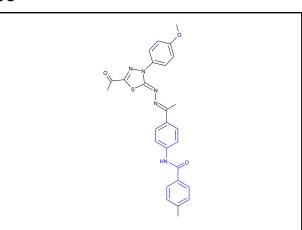
Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Similar Compounds				
Name	ANTHRAQUINONE; 1;1'- IMINODI-	2-(1'-ANTHRAQUINONYL)- AMINOBENZANTHRONE	1-BENZOYLAMINO-4- METHOXY-5- CHLORANTHRAQUINONE	
Structure	H H H H H H H H H H H H H H H H H H H	n _{NH}	HN PAN	
Actual Endpoint	Mild	Mild	Mild	
Predicted Endpoint	Mild	Mild	Mild	
Distance	0.745	0.813	0.838	
Reference	28ZPAK-;125;72	28ZPAK-;126;72	28ZPAK-;90;72	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Co	Feature Contribution				
	Top fea	atures for positive c	ontribution		
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set	
FCFP_10	-149636017	[*]C(=[*))[c]1:[cH];[cH];[cH];[cH];[cH];[cH];[cH];[cH];	0.352	7 out of 7	

FCFP_10	-1508180856	[*][c]1:[cH]:[cH]:[cH]:1	0.329	16 out of 17
FCFP_10	-745491832	CI[c]1:[cH]:[cH]:[*]: [cH]:[cH]:1	0.304	29 out of 32
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	384221478	[*]:[c](:[*])NC(=0)c]1:[cH]:[cH]:[cH]:[c H]:[cH]:1	-1.29	0 out of 4
FCFP_10	241406177	[']:[cH]:[c](NC(=0)[c Cl]1:[cH]:[cH]:[r]	-1.29	0 out of 4
FCFP_10	1175232969	["]:[eH]:[e](NC(=O)[e CI](:["]:[]):[eH]:[-1.29	0 out of 4

 $C_{27}H_{25}N_5O_3S$

Molecular Weight: 499.58409

ALogP: 5.214 Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Mild Probability: 0.0898

Enrichment: 0.13
Bayesian Score: -11

Mahalanobis Distance: 11

Mahalanobis Distance p-value: 0.00424

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	ANTHRAQUINONE; 1;1'- IMINODI-	COLCHICINE	Benzoic acid; p-(N-butyl- 2-(butylamino)acetamido)- ; butyl ester;	
Structure	H H H H H H H H H H H H H H H H H H H	HN n	THE STATE OF THE S	
Actual Endpoint	Mild	Moderate_Severe	Moderate_Severe	
Predicted Endpoint	Mild	Moderate_Severe	Moderate_Severe	
Distance	0.800	0.829	0.850	
Reference	28ZPAK-;125;72	AJOPAA 31;837;48	Arzneimittel-Forschung 8;609;58	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Co	Feature Contribution				
	Top fe	atures for positive o	ontribution		
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set	
FCFP_10	136120670	[*]:[c](:[*])C	0.206	53 out of 65	

FCFP_10	346218766	CO[c]1:[cH]:[cH]:[cH]:1	0.197	30 out of 37
FCFP_10	3	[*]N[*]	0.165	383 out of 491
	Top Fea	tures for negative of	contribution	n
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	241406177	[']:[cH]:[e](NC(=0)[c]1:[cH]:[cH]:[']:[cH]:[cH]:1):[cH]:[']	-1.29	0 out of 4
FCFP_10	-1925475824	[*]:[cH]:[c](:[cH]*])C(=O)N[c](:[*]):[*	-1.29	0 out of 4
FCFP_10	384221478	[*]:[cl]:[cH]:[cH]:[cH]:[cH]:1	-1.29	0 out of 4

C₂₆H₂₂CIN₅O₂S

Molecular Weight: 504.00318

ALogP: 5.895 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Mild Probability: 0.241 Enrichment: 0.35 Bayesian Score: -8.83 Mahalanobis Distance: 11.3

Mahalanobis Distance p-value: 0.00155

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

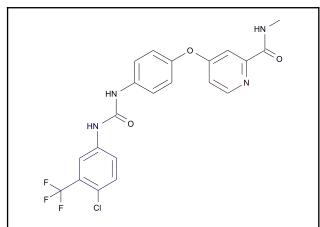
Structural Similar Compounds				
Name	ANTHRAQUINONE; 1;1'- IMINODI-	2-(1'-ANTHRAQUINONYL)- AMINOBENZANTHRONE	1-BENZOYLAMINO-4- METHOXY-5- CHLORANTHRAQUINONE	
Structure	THE PART OF THE PA	The state of the s	HN MAN	
Actual Endpoint	Mild	Mild	Mild	
Predicted Endpoint	Mild	Mild	Mild	
Distance	0.723	0.804	0.813	

Model Applicability

Reference

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

28ZPAK-:126:72


28ZPAK-:90:72

1. All properties and OPS components are within expected ranges.

28ZPAK-:125:72

Feature Contribution				
	Top fea	ntures for positive o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	-1508180856	[*][c]1:[cH]:[cH]:[c] (CI):[cH]:[cH]:1	0.329	16 out of 17

FCFP_10	-745491832	CI[c]1:[cH]:[cH]:[*]: [cH]:[cH]:1	0.304	29 out of 32
FCFP_10	567484887	[*]N([*])[c]1:[cH]:[cH]::1	0.273	9 out of 10
		tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	241406177	(*):[cH]:[c](NC(=0)[c]1:[cH]:[cH]:[r]:[cH]:[cH]:[tH]:[r]	-1.29	0 out of 4
FCFP_10	384221478	[*]:[c](:[*])NC(=O)[c*]]1:[cH]:[cH]:[cH]:[c	-1.29	0 out of 4
FCFP_10	1175232969	[*]:[cH]:[c](NC(=0)[c](:[*]):[*]):[cH]:[*	-1.29	0 out of 4

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175
Rotatable Bonds: 6

Acceptors: 4
Donors: 3

Model Prediction

Prediction: Mild Probability: 0.776

Enrichment: 1.13
Bayesian Score: -1.8

Mahalanobis Distance: 8.95

Mahalanobis Distance p-value: 0.537

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	4;4'-DIAMINO-1;1'- DIANTHRIMIDE	5-NORBORNENE-2;3- DICARBOXYLIC ACID; 1;4;5;6;7;7- HEXACHLORO-	METHANE;TRIS(4- AMINOPHENYL)-		
Structure	NH 2 HN Ath	OHCI CI CI OH	NH ₂ NH ₂ NH ₂		
Actual Endpoint	Mild	Moderate_Severe	Moderate_Severe		
Predicted Endpoint	Mild	Moderate_Severe	Moderate_Severe		
Distance	0.799	0.816	0.827		
Reference	28ZPAK-;125;72	28ZPAK-;92;72	28ZPAK-;73;72		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Co	ntribution			
	Top fea	tures for positive o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	-1695756380	[*][c]1:[*]:[c]([*]): n:[cH]:[cH]:1	0.285	10 out of 11

FCFP_10	-124655670	[*]:[cH]:[cH]:n:[*]	0.259	14 out of 16
FCFP_10	-885550502	[*]C(=[*])NC	0.239	54 out of 64
		ures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	2104062943	[*]Č([*])([*])[o]1:[c H]:[*]:[cH]:[cH]:[o] :1Cl	-0.745	7 out of 24
FCFP_10	-174293376	[*]N[6]f:[cH]:[c](Cl):[c](:[cH]:1)C([*])([*])[*]	-0.507	0 out of 1
FCFP_10	-1549103449	[*]NC(=O)[c](:[*]):[*	-0.504	2 out of 6

 $C_{21}H_{21}N_5O_3S$

Molecular Weight: 423.48813

ALogP: 3.064 Rotatable Bonds: 6

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Irritant

Probability: 1 Enrichment: 1.18 Bayesian Score: 2.56

Mahalanobis Distance: 8.04

Mahalanobis Distance p-value: 0.917

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar	Compounds
--------------------	-----------

	LOGI OLUGINIE	1400	LA A DENITA DIENE O
Name	COLCHICINE	1;8;9- ANTHRACENETRIOL; TRIACETATE	1;4-PENTADIENE-3- ONE;1;5-BIS(4-(2;3- DIDEHYDROTRIAZIRIDINY L)PHENYL)-
Structure	HN 711	no o	
Actual Endpoint	Irritant	Irritant	Irritant
Predicted Endpoint	Irritant	Irritant	Irritant
Distance	0.619	0.781	0.792
Reference	AJOPAA 31;837;48	BJOPAL 53;819;69	28ZPAK-;123;72

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

i catalo co.							
	Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set			
FCFP_12	1175665944	[*]:[cH]:[c](NC(=O)C) :[cH]:[*]	0.198	14 out of 14			

FCFP_12	675799546	[*]=C1[*][*]=NN1[c](: [*]):[*]	0.184	7 out of 7
FCFP_12	-1944671191	[*]:[c](:[*])NC(=O)C	0.184	7 out of 7
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	565998553	[']C(=['])C1=N['][']S	-0.0662	198 out of 262
FCFP_12	203677720	[*]C(=[*])[c](:[cH]:[*])	0	319 out of 382
FCFP_12	136597326) N N N N N N N N N N N N N N N N N N N	0	612 out of 753

Arzneimittel-Forschung

8:609:58

 $C_{26}H_{23}N_5O_3S$

Molecular Weight: 485.55751

ALogP: 4.728 Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Irritant
Probability: 1

Enrichment: 1.18
Bayesian Score: 1.48

Mahalanobis Distance: 8.25

Mahalanobis Distance p-value: 0.861

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	COLCHICINE	ANTHRAQUINONE; 1;1'- IMINODI-	Benzoic acid; p-(N-butyl- 2-(butylamino)acetamido)- ; butyl ester;		
Structure	HN It	H H H H H H H H H H H H H H H H H H H	H O N		
Actual Endpoint	Irritant	Irritant	Irritant		
Predicted Endpoint	Irritant	Irritant	Non-Irritant		
Distance	0.753	0.779	0.817		

Model Applicability

Reference

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

28ZPAK-:125:72

1. All properties and OPS components are within expected ranges.

AJOPAA 31:837:48

Feature Co	Feature Contribution					
	Top fe	atures for positive c	ontribution			
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set		
FCFP_12	675799546	[*]=C1[*][*]=NN1[c](: [*]):[*]	0.184	7 out of 7		

FCFP_12	-319371573	[*]=C1[*][*]=NN1[c 2 [cH]:[cH]:[cH]:[cH]:2	0.18	6 out of 6
FCFP_12	580960234	[*]C(=NN=[*])[*]	0.18	6 out of 6
	-	tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	-1698724694	[*]C(=[*])[c]1:[cH]:[cH]:[cH]:[cH]:[1	-0.0964	107 out of 146
FCFP_12	565998553	[*]C(=[*])C1=N[*][*]S	-0.0662	198 out of 262
FCFP_12	-453677277	[*]C(=[*])[c]1:[cH *]:[c]([*]):[cH]:[cH	0	264 out of 323

28ZPAK-;173;72

C₂₅H₂₀CIN₅O₂S

Molecular Weight: 489.97659

ALogP: 5.409 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Irritant

Probability: 1 Enrichment: 1.18 Bayesian Score: 2.09

Mahalanobis Distance: 7.96

Mahalanobis Distance p-value: 0.933

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

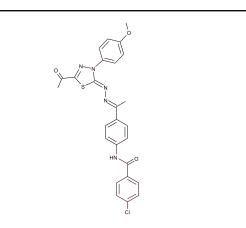
Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	ANTHRAQUINONE; 1;1'- IMINODI-	1-BENZOYLAMINO-4- METHOXY-5- CHLORANTHRAQUINONE	BENZANILIDE;2';2"'- DITHIOBIS-		
Structure	THE PART OF THE PA	HN nh	H NATH H		
Actual Endpoint	Irritant	Irritant	Non-Irritant		
Predicted Endpoint	Irritant	Irritant	Non-Irritant		
Distance	0.690	0.753	0.773		

Model Applicability

Reference

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.


28ZPAK-:90:72

1. All properties and OPS components are within expected ranges.

28ZPAK-:125:72

Feature Co	Feature Contribution				
	Top fea	tures for positive o	ontribution		
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set	
FCFP_12	-1508180856	[*][c]1:[cH]:[cH]:[c] (CI):[cH]:[cH]:1	0.2	17 out of 17	

FCFP_12	567484887	[*]N([*])[c]1:[cH] H]:[c](CI):[cH]:[cH]	0.192	10 out of 10
FCFP_12	675799546	[*]=C1[*][*]=NN1[6](: [*]):[*]	0.184	7 out of 7
		tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	-1698724694	[*]C(=[*])[c]1:[cH]:[cH]:[cH]:[cH]:[cH]:1	-0.0964	107 out of 146
FCFP_12	565998553	[*]C(=[*])C1=N[*][*]S	-0.0662	198 out of 262
FCFP_12	384221478	[*]:[c]:[*])NC(=O)[c]1:[cH]:[cH]:[cH]:[c H]:[cH]:1	0	4 out of 5

C₂₆H₂₂CIN₅O₃S

Molecular Weight: 520.00258

ALogP: 5.392 Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Irritant

Probability: 1 Enrichment: 1.18 Bayesian Score: 2.43

Mahalanobis Distance: 8.46

Mahalanobis Distance p-value: 0.781

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

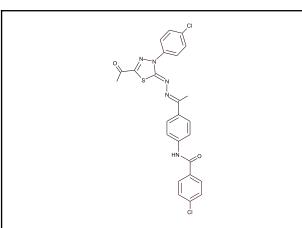
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds	
------------------------------	--

Name	ANTHRAQUINONE; 1;1'- IMINODI-	COLCHICINE	Benzoic acid; p-(N-butyl- 2-(butylamino)acetamido)- ; butyl ester;
Structure	H H H H H H H H H H H H H H H H H H H	HN 111	H O N
Actual Endpoint	Irritant	Irritant	Irritant
Predicted Endpoint	Irritant	Irritant	Non-Irritant
Distance	0.803	0.829	0.856
Reference	28ZPAK-;125;72	AJOPAA 31;837;48	Arzneimittel-Forschung 8;609;58


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

1. 00.00.0							
	Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set			
FCFP_12	-1508180856	[*][c]1:[cH]:[cH]:1	0.2	17 out of 17			

FCFP_12	675799546	[*]=C1[*][*]=NN1[&](: [*]):[*]	0.184	7 out of 7
FCFP_12	-149636017	[*]C(=[*])[c]1:[cH]:[cH]:[cH]:[1]	0.184	7 out of 7
		tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	565998553	["]C(=["])C1=N["]["]S	-0.0662	198 out of 262
FCFP_12	1	NN N N N N N N N N N N N N N N N N N	0	872 out of 1051
FCFP_12	0	[*]C(=[*])[*]	0	1184 out of 1397

C₂₅H₁₉Cl₂N₅O₂S

Molecular Weight: 524.42166

ALogP: 6.073 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Irritant
Probability: 1
Enrichment: 1.18
Bayesian Score: 2.37

Mahalanobis Distance: 8.2

Mahalanobis Distance p-value: 0.875

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly linaccurate.

Structural Similar Compounds					
Name	ANTHRAQUINONE; 1;1'- IMINODI-	2-(1'-ANTHRAQUINONYL)- AMINOBENZANTHRONE	BENZANILIDE;2';2'''- DITHIOBIS-		
Structure	H H H H H H H H H H H H H H H H H H H	n _{NH}	H NAME OF THE PARTY OF THE PART		
Actual Endpoint	Irritant	Irritant	Non-Irritant		
Predicted Endpoint	Irritant	Irritant	Non-Irritant		
Distance	0.733	0.802	0.803		
Reference	28ZPAK-;125;72	28ZPAK-;126;72	28ZPAK-;173;72		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Co	Feature Contribution					
	Top fea	tures for positive o	ontribution			
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set		
FCFP_12	-1508180856	[*][c]1:[cH]:[cH]:[cH]:1	0.2	17 out of 17		

FCFP_12	567484887	[*]N([*])[c]1:[cH]]c H]:[c](Cl):[cH]:[cH]	0.192	10 out of 10
FCFP_12	675799546	[*]=C1[*][*]=NN1[ë](: [*]):[*]	0.184	7 out of 7
		tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	565998553	[*]C(=[*])C1=N[*][*]S	-0.0662	198 out of 262
FCFP_12	-453677277	[*]C(=[*])[c]1:[c] *]:[c]([*]):[cH]:[cH	0	264 out of 323
FCFP_12	-581162801	[*]\N=C(/C)\[c]1:[cH]: :[cH]:[']:[cH]:	0	7 out of 9

 $C_{27}H_{25}N_5O_3S$

Molecular Weight: 499.58409

ALogP: 5.214 Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Irritant

Probability: 1 Enrichment: 1.18 Bayesian Score: 1.54

Mahalanobis Distance: 8.36

Mahalanobis Distance p-value: 0.823

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Sillinal Compounds						
	Name	ANTHRAQUINONE; 1;1'- IMINODI-	COLCHICINE	Benzoic acid; p-(N-butyl- 2-(butylamino)acetamido)- ; butyl ester;		
	Structure					

Actual Endpoint Irritant Irritant Irritant Predicted Endpoint Irritant Non-Irritant Irritant 0.789 0.797 0.831 Distance 28ZPAK-:125:72 AJOPAA 31;837;48 Reference Arzneimittel-Forschung 8:609:58

Model Applicability

Structural Similar Compounds

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Fingerprint Bit/Smiles Feature Structure Score Irritant in training set FCFP_12 675799546 0.184 7 out of 7

FCFP_12	-319371573	[*]=C1[*][*]=NN1[c]2 [cH]:[cH]:[*]:[cH]:[cH]:2	0.18	6 out of 6
FCFP_12	580960234	[*]C(=NN=[*])[*]	0.18	6 out of 6
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	565998553	["]C(=["])C1=N["]["]S	-0.0662	198 out of 262
FCFP_12	0	[*]C(=[*])[*]	0	1184 out of 1397
FCFP_12	-581162801	[*]N=C(/C)(e]1:[eH]: :[eH]:[*]:[eH]:[eH]:	0	7 out of 9

0.796

28ZPAK-;173;72

C₂₆H₂₂CIN₅O₂S

Molecular Weight: 504.00318

ALogP: 5.895 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Irritant
Probability: 1

Enrichment: 1.18
Bayesian Score: 2.52

Mahalanobis Distance: 8.08

Mahalanobis Distance p-value: 0.908

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a part of the state of the sample.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	ANTHRAQUINONE; 1;1'- IMINODI-	2-(1'-ANTHRAQUINONYL)- AMINOBENZANTHRONE	BENZANILIDE;2';2"'- DITHIOBIS-		
Structure	H H H H H H H H H H H H H H H H H H H	n _{NH}	H N THE SECOND HE SECOND H		
Actual Endpoint	Irritant	Irritant	Non-Irritant		
Predicted Endpoint	Irritant	Irritant	Non-Irritant		

Model Applicability

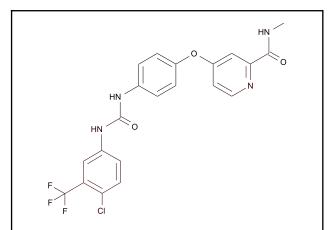
Distance

Reference

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

0.793

28ZPAK-;126;72


1. All properties and OPS components are within expected ranges.

0.712

28ZPAK-;125;72

Feature Contribution				
Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	-1508180856	[*][c]1:[cH]:[cH]:[c] (CI):[cH]:[cH]:1	0.2	17 out of 17

FCFP_12	567484887	[*]N([*])[c]1:[cH];[cH] H]:[c](CI):[cH]:[cH]	0.192	10 out of 10
FCFP_12	675799546	[*]=C1[*][*]=NN1[c](: [*]):[*]	0.184	7 out of 7
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	565998553	[*]C(=[*])C1=N[*][*]S	-0.0662	198 out of 262
FCFP_12	-1925475824	[*]:[cH]:[c](:[cH]:])C(=O)N[c](:[*]):[*	0	4 out of 5
FCFP_12	-581879738	[*]NC(=0)[c]1:[cH]:[c H]:[*]:[cH]:[eH]:1	0	4 out of 5

 $C_{21}H_{16}CIF_3N_4O_3$

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4
Donors: 3

Model Prediction

Prediction: Irritant

Probability: 1 Enrichment: 1.18 Bayesian Score: 3.04

Mahalanobis Distance: 6.28

Mahalanobis Distance p-value: 1

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	BENZANILIDE;2';2'''- DITHIOBIS-	4;4'-DIAMINO-1;1'- DIANTHRIMIDE	5-NORBORNENE-2;3- DICARBOXYLIC ACID; 1;4;5;6;7;7- HEXACHLORO-	
Structure	H H N H H	NH 2 HN 4th 12	OHCI CI CI OH	
Actual Endpoint	Non-Irritant	Irritant	Irritant	
Predicted Endpoint	Non-Irritant	Irritant	Irritant	
Distance	0.743	0.791	0.801	
Reference	28ZPAK-;173;72	28ZPAK-;125;72	28ZPAK-;92;72	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution					
Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set	
FCFP_12	1747237384	[*][c](:[*]):n:[cH]:[*]	0.208	44 out of 44	

FCFP_12	-124655670	F _F C _I [*]:[cH]:[cH]:n:[*]	0.2	16 out of 16
FCFP_12	-1539132615	F C: [*]C(=[*])[c](:[cH]:[*]):n:[*]	0.197	13 out of 13
		ures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	-747629521	[*]N[c](f[cH]:[cH]:[c](O[c](:[*]):[*]):[c H]:[cH]:1	-0.268	1 out of 2
FCFP_12	702861189	[*]N**[1]CH]:[cH]:[c](O[c]2:[cH]:[cH]:[*]:[c]([*]):[cH]:2):[cH]:[cH]:1	-0.268	1 out of 2
FCFP_12	-773983804	[*]N[c]1:[cH]:[*]:[c] ([*]):[cH]:[cH]:1	0	102 out of 121

TOPKAT_Rat_Female_FDA_None_vs_Carcinogen

 $C_{21}H_{21}N_5O_3S$

Molecular Weight: 423.48813

ALogP: 3.064
Rotatable Bonds: 6

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Carcinogen

Probability: 0.404
Enrichment: 1.26
Bayesian Score: 4.24
Mahalanobis Distance: 11.1

Mahalanobis Distance p-value: 0.0488

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Nisoldipine	Isradipine	Doxazosin
Structure	H N O	N NH	H ₂ N M
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen
Distance	0.594	0.618	0.644
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

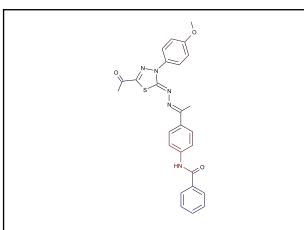
Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]\N1[*]
- 6. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set

ECFP_12	1776488	CC(=0)N[c]1:[cH]:[cH]: :[']:[cH]:[cH]:1	0.613	2 out of 2
ECFP_12	-847011520	[*][c]1:[cH]:[cH]:[cH]: (NC(=O)C):[cH]:[cH]:	0.613	2 out of 2
ECFP_12	-1923054811	[*]:[c](:[*])NC(=0)C	0.575	3 out of 4

Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_12	129482634	[*]C(=[*])C(=O)C	-0.811	0 out of 4
ECFP_12	-2137232509	[*]N([*])[c]1:[cH]:[cH]]:[c]([*]):[cH]:[cH]	-0.485	0 out of 2


ECFP_12	912478223	O-NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	-0.318	2 out of 10
]S[]		

Eval.& Res./Off. Testing &

Res.) Sept. 1997

Eval.& Res./Off. Testing &

Res.) Sept. 1997

 $|C_{26}H_{23}N_{5}O_{3}S$

Molecular Weight: 485.55751

ALogP: 4.728 Rotatable Bonds: 7

Acceptors: 8 Donors: 1

Model Prediction

Prediction: Carcinogen

Probability: 0.289 Enrichment: 0.897 Bavesian Score: -0.487 Mahalanobis Distance: 12.2

Mahalanobis Distance p-value: 0.00281

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediction. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds						
Name	Nicardipine	Carbenicillin	Deserpidine			
Structure	H N O O O O O O O O O O O O O O O O O O	O NH	OF INDIVIDUAL OF THE PARTY OF T			
Actual Endpoint	Carcinogen	Non-Carcinogen	Carcinogen			
Predicted Endpoint	Carcinogen	Non-Carcinogen	Carcinogen			
Distance	0.667	0.669	0.707			
Reference	US FDA (Centre for Drug	US FDA (Centre for Drug	US FDA (Centre for Drug			

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

All properties and OPS components are within expected ranges. 1.

Eval.& Res./Off. Testing &

- 2. Unknown ECFP 2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP 2 feature: 562081661: [*]C(=NN=[*])[*]

Res.) Sept. 1997

- 4. Unknown ECFP 2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 6. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*] 7.

Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set		

ECFP_12	-223149939	[*]NC(=0)[c]1;[cH];[c H];[*]:[cH];1	0.613	2 out of 2
ECFP_12	-177077903	[*]N[c](:[cH]:[*])*[c H]:[*]	0.529	6 out of 10
ECFP_12	-1236483485	NNN NNN	0.46	9 out of 17

ingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_12	129482634	O NN N N N N N N N N N N N N N N N N N	-0.811	0 out of 4
ECFP_12	1571214559	[*]1:[cH]:[cH]:[cH]:[cH]:[cH]:1	-0.56	11 out of 64

ECFP_12	-281505363	s ^o	-0.56	11 out of 64
		S N N		
		δ		
		[*][c]1:[cH]:[cH]		
]:[cH]:[cH]:1		

C₂₅H₂₀CIN₅O₂S

Molecular Weight: 489.97659

ALogP: 5.409 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.218
Enrichment: 0.678
Bayesian Score: -5.27
Mahalanobis Distance: 11.5

Mahalanobis Distance p-value: 0.0198

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar	Compounds
--------------------	------------------

Name	Emetine	Carbenicillin	Moricizine
Structure	O to the state of	O NH O O O O O O O O O O O O O O O O O O O	N N N N N N N N N N N N N N N N N N N
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Distance	0.698	0.710	0.725
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

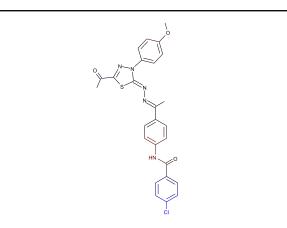
Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 6. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]

Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure		Carcinogen in training set		

ECFP_12	-223149939	[*]NC(=0)[c]1:[cH]:[c H]:[*]:[cH]:1	0.613	2 out of 2
ECFP_12	-177077903	[*]N[c](:[cH]:[*]).[c	0.529	6 out of 10
ECFP_12	-1236483485	[*]C(=[*])N[c](:[*]):	0.46	9 out of 17

Top Features for negative contribution				
Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
99947387	O-SNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	-0.817	8 out of 62	
1854732111	[*][c]1:[*]:[cH]:[c](Cl):[cH]:[cH]:1	-0.816	4 out of 33	
	Bit/Smiles 99947387	Bit/Smiles Feature Structure 99947387 [*]:[c](:[*])Cl 1854732111	Bit/Smiles Feature Structure Score 99947387 [*]:[c](:[*])CI 1854732111 -0.816	


ECFP_12	129482634	O S N N	-0.811	0 out of 4
		\$		
		[*]C(=[*])C(=O)C		

0.724

US FDA (Centre for Drug

Eval.& Res./Off. Testing &

Res.) Sept. 1997

C₂₆H₂₂CIN₅O₃S

Molecular Weight: 520.00258

ALogP: 5.392 Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.25 Enrichment: 0.776 Bayesian Score: -2.79 Mahalanobis Distance: 11.9

Mahalanobis Distance p-value: 0.00555

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	Deserpidine	Nicardipine	Carbenicillin	
Structure	OH THE THE THE THE THE THE THE THE THE TH	I N O O O O O O O O O O O O O O O O O O	NH OHO	
Actual Endpoint	Carcinogen	Carcinogen	Non-Carcinogen	
Predicted Endpoint	Carcinogen	Carcinogen	Non-Carcinogen	

Model Applicability

Distance

Reference

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

0.715

US FDA (Centre for Drug

Res.) Sept. 1997

Eval.& Res./Off. Testing &

1. All properties and OPS components are within expected ranges.

US FDA (Centre for Drug

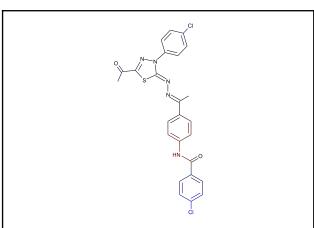
Eval.& Res./Off. Testing &

- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]

Res.) Sept. 1997

0.653

- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 6. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]


Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set

ECFP_12	-223149939	0.613	2 out of 2
ECFP_12	-177077903	[*]N[c](:[cH]:[*]):[c H]:[*]	6 out of 10
ECFP_12	-1236483485	0.46	9 out of 17

Top Features for negative contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_12	99947387	[*]:[c](:[*])CI	-0.817	8 out of 62
ECFP_12	1854732111	[*][o]1:[*]:[cH]:[cH]:1	-0.816	4 out of 33

ECFP_12	129482634	P _{NN} _N	-0.811	0 out of 4
		, , , , , , , , , , , , , , , , , , , 		
		[*]C(=[*])C(=O)C		

TOPKAT_Rat_Female_FDA_None_vs_Carcinogen

C₂₅H₁₉Cl₂N₅O₂S

Molecular Weight: 524.42166

ALogP: 6.073 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.246
Enrichment: 0.764
Bayesian Score: -3.05
Mahalanobis Distance: 11.3

Mahalanobis Distance p-value: 0.0364

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

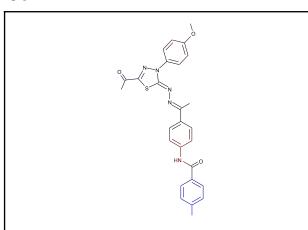
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Deserpidine	Emetine	Carbenicillin		
Structure	Orthorn Mayor Mayo	O STATE OF THE STA	NH O OH		
Actual Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen		
Predicted Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen		
Distance	0.720	0.723	0.775		
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.


- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 6. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set

ECFP_12	-223149939	["]NC(=0)[e]1:[eH]:[eH]:[eH]:1	0.613	2 out of 2
ECFP_12	-177077903	[*]N[c](:[cH]:[*])*[c H]:[*]	0.529	6 out of 10
ECFP_12	-1236483485	[*]C(=[*])N[c](:[*] ⁹ .	0.46	9 out of 17

Top Features for negative contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_12	99947387	[*]:[c](:[*])CI	-0.817	8 out of 62
ECFP_12	1854732111	[*][c]1:[*]:[cH];fc](Cl):[cH]:[cH]:1	-0.816	4 out of 33

ECFP_12	129482634	Y NN N	-0.811	0 out of 4
		S N		
		QE?		
		[*]C(=[*])C(=O)C		

 $C_{27}H_{25}N_5O_3S$

Molecular Weight: 499.58409

ALogP: 5.214 Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.262
Enrichment: 0.815
Bayesian Score: -1.98
Mahalanobis Distance: 11.7

Mahalanobis Distance p-value: 0.0111

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar	Compounds
--------------------	------------------

	•		
Name	Deserpidine	Nicardipine	Carbenicillin
Structure	ON THE PROPERTY OF THE PROPERT		NH OH OH
Actual Endpoint	Carcinogen	Carcinogen	Non-Carcinogen
Predicted Endpoint	Carcinogen	Carcinogen	Non-Carcinogen
Distance	0.678	0.695	0.709
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 6. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]

Feature Contribution

Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score Carcinogen in training set

ECFP_12	-223149939	[*]NC(=O)[c]1:[cH]:[c H]:[']:[cH]:[cH]:1	0.613	2 out of 2
ECFP_12	-177077903	[*]N[c](:[cH]:[*]):[c H]:[*]	0.529	6 out of 10
ECFP_12	-1236483485	[*]C(=[*])N[c](:[*]): [*]	0.46	9 out of 17
	Ton Feat	tures for negative of	contribution	<u> </u>

ingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in
				training set
ECFP_12	-1926229349	[*][c]1:[cH]:[cH]:[c] (C):[cH]:[cH]:1	-1.06	0 out of 6
ECFP_12	-533780882	C[c]1:[cH]:[cH]:[*]:[cH]:[cH]:1	-1.06	0 out of 6

ECFP_12	129482634	D ~	-0.811	0 out of 4
		SNN		
		[*]C(=[*])C(=O)C		

Non-Carcinogen

C₂₆H₂₂CIN₅O₂S

Molecular Weight: 504.00318

ALogP: 5.895 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.208
Enrichment: 0.646
Bayesian Score: -6.27
Mahalanobis Distance: 11.3

Mahalanobis Distance p-value: 0.0321

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Emetine	Deserpidine	Carbenicillin
Structure	o the state of the	Other Control of the	NH N

Predicted Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen
Distance	0.707	0.734	0.758
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Carcinogen

Model Applicability

Actual Endpoint

Structural Similar Compounds

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]

Non-Carcinogen

- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 6. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]

Feature Contribution

Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score Carcinogen in training set

ECFP_12	-223149939	[*]NC(=0)[c]1:[cH]:[c H]:[*]:[cH]:[cH]:1	0.613	2 out of 2
ECFP_12	-177077903	[*]N[c](:[cH]:[*]):[c H]:[*]	0.529	6 out of 10
ECFP_12	-1236483485	[*]C(=[*])N[c](:[*]):	0.46	9 out of 17

Top Features for negative contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_12	-1926229349	[*][c]1:[cH]:[cH]:[c] (C):[cH]:[cH]:1	-1.06	0 out of 6
ECFP_12	-533780882	C[c]1:[cH]:[cH]:[*]:[cH]:[cH]:1	-1.06	0 out of 6

ECFP_12	99947387	, NN CI	-0.817	8 out of 62
		→s * _N		
		[*]:[c](:[*])Cl		

HN O F F F F

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4
Donors: 3

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.236 Enrichment: 0.734 Bayesian Score: -3.76 Mahalanobis Distance: 12.2

Mahalanobis Distance p-value: 0.00229

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	ilar Compounds Glimepride	Glyburide	Fluvastatin
Structure	NH NH	HN TO HN TO HN TO THE T	HO HO
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen
Distance	0.620	0.635	0.635
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing &	US FDA (Centre for Drug Eval.& Res./Off. Testing &	US FDA (Centre for Drug Eval.& Res./Off. Testing &

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Res.) Sept. 1997

Res.) Sept. 1997

1. All properties and OPS components are within expected ranges.

Res.) Sept. 1997

Feature Contribution						
	Top fea	atures for positive o	ontribution			
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set		
ECFP_12	-970385855	[*]N[c]:[cH]:[*]:[c] ([*]):[c](:[cH]:1)C([*])([*])[*]	0.613	2 out of 2		

ECFP_12	-177077903	[*]N[c](:[cH]:[*]):[c H]:[*]	0.529	6 out of 10
ECFP_12	-1236483485	O	0.46	9 out of 17
	Top Featur	es for negative c	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_12	1335691903	[*][c](:[*]):[c](CI): [cH]:[*]	-1.11	2 out of 26
ECFP_12	99947387	[*]:[c](:[*])CI	-0.817	8 out of 62
ECFP_12	1413420509	[*]C(=[*])[c](:[cH]:[*]):n:[*]	-0.661	0 out of 3

 $C_{21}H_{21}N_5O_3S$

Molecular Weight: 423.48813

ALogP: 3.064 Rotatable Bonds: 6

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Multiple-Carcinogen

Probability: 0.692 Enrichment: 1.85 Bayesian Score: 5.3

Mahalanobis Distance: 15.8

Mahalanobis Distance p-value: 4.69e-007

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Moricizine	Diltiazem	Nicardipine		
Structure	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	H N N N N N N N N N N N N N N N N N N N		
Actual Endpoint	Single-Carcinogen	Multiple-Carcinogen	Single-Carcinogen		
Predicted Endpoint	Single-Carcinogen	Multiple-Carcinogen	Single-Carcinogen		
Distance	0.620	0.671	0.702		
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing &	US FDA (Centre for Drug Eval.& Res./Off. Testing &	US FDA (Centre for Drug Eval.& Res./Off. Testing &		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Res.) Sept. 1997

Res.) Sept. 1997

Res.) Sept. 1997

1. OPS PC15 out of range. Value: 2.8947. Training min, max, SD, explained variance: -2.9572, 2.6953, 1.089, 0.0176.

Feature Contribution					
	Top fea	tures for positive o	ontribution		
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set	
SCFP_4	2097618059	[*]:[cH]:[c](NC(=O)C) :[cH]:[*]	0.73	5 out of 6	

SCFP_4	1631845520	[*]C(=[*])N[c](::[*]).	0.601	6 out of 9
SCFP_4	17	.°° s	0.548	10 out of 17
	Top Feat	tures for negative of	contribution	1
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
SCFP_4	-1380909229	[*]N([*])[c]1:[c]f;[*]:[c]([*]):[cH]:[cH] :1	-0.413	3 out of 16
SCFP_4	1334669481	[*]N([*])[c](:[cH]:[*]	-0.24	4 out of 17
SCFP_4	276283342	(*):[c](:[*])OC	-0.106	5 out of 18

US FDA (Centre for Drug

Res.) Sept. 1997

Eval.& Res./Off. Testing &

US FDA (Centre for Drug

Eval.& Res./Off. Testing &

Res.) Sept. 1997

 $C_{26}H_{23}N_5O_3S$

Molecular Weight: 485.55751

ALogP: 4.728 Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Multiple-Carcinogen

Probability: 0.635
Enrichment: 1.7
Bayesian Score: 3.98
Mahalanobis Distance: 18.9

Mahalanobis Distance p-value: 5.91e-010

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Nicardipine	Nicardipine Deserpidine			
Structure	H N N N N N N N N N N N N N N N N N N N	OKAN HO NAME OF THE PARTY OF TH	N N N N N N N N N N N N N N N N N N N		
Actual Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen		
Predicted Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen		
Distance	0.612	0.656	0.689		

Model Applicability

Reference

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

US FDA (Centre for Drug

Res.) Sept. 1997

Eval.& Res./Off. Testing &

Feature Contribution					
	Top fea	atures for positive o	ontribution		
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set	
SCFP_4	1631845520	[*]C(=[*])N[c](:[*]): [*]	0.601	6 out of 9	

SCFP_4	17	[*]S[*]	0.548	10 out of 17
SCFP_4	-1375926917	[*]N[c]1:[cH]:[f][c] ([*]):[cH]:[cH]:1	0.522	6 out of 10
		tures for negative		
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
SCFP_4	-1380909229	[*]N([*])[c]1:[c*t)]:[c]([*]):[cH]:[cH] ::1	-0.413	3 out of 16
SCFP_4	1334669481	[*]N([*])[c](:[cH]:[*]	-0.24	4 out of 17
SCFP_4	276283342	[*]:[c](:[*])OC	-0.106	5 out of 18

 $C_{21}H_{21}N_5O_3S$

Molecular Weight: 423.48813

ALogP: 3.064 Rotatable Bonds: 6

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Carcinogen

Probability: 0.456
Enrichment: 1.36
Bayesian Score: 3.11
Mahalanobis Distance: 14.2

Mahalanobis Distance p-value: 2.25e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

	•		
Name	Nisoldipine	Doxazosin	Isradipine
Structure	H N N O O O O O O O O O O O O O O O O O	H ₂ N	N NH
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Predicted Endpoint	Carcinogen	Non-Carcinogen	Carcinogen
Distance	0.589	0.608	0.612
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution							
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set			
SCFP_6	-347048986	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	0.615	5 out of 7			

SCFP_6	814408713	[*][c]1:[cH]:[cH]:[cH]: (NC(=O)C):[cH]:[cH]:	0.603	2 out of 2
SCFP_6	1626825020	[*]:[c](:[*])NC(=O)C	0.561	3 out of 4
		tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
SCFP_6	1287669168	[*][c]1:[cH]:[cH]:[cH]:1	-0.38	1 out of 6
SCFP_6	-1325991669	[*]N1[*][c(=N1)[*]	-0.278	0 out of 1
SCFP_6	-331724199	[*] N=C(/C))(c](:[*])	-0.278	0 out of 1

0.707

US FDA (Centre for Drug

Res.) Sept. 1997

Eval.& Res./Off. Testing &

C₂₆H₂₃N₅O₃S

Molecular Weight: 485.55751

ALogP: 4.728 Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.322 Enrichment: 0.962 Bayesian Score: -1.27 Mahalanobis Distance: 16.4

Mahalanobis Distance p-value: 8.15e-010

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Carbenicillin	Deserpidine	Moricizine		
Structure	O NH O OH	OH THE THE THE THE THE THE THE THE THE TH	N N N N N N N N N N N N N N N N N N N		
Actual Endpoint	Non-Carcinogen	Carcinogen	Carcinogen		
Predicted Endpoint	Non-Carcinogen	Carcinogen	Carcinogen		

Model Applicability

Distance

Reference

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

0.688

US FDA (Centre for Drug

Res.) Sept. 1997

Eval.& Res./Off. Testing &

1. All properties and OPS components are within expected ranges.

US FDA (Centre for Drug

Eval.& Res./Off. Testing &

Res.) Sept. 1997

0.654

Feature Contribution						
	Top fe	atures for positive of	ontribution			
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set		
SCFP_6	-347048986	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	0.615	5 out of 7		

SCFP_6	-1380909229	[*]N([*])[c]1:[ch]:[ch]:[ch]:[ch]	0.287	17 out of 39
SCFP_6	-1375926917	[*]N[c]1:[cH]:[dH]:1	0.251	11 out of 26
		tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
SCFP_6	1653911926	[*][c]1:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]	-0.504	12 out of 64
SCFP_6	1257084377	[*]NC(=O)[c](:[*]):[*	-0.436	4 out of 21
SCFP_6	1287669168	[*][c]1:[cH]:[cH]:[c] (OC):[cH]:[cH]:1	-0.38	1 out of 6

C₂₅H₂₀CIN₅O₂S

Molecular Weight: 489.97659

ALogP: 5.409 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.286 Enrichment: 0.857 Bayesian Score: -2.7

Mahalanobis Distance: 15.2

Mahalanobis Distance p-value: 2.64e-007

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

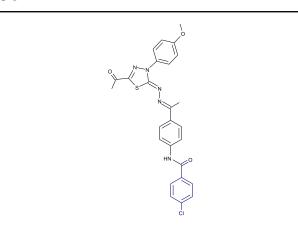
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural	Similar	Compounds	

Name	Emetine	Carbenicillin	Moricizine
Structure		NH O NH O NH O NH	N N N N N N N N N N N N N N N N N N N
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Distance	0.694	0.701	0.708
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC1 out of range. Value: -5.7239. Training min, max, SD, explained variance: -5.694, 8.348, 2.949, 0.0811.

Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score Carcinogen in						
ringerprint	Bit/Silliles	reature Structure	Score	training set		
SCFP_6	-347048986	[*]C(=[*])N[c]1:[cH]: [cH]:[cH]:[cH]:1	0.615	5 out of 7		

SCFP_6	-1380909229	[*]N([*])[c]1:[c**]:[c]([*]):[cH]:[cH]	0.287	17 out of 39
SCFP_6	-1375926917	[*]N[c]1:[cH]:[5H]:1	0.251	11 out of 26
		tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
SCFP_6	341480432	[*]N([*])[c]1:[cH][c] H]:[c](Cl):[cH]:[cH]	-0.674	0 out of 3
SCFP_6	1653911926	[*][c]1:[cH]:[cH]:[cH]:1	-0.504	12 out of 64
SCFP_6	1905487031	[*][c]1:[cH]:[cH]:1c] (CI):[cH]:[cH]:1	-0.48	2 out of 12

C₂₆H₂₂CIN₅O₃S

Molecular Weight: 520.00258

ALogP: 5.392 Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.277
Enrichment: 0.829
Bayesian Score: -3.11
Mahalanobis Distance: 15.8

Mahalanobis Distance p-value: 1.38e-008

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

	•		
Name	Deserpidine	Carbenicillin	Reserpine
Structure	OR MAN AND	O NH O NH O NH	
Actual Endpoint	Carcinogen	Non-Carcinogen	Carcinogen
Predicted Endpoint	Carcinogen	Non-Carcinogen	Carcinogen
Distance	0.634	0.709	0.716
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set		
SCFP_6	-347048986	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	0.615	5 out of 7		

SCFP_6	-1380909229	[*]N([*])[c]1:[cH]]:[c]([*]):[cH]:[cH]	0.287	17 out of 39
SCFP_6	-1375926917	[*]N[c]1:[cH]:[d]:[c] ([*]):[cH]:[cH]:1	0.251	11 out of 26
		tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
SCFP_6	1915307678	[*]C(=[*])[c]1:[c*][cH]:[cH]:[c](CI):[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]	-0.496	0 out of 2
SCFP_6	1905487031	[*][c]1:[cH]:[cH]:[cH]:[cH]:[1	-0.48	2 out of 12
SCFP_6	1257084377	[*]NC(=O)[c](:[*])?[*	-0.436	4 out of 21

 $C_{25}H_{19}CI_2N_5O_2S$

Molecular Weight: 524.42166

ALogP: 6.073 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.291 Enrichment: 0.869 Bayesian Score: -2.52 Mahalanobis Distance: 15.3

Mahalanobis Distance p-value: 1.48e-007

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

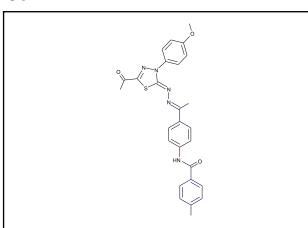
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar	Compounds

Name	Deserpidine	Emetine	Ketoconazole	
Structure	ON THE PROPERTY OF THE PROPERT	or the state of th		
Actual Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen	
Predicted Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen	
Distance	0.711	0.718	0.754	
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Feature Contribution

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
SCFP_6	-347048986	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	0.615	5 out of 7	

SCFP_6	-1380909229	[*]N([*])[c]1:[cH]:[cH]]:[c]([*]):[cH]:[cH]	0.287	17 out of 39
SCFP_6	-1375926917	[*]N[c]1:[cH]:['9':[c] ([*]):[cH]:[cH]:1	0.251	11 out of 26
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
SCFP_6	341480432	[*]N([*])[c]1:[cH]3c H]:[c](CI):[cH]:11	-0.674	0 out of 3
SCFP_6	1915307678	[*]C(=[*])[c]1:[cH]; cH]:[c](CI):[cH]:[cH	-0.496	0 out of 2
SCFP_6	1905487031	[*][c]1:[cH]:[cH]:[c] (CI):[cH]:[cH]:1	-0.48	2 out of 12

 $C_{27}H_{25}N_5O_3S$

Molecular Weight: 499.58409

ALogP: 5.214 Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.319 Enrichment: 0.953 Bayesian Score: -1.38 Mahalanobis Distance: 16.2

Mahalanobis Distance p-value: 1.65e-009

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

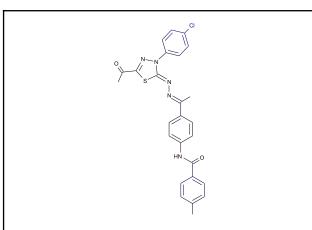
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

·				
Name Deserpidine		Carbenicillin	Emetine	
Structure	ON THE PROPERTY OF THE PROPERT	NH O NH O O O O O O O O O O O O O O O O O O O	O Many Company of the	
Actual Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen	
Predicted Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen	
Distance	0.655	0.685	0.711	
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Feature Contribution

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
SCFP_6	-347048986	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	0.615	5 out of 7

SCFP_6	-1555568408	(*)NC(=0)(c)1:(cH):(c H):(c)(C):(cH):(cH):	0.415	1 out of 1
SCFP_6	136686699	[*]:[c](:[*])C	0.287	17 out of 39
		ures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
SCFP_6	2048398673	[*]C(=[*])[c]1:[cH]; cH]:[c](C):[cH]:[cH]	-0.674	0 out of 3
SCFP_6	1257084377	[*]NC(=O)[c](:[*]):[*	-0.436	4 out of 21
SCFP_6	795925860	[*][c]1:[cH]:[cH]:[c] (C):[cH]:[cH]:1	-0.38	1 out of 6

C₂₆H₂₂CIN₅O₂S

Molecular Weight: 504.00318

ALogP: 5.895 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.289
Enrichment: 0.865
Bayesian Score: -2.58
Mahalanobis Distance: 15.6

Mahalanobis Distance p-value: 3.38e-008

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar	Compounds
--------------------	-----------

•				
Name	Emetine	Deserpidine	Ketoconazole	
Structure	- state of the sta	ON THE PROPERTY OF THE PROPERT		
Actual Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen	
Predicted Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen	
Distance	0.697	0.722	0.740	
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature	Contr	ibution
----------------	-------	---------

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
SCFP_6	-347048986	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	0.615	5 out of 7

SCFP_6	-1555568408	(*)NC(=0)[c]1:[cH]:[cH]:[cH]:[tH]:[tH]:[tH]:[tH]:[tH]:[tH]:[tH]:[t	0.415	1 out of 1
SCFP_6	136686699	[*]:[c](:[*])C	0.287	17 out of 39
	Top Fea	tures for negative of	contribution	1
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
SCFP_6	341480432	[*]N([*])[c]1:[cH]:[cH]:11	-0.674	0 out of 3
SCFP_6	2048398673	[*]C(=[*])[c]1:[cH]:[cH]:[:1	-0.674	0 out of 3
SCFP_6	1905487031	[*][c]1:[cH]:[cH]:[c] (CI):[cH]:[cH]:1	-0.48	2 out of 12

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4
Donors: 3

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.293 Enrichment: 0.878 Bayesian Score: -2.4

Mahalanobis Distance: 17.6

Mahalanobis Distance p-value: 1.1e-012

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural S	Similar Compounds		
Name	Glyburide	Glimepride	Fluvastatin
Structure	H	NH NH	

Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Distance	0.593	0.600	0.615
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Co	ntribution				
	Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
SCFP_6	-347048986	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	0.615	5 out of 7	

SCFP_6	-754059116	[*]O[c]1:[cH]:[*]:n:[cH]:[cH]:1	0.415	1 out of 1
SCFP_6	-347281112	[*]N[c]d:[cH]:[*]:[c] ([*]):[c](:[cH]:1)C([*])([*])[*]	0.273	2 out of 4
	Top Fea	tures for negative of	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
SCFP_6	-827073191	[*]C(=[*])[c]1:[cH]:[*]:[cH]:[cH]:n:1	-0.674	0 out of 3
SCFP_6	-488587948	[*]:[e]((i*))O[c]1:[c H]:[cH]:[*]:[cH]:[cH	-0.496	0 out of 2
SCFP_6	-975241316	[*][d]1.f[cH]:[c] (O[c](:[cH]:[*]):[cH]:[*]):[cH]:[cH]:1	-0.496	0 out of 2

Res.) Sept. 1997

 $|C_{21}H_{21}N_5O_3S|$

Molecular Weight: 423.48813

ALogP: 3.064 Rotatable Bonds: 6

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Multiple-Carcinogen

Probability: 0.562
Enrichment: 1.36
Bayesian Score: 2.95
Mahalanobis Distance: 17.1

Mahalanobis Distance p-value: 1.38e-007

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Sim	ilar Compounds		
Name	Isradipine	Moricizine	Terazosin
Structure	N NH	N N N N N N N N N N N N N N N N N N N	H ₂ N ² N
Actual Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen
Predicted Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen
Distance	0.629	0.650	0.681
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing &	US FDA (Centre for Drug Eval.& Res./Off. Testing &	US FDA (Centre for Drug Eval.& Res./Off. Testing &

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Res.) Sept. 1997

1. OPS PC4 out of range. Value: 5.2707. Training min, max, SD, explained variance: -6.1092, 5.1042, 2.173, 0.0642.

Res.) Sept. 1997

Feature Co	ntribution			
Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
SCFP_8	2097618059	[*]:[cH]:[c](NC(=O)C) :[cH]:[*]	0.681	6 out of 7

SCFP_8	-347048986	[*]C(=[*])N[c]1:[cH]: [cH]:[cH]:[cH]:[cH]:1	0.574	4 out of 5
SCFP_8	814408713	[*][c]1:[cH]:[cH]:[cH]: (NC(=O)C):[cH]:[cH]:	0.553	2 out of 2
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
SCFP_8	136627117	O-18 N N N N N N N N N N N N N N N N N N N	-0.41	4 out of 18
SCFP_8	136239834	or s No	-0.358	3 out of 13
SCFP_8	1287669168	[*][c]1:[cH]:[cH]:[c] (OC):[cH]:[cH]:1	-0.31	0 out of 1

C₂₁H₂₁N₅O₃S

Molecular Weight: 423.48813

ALogP: 3.064 Rotatable Bonds: 6

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Non-Irritant
Probability: 6.57e-005
Enrichment: 7.14e-005
Bayesian Score: -9.11

Mahalanobis Distance: 9.91

Mahalanobis Distance p-value: 0.0783

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Simi	ilar Compounds		
Name	Pregna-1,4-diene-3,20- dione, 21-(acetyloxy)-11- hydroxy-6-methyl-17- (1- oxopropoxy)-, (6-alpha,11- beta)-	2-Anthracenesulfonic acid, 1-amino-9,10- dihydro-9,10-dioxo-4- (2,4,6 -trimethylanilino)-, monosodium salt	Butanedioic acid, sulfo-, 1,4-dicyclohexyl ester, sodium salt
Structure	O THE	H ₂ N ₂ N ₃ N ₃ N ₃ N ₄ N ₄ N ₅	
Actual Endpoint	Irritant	Irritant	Irritant
Predicted Endpoint	Irritant	Non-Irritant	Irritant
Distance	0.643	0.768	0.808
Reference	YACHDS Yakuri to Chiryo. Pharmacology and Therapeutics. (Raifu Saiensu Shup pan K.K., 2-5-13, Yaesu, Chuo-ku, Tokyo 104, Japan) V.1-1972- Volume(issue) /page/year: 19,3103,1991	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,1327,1986	ATDAEI Acute Toxicity Data. Journal of the American College of Toxicology, Pa rt B. (Mary Ann Liebert, Inc., 1651 Third Ave., New York, NY 10128) V.1- 1990- Volume(issue)/page/year: 1,108,1990

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Co	ntribution			
	Top fe	atures for positive c	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set

	~ s ~ x ~ x ~ x ~ x ~ x ~ x ~ x ~ x ~ x		
	[*]C(=[*])C(=O)C		
356782498	0 N/O;	0.0583	2 out of 2
	° S N		
	[*]N([*])[c]1:[cH]!(o		
	[*]N([*])[c]1:[сН]ңо H]:[c](ОС):[сН]:[сН] :1		
		[*]C(=[*])C(=O)C 356782498 [*]N([*])[c]1:[cH]![c] H]:[c](OC):[cH]:[cH] :1	[*]C(=[*])C(=O)C 356782498 0.0583 [*]N([*])[c]1:[cH]!to H]:[c](OC):[cH]:[cH]

Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	-1944671191	[*]:[c](:[*])NC(=O)C	-1.87	0 out of 6
FCFP_12	1907952166	CC(=0)N[c]1:[cH]:[cH] :[*]:[cH]:[cH]:	-1.72	0 out of 5

FCFP_12	1175665944	ö	-1.02	2 out of 8
		O_NN N		
		ž to		
		[*]:[cH]:[c](NC(=O)C) :[cH]:[*]		

 $|C_{26}H_{23}N_5O_3S|$

Molecular Weight: 485.55751

ALogP: 4.728 Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Non-Irritant

Probability: 0.898
Enrichment: 0.975
Bayesian Score: -2.78
Mahalanobis Distance: 10.2

Mahalanobis Distance p-value: 0.0322

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Simila	ar Compounds		
Name	Pregna-1,4-diene-3,20-dione, 21-(acetyloxy)-11-hydroxy-6-methyl-17- (1-oxopropoxy)-, (6-alpha,11-beta)-	Benzenesulfonic acid, 2,2'-(4,4'- biphenylylenedivinylene)d i-, disod ium salt	2-Anthracenesulfonic acid, 1-amino-9,10- dihydro-9,10-dioxo-4- (2,4,6 -trimethylanilino)-, monosodium salt
Structure	O TO THE TOP T	OH OH	H ₂ N _M
Actual Endpoint	Irritant	Irritant	Irritant
Predicted Endpoint	Irritant	Non-Irritant	Non-Irritant
Distance	0.778	0.780	0.878
Reference	YACHDS Yakuri to Chiryo. Pharmacology and Therapeutics. (Raifu Saiensu Shup pan K.K., 2-5-13, Yaesu, Chuo-ku, Tokyo 104, Japan) V.1-1972- Volume(issue) /page/year: 19,3103,1991	MVCRB3 MVC-Report. (Stockholm, Sweden) No.1-2, 1972-73. Discontinued. Volu me(issue)/page/year: 2,193,1973	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,1327,1986

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Co	ntribution			
Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
	•	•	-	•

FCFP_12	-1986158408	[*]\N=C\1/S[*]=[*]\N1[0.0821	13 out of 13
FCFP_12	565968762	[*]C(=[*])C(=O)C	0.075	78 out of 79
FCFP_12	-1549103449	[*]NC(=O)[c](:[*]):[*	0.0734	5 out of 5

		tures for negative		
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	-1838187238	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	-0.692	5 out of 12
FCFP_12	1294255210	[*]C(=[*])N[c](:[*]):	-0.486	12 out of 22

FCFP_12	-773983804	_ `0	-0.444	46 out of 79
		9_NNN		
		\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \		
)		
		[*]N[c]1:[cH]:[*].[c]		
		([*]):[cH]:[cH]:1		

C₂₅H₂₀CIN₅O₂S

Molecular Weight: 489.97659

ALogP: 5.409 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Non-Irritant

Probability: 0.816
Enrichment: 0.886
Bayesian Score: -3.42
Mahalanobis Distance: 10.7

Mahalanobis Distance p-value: 0.00706

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Simila	r Compounds		
Name	Benzenesulfonic acid, 2,2'-(4,4'- biphenylylenedivinylene)d i-, disod ium salt	Anthraquinone, 1,1'- iminodi-	Pregna-1,4-diene-3,20- dione, 21-(acetyloxy)-11- hydroxy-6-methyl-17- (1- oxopropoxy)-, (6-alpha,11- beta)-
Structure	OH O	THE PART OF THE PA	O C C C C C C C C C C C C C C C C C C C
Actual Endpoint	Irritant	Irritant	Irritant
Predicted Endpoint	Non-Irritant	Non-Irritant	Irritant
Distance	0.721	0.796	0.817
Reference	MVCRB3 MVC-Report. (Stockholm, Sweden) No.1-2, 1972-73. Discontinued. Volu me(issue)/page/year: 2,193,1973	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,735,1986	YACHDS Yakuri to Chiryo. Pharmacology and Therapeutics. (Raifu Saiensu Shup pan K.K., 2-5-13, Yaesu, Chuo-ku, Tokyo 104, Japan) V.1-1972- Volume(issue) /page/year: 19,3103,1991

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Co	ntribution			
Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set

FCFP_12	-1986158408	[*]\N=C\1/S[*]=[*]\N1[0.0821	13 out of 13
FCFP_12	565968762	**N	0.075	78 out of 79
FCFP_12	-1549103449	[*]NC(=O)[c](:[*]):[*	0.0734	5 out of 5
	Ton Featur	es for negative c	ontribution	

Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	-1838187238	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	-0.692	5 out of 12
FCFP_12	1294255210	[*]C(=[*])N[c](:[*]):	-0.486	12 out of 22

FCFP_12	-773983804	٥	-0.444	46 out of 79	
		S NN			
		S S			
		[*]N[c]1:[cH]:[*]:[c] ([*]):[cH]:[cH]:1			

C₂₆H₂₂CIN₅O₃S

Molecular Weight: 520.00258

ALogP: 5.392 Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Non-Irritant

Probability: 0.873
Enrichment: 0.948
Bayesian Score: -3.02
Mahalanobis Distance: 10.8

Mahalanobis Distance p-value: 0.00565

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Simila	ar Compounds			
Name	Benzenesulfonic acid, 2,2'-(4,4'- biphenylylenedivinylene)d i-, disod ium salt	Pregna-1,4-diene-3,20- dione, 21-(acetyloxy)-11- hydroxy-6-methyl-17- (1- oxopropoxy)-, (6-alpha,11- beta)-	Anthraquinone, 1,1'- iminodi-	
Structure		O C C C C C C C C C C C C C C C C C C C	H H H H H H H H H H H H H H H H H H H	
Actual Endpoint	Irritant	Irritant	Irritant	
Predicted Endpoint	Non-Irritant	Irritant	Non-Irritant	
Distance	0.764	0.860	0.935	
Reference	MVCRB3 MVC-Report. (Stockholm, Sweden) No.1-2, 1972-73. Discontinued. Volu me(issue)/page/year: 2,193,1973	YACHDS Yakuri to Chiryo. Pharmacology and Therapeutics. (Raifu Saiensu Shup pan K.K., 2-5-13, Yaesu, Chuo-ku, Tokyo 104, Japan) V.1-1972- Volume(issue) /page/year: 19,3103,1991	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,735,1986	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Co	ntribution			
	Top fe	atures for positive of	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
		•		

FCFP_12	-1986158408	[*]N=C\1/S[*]=[*]N1[0.0821	13 out of 13
FCFP_12	565968762	[*]C(=[*])C(=O)C	0.075	78 out of 79
FCFP_12	-1549103449	[*]NC(=O)[c](:[*]) ² [*	0.0734	5 out of 5

Top Features for negative contribution				
Bit/Smiles	Feature Structure	Score	Irritant in training set	
-1838187238	[*]C(=[*])N[c]1:[dH]: [cH]:[*]:[cH]:[cH]:1	-0.692	5 out of 12	
1294255210	[*]C(=[*])N[c](:[*] ⁹ !	-0.486	12 out of 22	
	Bit/Smiles -1838187238	Bit/Smiles Feature Structure -1838187238 [*]C(=[*])N[c]1:[cH]:[cH]:[cH]:1 1294255210	Bit/Smiles Feature Structure Score -1838187238 -0.692 [*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1 -0.486	

FCFP_12	-773983804	S ^o	-0.444	46 out of 79
		A-NN SNN		
		\		
		[*]N[c]1:[cH]:[*]:[c]		
		([*]):[cH]:[cH]:1		

C₂₅H₁₉Cl₂N₅O₂S

Molecular Weight: 524.42166

ALogP: 6.073 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Non-Irritant

Probability: 0.84
Enrichment: 0.912
Bayesian Score: -3.27
Mahalanobis Distance: 10.9

Mahalanobis Distance p-value: 0.00383

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Simila	Structural Similar Compounds				
Name	Benzenesulfonic acid, 2,2'-(4,4'- biphenylylenedivinylene)d i-, disod ium salt	Anthraquinone, 1,1'- iminodi-	Pregna-1,4-diene-3,20- dione, 21-(acetyloxy)-11- hydroxy-6-methyl-17- (1- oxopropoxy)-, (6-alpha,11- beta)-		
Structure	OH CONTRACTOR OF THE CONTRACTO	THE PART OF THE PA	O C C C C C C C C C C C C C C C C C C C		
Actual Endpoint	Irritant	Irritant	Irritant		
Predicted Endpoint	Non-Irritant	Non-Irritant	Irritant		
Distance	0.719	0.842	0.903		
Reference	MVCRB3 MVC-Report. (Stockholm, Sweden) No.1-2, 1972-73. Discontinued. Volu me(issue)/page/year: 2,193,1973	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,735,1986	YACHDS Yakuri to Chiryo. Pharmacology and Therapeutics. (Raifu Saiensu Shup pan K.K., 2-5-13, Yaesu, Chuo-ku, Tokyo 104, Japan) V.1-1972- Volume(issue) /page/year: 19,3103,1991		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Co	ntribution			
	Top fe	atures for positive of	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set

FCFP_12	-1986158408	[*]\N=C\1/S[*]=[*]\N1[0.0821	13 out of 13
FCFP_12	565968762	[*]C(=[*])C(=O)C	0.075	78 out of 79
FCFP_12	-1549103449	[*]NC(=O)[c](:[*]);[*	0.0734	5 out of 5

Top Features for negative contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	-1838187238	[*]C(=[*])N[c]1:[cH]: [cH]:[cH]:[cH]:1	-0.692	5 out of 12
FCFP_12	1294255210	[*]C(=[*])N[c](:[*]) ¹	-0.486	12 out of 22

FCFP_12	-773983804	o °	-0.444	46 out of 79
		S N		
		No.		
		[*]N[c]1:[cH]:[*]:[c] ([*]):[cH]:[cH]:1		
		([*]):[cH]:[cH]:1		

 $C_{27}H_{25}N_5O_3S$

Molecular Weight: 499.58409

ALogP: 5.214 Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Non-Irritant

Probability: 0.91
Enrichment: 0.988
Bayesian Score: -2.64
Mahalanobis Distance: 10.4

Mahalanobis Distance p-value: 0.021

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	Benzenesulfonic acid, 2,2'-(4,4'- biphenylylenedivinylene)d i-, disod ium salt	Pregna-1,4-diene-3,20- dione, 21-(acetyloxy)-11- hydroxy-6-methyl-17- (1- oxopropoxy)-, (6-alpha,11- beta)-	2-Anthracenesulfonic acid, 1-amino-9,10- dihydro-9,10-dioxo-4- (2,4,6 -trimethylanilino)-, monosodium salt	
Structure		O C C C C C C C C C C C C C C C C C C C	H ₂ N _{rt}	
Actual Endpoint	Irritant	Irritant	Irritant	
Predicted Endpoint	Non-Irritant	Irritant	Non-Irritant	
Distance	0.770	0.828	0.917	
Reference	MVCRB3 MVC-Report. (Stockholm, Sweden) No.1-2, 1972-73. Discontinued. Volu me(issue)/page/year: 2,193,1973	YACHDS Yakuri to Chiryo. Pharmacology and Therapeutics. (Raifu Saiensu Shup pan K.K., 2-5-13, Yaesu, Chuo-ku, Tokyo 104, Japan) V.1-1972- Volume(issue) /page/year: 19,3103,1991	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,1327,1986	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

ntribution			
Top fe	atures for positive of	ontribution	
Bit/Smiles	Feature Structure	Score	Irritant in training set
	•	•	•
	Top fe	Top features for positive of	Top features for positive contribution

FCFP_12	-1986158408	[*]\N=C\1/S[*]=[*]\N1[0.0821	13 out of 13
FCFP_12	565968762	[*]C(=[*])C(=O)C	0.075	78 out of 79
FCFP_12	-1549103449	[*]NC(=O)[c](:[*]):[*	0.0734	5 out of 5

Top Features for negative contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	-1838187238	[*]C(=[*])N[c]1:[cH]: [cH]:[cH]:[cH]:1	-0.692	5 out of 12
FCFP_12	1294255210	[*]C(=[*])N[c](:[*]):	-0.486	12 out of 22

FCFP_12	-773983804	S ⁰	-0.444	46 out of 79
		P S N		
		δ.		
		[*]N[c]1:[cH]:[*]:[c]		
		([*]):[cH]:[cH]:1		

C₂₆H₂₂CIN₅O₂S

Molecular Weight: 504.00318

ALogP: 5.895 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Non-Irritant

Probability: 0.829
Enrichment: 0.901
Bayesian Score: -3.34
Mahalanobis Distance: 10.8

Mahalanobis Distance p-value: 0.00516

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Simila	r Compounds		
Name	Benzenesulfonic acid, 2,2'-(4,4'- biphenylylenedivinylene)d i-, disod ium salt	Anthraquinone, 1,1'- iminodi-	Pregna-1,4-diene-3,20- dione, 21-(acetyloxy)-11- hydroxy-6-methyl-17- (1- oxopropoxy)-, (6-alpha,11- beta)-
Structure	OH O	THE PART OF THE PA	O C C C C C C C C C C C C C C C C C C C
Actual Endpoint	Irritant	Irritant	Irritant
Predicted Endpoint	Non-Irritant	Non-Irritant	Irritant
Distance	0.721	0.819	0.871
Reference	MVCRB3 MVC-Report. (Stockholm, Sweden) No.1-2, 1972-73. Discontinued. Volu me(issue)/page/year: 2,193,1973	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,735,1986	YACHDS Yakuri to Chiryo. Pharmacology and Therapeutics. (Raifu Saiensu Shup pan K.K., 2-5-13, Yaesu, Chuo-ku, Tokyo 104, Japan) V.1-1972- Volume(issue) /page/year: 19,3103,1991

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Co	ntribution			
	Top fe	atures for positive of	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
		•		

FCFP_12	-1986158408	[*]\N=C\1/S[*]=[*]\N1[0.0821	13 out of 13
FCFP_12	565968762	[*]C(=[*])C(=O)C	0.075	78 out of 79
FCFP_12	-1549103449	[*]NC(=O)[c](:[*]):[*	0.0734	5 out of 5

Top Features for negative contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	-1838187238	[*]C(=[*])N[c]1:[cH]: [cH]:[cH]:[cH]:1	-0.692	5 out of 12
FCFP_12	1294255210	[*]C(=[*])N[c](:[*]):	-0.486	12 out of 22

FCFP_12	-773983804	1 1 1 1	-0.444	46 out of 79
		S S N		
		NO P		
		[*]N[c]1:[cH]:[*]:[c] ([*]):[cH]:[cH]:1		

HN O HN O

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175
Rotatable Bonds: 6
Acceptors: 4

Donors: 3

Model Prediction

Prediction: Non-Irritant

Probability: 0.264
Enrichment: 0.287
Bayesian Score: -5.23
Mahalanobis Distance: 8.27

Mahalanobis Distance p-value: 0.791

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	5-Norbornene-2,3- dicarboxylic acid, 1,4,5,6,7,7-hexachloro-	Benzenesulfonic acid, 2,2'-(4,4'- biphenylylenedivinylene)d i-, disod ium salt	Sulfide, bis(4-t-butyl-m- cresyl)-
Structure	OHCI CI CI OH	OH OH	OH OH OH
Actual Endpoint	Irritant	Irritant	Irritant
Predicted Endpoint	Irritant	Non-Irritant	Irritant
Distance	0.844	0.871	0.884
Reference	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,581,1986	MVCRB3 MVC-Report. (Stockholm, Sweden) No.1-2, 1972-73. Discontinued. Volu me(issue)/page/year: 2,193,1973	AMIHBC AMA Archives of Industrial Hygiene and Occupational Medicine. (Chicago, IL) V.2-10, 1950-54. For publisher information, see AEHLAU. Volume(issue)/pag e/year: 5,311,1952

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Co	ntribution			
	Top fe	atures for positive of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
			_!	I

FCFP_12	-124655670	[*]:[cH]:[cH]:n:[*]	0.0821	13 out of 13
FCFP_12	-1539132615	N N N N N N N N N N N N N N N N N N N	0.0795	9 out of 9
FCFP_12	-1695756380	[*][c]1:[*]:[c]([*]): n:[cH]:[cH]:1	0.0772	7 out of 7
	Top Featur	es for negative c	ontribution	

l op Features for negative contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	-789307649	[*]O[c]f:[cH]:[cH]:[c][(NC(=[*])[*]):[cH]:	-1.54	0 out of 4
FCFP_12	-1838187238	[*]C(=[*])N[c]1:[cH]: [cH]:[cH]:[cH]:1	-0.692	5 out of 12

FCFP_12	1294255210	Ņ	-0.486	12 out of 22
		NO CNO		
		,		
		F CI		
		[*]C(=[*])N[c](:[*]): [*]		
		L J		

 $C_{21}H_{21}N_5O_3S$

Molecular Weight: 423.48813

ALogP: 3.064
Rotatable Bonds: 6

Acceptors: 8
Donors: 1

Model Prediction

Prediction: 25.2

Unit: mg/kg_body_weight/day Mahalanobis Distance: 13.3

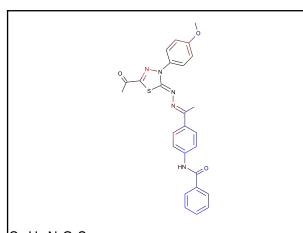
Mahalanobis Distance p-value: 2.2e-008

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	470	[4-Chloro-6-(2,3-xylidino)- 2-pyri-midinylthio]acetic acid s	Acifluorfen		
Structure	OH OO	HO O NH	O OH OL.		
Actual Endpoint (-log C)	4.62839	4.47685	3.40908		
Predicted Endpoint (-log C)	3.93264	3.8529	3.10974		
Distance	0.674	0.738	0.744		
Reference	CPDB	CPDB	CPDB		

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]\N1[*]
- 6. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]

Feature Contribution Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score

ECFP_6	655739385	[*]N=[*]	0.229
ECFP_6	-175146122	[*]C(=[*])[c](:[cH]:[o *]):[cH]:[*]	0.107
ECFP_6	-1087070950	OF SNN NO N	0.104
	Top Features	for negative contribution	า
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	1996767644	[*][c](:[*]):[cH]:[eH]:[*]	-0.251
ECFP_6	642810091	[*][c](:[*]):[*]	-0.247

ECFP_6	-182236392	o_NN O	-0.232
		 N N N N N N N N N 	

 $C_{26}H_{23}N_5O_3S$

Molecular Weight: 485.55751

ALogP: 4.728 Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: 19.1

Unit: mg/kg_body_weight/day Mahalanobis Distance: 14.3

Mahalanobis Distance p-value: 5.86e-011

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	223	470	Ochratoxin A	
Structure	AND Ensisteme	OH OO O	OH OH CI	
Actual Endpoint (-log C)	5.08368	4.62839	4.79932	
Predicted Endpoint (-log C)	5.08273	3.93264	3.6353	
Distance	0.789	0.837	0.845	
Reference	CPDB	CPDB	CPDB	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]\N1[*]
- 6. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]

Top features for positive contribution				
Fingerprint Bit/Smiles Feature Structure Score				

ECFP_6	655739385	[*]N=[*]	0.229
ECFP_6	-175146122	[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	0.107
ECFP_6	-1087070950	(*]N=[*]	0.104
	Top Features f	or negative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	1996767644	[*][c](:[*]):[cH]:[cH]:[*]	-0.251
ECFP_6	642810091	[*][c](:[*]):[*]	-0.247

ECFP_6	-182236392	O-SNN NN NN NN NN NN NN NN NN NN NN NN NN	-0.232
		[*]:[cH]:[*]	

 $C_{25}H_{20}CIN_5O_2S$

Molecular Weight: 489.97659

ALogP: 5.409 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: 10.1

Unit: mg/kg_body_weight/day Mahalanobis Distance: 13.3

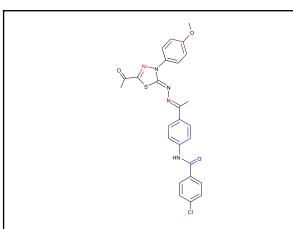
Mahalanobis Distance p-value: 1.67e-008

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	646	Acifluorfen	[4-Chloro-6-(2,3-xylidino)- 2-pyri-midinylthio]acetic acid s	
Structure	OH OIL	O OH O OH O OH OH OH OH OH OH OH OH OH O	HO NH NH	
Actual Endpoint (-log C)	0.937339	3.40908	4.47685	
Predicted Endpoint (-log C)	3.26294	3.10974	3.8529	
Distance	0.788	0.826	0.828	
Reference	CPDB	CPDB	CPDB	

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP 2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 6. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]

Feature Contribution Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score

ECFP_6	655739385	[*]N=[*]	0.229
ECFP_6	-817402818	Ci NN NN	0.129
ECFP_6	-175146122	[*]C(=[*])[c](:[cH]:[*]	0.107
		for negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	1996767644	[*][c](:[*]):[cH]:[cH]	-0.251
ECFP_6	642810091	[*][c](:[*]):[*]	-0.247

ECFP_6	-182236392	O S N N	-0.232
		S N	
		[*]:[cH]:[*]	

 $C_{26}H_{22}CIN_5O_3S$

Molecular Weight: 520.00258

ALogP: 5.392 Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: 5.86

Unit: mg/kg_body_weight/day Mahalanobis Distance: 14.7

Mahalanobis Distance p-value: 2.56e-012

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	223	Acifluorfen	Ochratoxin A	
Structure	AND Enantomie	O OH O I O I O I O I O I O I O I O I O I	OH HO CI	
Actual Endpoint (-log C)	5.08368	3.40908	4.79932	
Predicted Endpoint (-log C)	5.08273	3.10974	3.6353	
Distance	0.781	0.871	0.878	
Reference	CPDB	CPDB	CPDB	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. OPS PC24 out of range. Value: -4.6195. Training min, max, SD, explained variance: -4.4826, 3.8729, 1.034, 0.0133.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP 2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]\N1[*]
- 6. Unknown ECFP 2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]

Top features for positive contribution					
Fingerprint Bit/Smiles Feature Structure Score					

ECFP_6	655739385		0.229
ECFP_6	-817402818		0.129
ECFP_6	-175146122	[*]CI	0.107
	Top Features	for negative contribution	n
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	1996767644	[*][c](:[*]):[cH]:{cH}	-0.251
ECFP_6	642810091	[*][c](:[*]):[*]	-0.247

ECFP_6	-182236392	P _S N _N	-0.232
		[*]:[cH]:[*]	

C₂₅H₁₉Cl₂N₅O₂S

Molecular Weight: 524.42166

ALogP: 6.073 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: 3.51

Unit: mg/kg_body_weight/day Mahalanobis Distance: 12.6

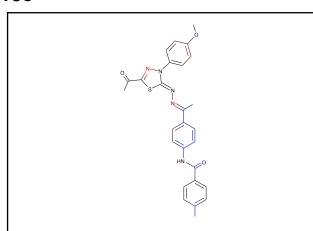
Mahalanobis Distance p-value: 1.36e-006

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	646	Acifluorfen	[4-Chloro-6-(2,3-xylidino)- 2-pyri-midinylthio]acetic acid s	
Structure	OH O - Z	O OH O OH O OH OH OH OH OH OH OH OH OH O	HO O NH	
Actual Endpoint (-log C)	0.937339	3.40908	4.47685	
Predicted Endpoint (-log C)	3.26294	3.10974	3.8529	
Distance	0.829	0.854	0.863	
Reference	CPDB	CPDB	CPDB	

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. OPS PC20 out of range. Value: 3.7769. Training min, max, SD, explained variance: -4.3384, 3.4394, 1.14, 0.0162.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 6. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]

Top features for positive contribution				
Fingerprint	Fingerprint Bit/Smiles Feature Structure Score			

ECFP_6	655739385	"S N N N N N N N N N N N N N N N N N N N	0.229
ECFP_6	-817402818	**S ** S	0.129
ECFP_6	-175146122	[*]C(=[*])[c](:[cH]:[*]	0.107
	Top Features	for negative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	1996767644	[*][c](:[*]):[cH]:{cH}	-0.251
ECFP_6	642810091	NN NN NN NN NN NN NN N	-0.247

ECFP_6	-182236392	$\mathcal{O}^{\text{c}_{\text{l}}}$	-0.232
		S NN	
		Q	
		\	
		[*]:[cH]:[*]	

 $C_{27}H_{25}N_5O_3S$

Molecular Weight: 499.58409

ALogP: 5.214 Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: 11

Unit: mg/kg_body_weight/day Mahalanobis Distance: 14.7

Mahalanobis Distance p-value: 4.27e-012

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	223	646	470	
Structure	AND Ensistemes	OH NN N O I	OH ON	
Actual Endpoint (-log C)	5.08368	0.937339	4.62839	
Predicted Endpoint (-log C)	5.08273	3.26294	3.93264	
Distance	0.787	0.852	0.861	
Reference	CPDB	CPDB	CPDB	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]\N1[*]
- 6. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]

Top features for positive contribution			
Fingerprint Bit/Smiles Feature Structure Score			

ECFP_6	655739385	-NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	0.229
ECFP_6	-175146122		0.107
ECFP_6	-1087070950	NN N O O O O O O O O	0.104
	Top Features for no	egative contribution	
Fingerprint	Bit/Smiles		Score
ECFP_6	1996767644	[*][c](:[*]):[cH]:[cH	-0.251
ECFP_6	642810091	[*][c](:[*]):[*]	-0.247

ECFP_6	-182236392	O°	-0.232
		S N N	
		Q _{No}	
		\$	
		[*]:[cH]:[*]	

4.47685

3.8529

0.843

CPDB

C₂₆H₂₂CIN₅O₂S

Molecular Weight: 504.00318

ALogP: 5.895 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: 5.83

Unit: mg/kg_body_weight/day Mahalanobis Distance: 13.1

Mahalanobis Distance p-value: 8.89e-008

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	646	Acifluorfen	[4-Chloro-6-(2,3-xylidino)- 2-pyri-midinylthio]acetic acid s
Structure	OH N N N	O OH O O	CI NH HO O

Model Applicability

Actual Endpoint (-log C)

Predicted Endpoint (-log

Distance

Reference

Structural Similar Compounds

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

3.40908

3.10974

0.841

CPDB

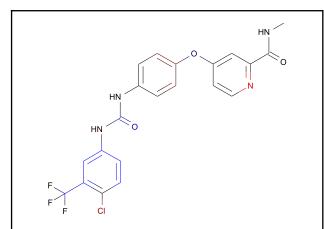
- 1. OPS PC20 out of range. Value: 3.6466. Training min, max, SD, explained variance: -4.3384, 3.4394, 1.14, 0.0162.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]

0.937339

3.26294

0.798

CPDB


- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 6. Unknown ECFP 2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]

Feature Contribution

Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score

ECFP_6	655739385	[*]N=[*]	0.229
ECFP_6	-817402818		0.129
ECFP_6	-175146122	[*]C(=[*])[c](:[cH]:[*])	0.107
	Top Features	for negative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	1996767644	[*][c](:[*]):[cH]:[cH]:[*]	-0.251
ECFP_6	642810091	[*][c](:[*]):[*]	-0.247

ECFP_6	-182236392	€ NV CCI	-0.232
		/ s * z	
		[*]:[cH]:[*]	

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4
Donors: 3

Model Prediction

Prediction: 19.2

Unit: mg/kg_body_weight/day Mahalanobis Distance: 12.4

Mahalanobis Distance p-value: 2.94e-006

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Ochratoxin A	542	4-Chloro-6-(2,3-xylidino)- 2-pyri-mi-dinylthio(N-b- hydroxy-ethyl) acetamide		
Structure	OH HO CI	AND Enantomer AND Enantomer HN HO HO HO HO HO HO HO HO HO	NN NH NH		
Actual Endpoint (-log C)	4.79932	4.79932	3.91517		
Predicted Endpoint (-log C)	3.6353	3.6353	3.92186		
Distance	0.718	0.718	0.738		
Reference	CPDB	CPDB	CPDB		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 1338334141: [*]C(=[*])NC
- 3. Unknown ECFP_2 feature: 1413420509: [*]C(=[*])[c](:n:[*]):c:[*]

Feature Contribution					
	Top features	for positive contribution	า		
Fingerprint	Bit/Smiles	Feature Structure	Score		
ECFP_6	655739385	[*]N=[*]	0.229		
		1 174 17			

ECFP_6	-817402818	[*]CI	0.129
ECFP_6	-176455838	[*]O[c](:[cH]:[*]):[c H]:[*]	0.0818
		for negative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	1996767644	[*][c](:[*]):[cH]:[cH	-0.251
ECFP_6	642810091	[*][c](:[*]):[*]	-0.247
ECFP_6	-182236392		-0.232

 $C_{21}H_{21}N_5O_3S$

Molecular Weight: 423.48813

ALogP: 3.064 Rotatable Bonds: 6

Acceptors: 8
Donors: 1

Model Prediction

Prediction: 2.46

Unit: mg/kg_body_weight/day Mahalanobis Distance: 14.1

Mahalanobis Distance p-value: 1.52e-008

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	C.I. direct brown 95	4,4´- Sulfonylbisacetanilide	Omeprazole	
Structure		HN NH	H P P P P P P P P P P P P P P P P P P P	
Actual Endpoint (-log C)	5.31387	3.77655	3.4628	
Predicted Endpoint (-log C)	4.30266	3.55337	4.7324	
Distance	0.616	0.697	0.697	
Reference	CPDB	CPDB	CPDB	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

 OPS PC7 out of range. Value: -5.4904. Training min, max, SD, explained variance: -5.0422, 6.1749, 1.868, 0.0335.

Feature Contribution						
	Top features	for positive contributio	n			
Fingerprint	Bit/Smiles	Feature Structure	Score			
FCFP_6	136627117	**OC	0.69			

FCFP_6	565998553	[*]C(=[*])C1=N[*][*]S	0.357
FCFP_6	565968762	[*]C(=[*])C(=O)C	0.266
		for negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	16	°, NN	-0.354
FCFP_6	590925877	[*]N[c](:[cH]:[*])9[c H]:[*]	-0.323
FCFP_6	1674451008	[*]N([*])[c]1:[cft:[*]:[c]([*]):[cH]:[cH]	-0.233

 $C_{26}H_{23}N_5O_3S$

Molecular Weight: 485.55751

ALogP: 4.728 Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: 3.63

Unit: mg/kg_body_weight/day Mahalanobis Distance: 14.4

Mahalanobis Distance p-value: 1.69e-009

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	C.I. direct brown 95	FD & C violet no. 1	5,6- Dimethoxysterigmatocysti n		
Structure		O OHO	HO		
Actual Endpoint (-log C)	5.31387	2.8543	6.02361		
Predicted Endpoint (-log C)	4.30266	3.40838	4.98771		
Distance	0.606	0.779	0.780		
Reference	CPDB	CPDB	CPDB		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC7 out of range. Value: -5.7577. Training min, max, SD, explained variance: -5.0422, 6.1749, 1.868, 0.0335.

Feature Contribution					
	Top features	for positive contribution	n		
Fingerprint	Bit/Smiles	Feature Structure	Score		
FCFP_6	136627117	°, s , s , s , s , s , s , s , s , s , s	0.69		

FCFP_6	565998553	[*]C(=[*])C1=N[*][*]S	0.357
FCFP_6	565968762	[*]C(=[*])C(=O)C	0.266
		or negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	991735244	[*][c]1:[*]:[cH]:[cH]: :[cH]:[cH]:1	-0.422
FCFP_6	-2093839777	[*][c]1:[cH]:[cH]:[cH]	-0.378
FCFP_6	16	[*]:[cH]:[*]	-0.354

 $C_{25}H_{20}CIN_5O_2S$

Molecular Weight: 489.97659

ALogP: 5.409 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: 12

Unit: mg/kg_body_weight/day Mahalanobis Distance: 14.2

Mahalanobis Distance p-value: 7.46e-009

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	C.I. direct brown 95	FD & C violet no. 1	3-(Cyclopentyloxy)-N-(3,5-di-chloro-4-pyridyl)-4-methoxy-benzamide		
Structure	N. N	OHO OHO	N H CI		
Actual Endpoint (-log C)	5.31387	2.8543	5.39369		
Predicted Endpoint (-log C)	4.30266	3.40838	4.27874		
Distance	0.659	0.719	0.748		
Reference	CPDB	CPDB	CPDB		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Feature Contribution					
	Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score		
FCFP_6	565998553	[*]C(=[*])C1=N[*][*]S	0.357		

	L		1
FCFP_6	565968762	* C(=[*])C(=O)C	0.266
FCFP_6	1		0.234
	Top Features f	or negative contributio	n
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	991735244	[*][c]1:[*]:[cH]:[cH]	-0.422
FCFP_6	-2093839777	[*][c]1:[cH]:[cH]:[cH]	-0.378
FCFP_6	16	[*]:[cH]:[*]	-0.354

C₂₆H₂₂CIN₅O₃S

Molecular Weight: 520.00258

ALogP: 5.392 Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: 0.349

Unit: mg/kg_body_weight/day Mahalanobis Distance: 14.7

Mahalanobis Distance p-value: 2.92e-010

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	C.I. direct brown 95	223	FD & C violet no. 1	
Structure	N. MH	AND Exercisons	ON O	
Actual Endpoint (-log C)	5.31387	6.29867	2.8543	
Predicted Endpoint (-log C)	4.30266	7.5657	3.40838	
Distance	0.647	0.787	0.796	
Reference	CPDB	CPDB	CPDB	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC7 out of range. Value: -5.3084. Training min, max, SD, explained variance: -5.0422, 6.1749, 1.868, 0.0335.

Feature Contribution				
Top features	for positive contribution	n		
Bit/Smiles	Feature Structure	Score		
136627117	[*]OC	0.69		
	Top features Bit/Smiles	Bit/Smiles Feature Structure 136627117	Top features for positive contribution Bit/Smiles Feature Structure Score 136627117 0.69	

FCFP_6	565998553	S S S S S S S S S S S S S S S S S S S	0.357
FCFP_6	565968762	[*]C(=[*])C1=N[*][*]S	0.266
FCFF_0	505900702	[*]C(=[*])C(=O)C	0.266
	Top Fostures	for negative contributio	un .
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	16	[*]:[cH]:[*]	-0.354
FCFP_6	590925877	[*]N[c](:[cH]:[*]):[c H]:[*]	-0.323
FCFP_6	1674451008	[*]N([*]):[cH]:[cH]::1	-0.233

C₂₅H₁₉Cl₂N₅O₂S

Molecular Weight: 524.42166

ALogP: 6.073 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: 1.66

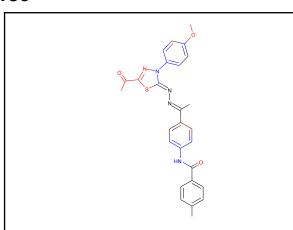
Unit: mg/kg_body_weight/day Mahalanobis Distance: 13.5

Mahalanobis Distance p-value: 3.62e-007

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	C.I. direct brown 95	FD & C violet no. 1	3-(Cyclopentyloxy)-N-(3,5-di-chloro-4-pyridyl)-4-methoxy-benzamide		
Structure	Name of the second of the seco	OHO N	N H O O O O O O O O O O O O O O O O O O		
Actual Endpoint (-log C)	5.31387	2.8543	5.39369		
Predicted Endpoint (-log C)	4.30266	3.40838	4.27874		
Distance	0.696	0.742	0.776		
Reference	CPDB	CPDB	CPDB		


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Feature Contribution					
	Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score		
FCFP_6	565998553	NN NO NO NO NO NO NO NO	0.357		

FCFP_6	565968762	[*]C(=[*])C(=O)C	0.266
FCFP_6	1	[*]=O	0.234
		for negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	16	CI S N N N N N N N N N N N N N N N N N N N	-0.354
FCFP_6	590925877	[*]N[c](:[cH]:[*])*[c H]:[*]	-0.323
FCFP_6	1674451008	[*]N([*])[c]1:[cH]-[*]:[c]([*]):[cH]:[cH] :1	-0.233

 $C_{27}H_{25}N_5O_3S$

Molecular Weight: 499.58409

ALogP: 5.214 Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: 0.451

Unit: mg/kg_body_weight/day Mahalanobis Distance: 15.1

Mahalanobis Distance p-value: 2.14e-011

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	C.I. direct brown 95	FD & C violet no. 1	223	
Structure		OH OLD OH	AND Ensistemer	
Actual Endpoint (-log C)	5.31387	2.8543	6.29867	
Predicted Endpoint (-log C)	4.30266	3.40838	7.5657	
Distance	0.631	0.790	0.790	
Reference	CPDB	CPDB	CPDB	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Feature Conti	ribution			
	Top features	for positive contributio	n	
Fingerprint	Bit/Smiles	Feature Structure	Score	
FCFP_6	136627117	**************************************	0.69	

FCFP_6	565998553	[*]C(=[*])C1=N[*][*]S	0.357
FCFP_6	565968762	[*]C(=[*])C(=O)C	0.266
		for negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	16	[*]:[cH]:[*]	-0.354
FCFP_6	590925877	[*]N[c](:[cH]:[*]):[c H]:[*]	-0.323
FCFP_6	1674451008	[*]N([*])[c]1:[cH]:[cH] ::1	-0.233

CPDB

 $C_{26}H_{22}CIN_5O_2S$

Molecular Weight: 504.00318

ALogP: 5.895 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: 1.5

Unit: mg/kg_body_weight/day Mahalanobis Distance: 14.3

Mahalanobis Distance p-value: 3.32e-009

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

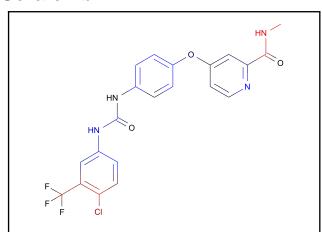
Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	C.I. direct brown 95	FD & C violet no. 1	Indomethacin		
Structure		0,0H0	OH OH		
Actual Endpoint (-log C)	5.31387	2.8543	5.49293		
Predicted Endpoint (-log C)	4.30266	3.40838	4.9569		
Distance	0.684	0.735	0.768		

Model Applicability

Reference

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.


CPDB

1. All properties and OPS components are within expected ranges.

CPDB

Feature Contribution				
	Top features	for positive contributio	n	
Fingerprint	Bit/Smiles	Feature Structure	Score	
FCFP_6	565998553	[*]C(=[*])C1=N[*][*]S	0.357	

FCFP_6	565968762	[*]C(=[*])C(=O)C	0.266
FCFP_6	1	[*]=O	0.234
		or negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	16	SNN N N N N N N N N N N N N N N N N N N	-0.354
FCFP_6	590925877	[*]N[c](:[cH]:[*]):[c H]:[*]	-0.323
FCFP_6	1674451008	[*]N([*])[c]1:[cH]:[cH]::1	-0.233

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4 Donors: 3

Model Prediction

Prediction: 14.2

Unit: mg/kg_body_weight/day Mahalanobis Distance: 20.4

Mahalanobis Distance p-value: 9.56e-031

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccuratė.

Name	Fluvastatin	913	Ochratoxin A
Structure	HO HO HO	OH OH	OH HO CI
Actual Endpoint (-log C)	3.51742	3.51742	6.47264
Predicted Endpoint (-log C)	5.41573	5.41573	5.06501
Distance	0.597	0.597	0.666
Reference	CPDB	CPDB	CPDB

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- All properties and OPS components are within expected ranges.
- Unknown FCFP 2 feature: -1029533685: [*]:[c](:[*])C(F)(F)F

Feature Contri	ibution			
	Top features	for positive contribution	า	
Fingerprint	Bit/Smiles	Feature Structure	Score	
FCFP_6	1	[*]=O	0.234	

FCFP_6	-885550502	F _F C _I [*]C(=[*])NC	0.229
FCFP_6	32	[*]CI	0.154
Fingerprint	Top Features	for negative contribution Feature Structure	n Score
FCFP_6	16	F C C [*]:[cH]:[*]	-0.354
FCFP_6	590925877	[*]N[c](:[cH]:[*]):[c H]:[*]	-0.323
FCFP_6	1674451008	[*]N([*]):[cH]:[cH]:[cH]::1	-0.233

C₂₁H₂₁N₅O₃S

Molecular Weight: 423.48813

ALogP: 3.064 Rotatable Bonds: 6

Acceptors: 8
Donors: 1

Model Prediction

Prediction: 0.0341

Unit: g/kg_body_weight Mahalanobis Distance: 30.9

Mahalanobis Distance p-value: 2.16e-026

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds			
Name	DILTIAZEM	CHLORSULFURON	PENICILLIN VK
Structure	N N N N N N N N N N N N N N N N N N N	HN N O O	HO N N Tris
Actual Endpoint (-log C)	4.21961	4.15566	2.99188
Predicted Endpoint (-log C)	4.005	3.79771	4.18433
Distance	0.596	0.659	0.677
Reference	NDA-18602	EPA COVER SHEET 0027;880301;(1)	NTP REPORT # 336

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. OPS PC32 out of range. Value: 4.5485. Training min, max, SD, explained variance: -4.2021, 4.2975, 1.228, 0.0066.
- 2. Unknown ECFP_6 feature: 912478223: [*]S[*]
- 3. Unknown ECFP_6 feature: -175146122: [*]C(=[*])[c](:[cH]:[*]):[cH]:[*]
- 4. Unknown ECFP_6 feature: -177077903: [*]N[c](:[cH]:[*]):[cH]:[*]
- 5. Unknown ECFP_6 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 6. Unknown ECFP_6 feature: -474544785: [*]NC(=O)C
- 7. Unknown ECFP_6 feature: 562081661: [*]C(=NN=[*])[*]
- 8. Unknown ECFP_6 feature: -819426257: [*]C(=NN=[*])[*]
- 9. Unknown ECFP_6 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 10. Unknown ECFP_6 feature: 2122741631: [*]C1=[*][*]C(=[*])S1
- 11. Unknown ECFP_6 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 12. Unknown ECFP_6 feature: 2092245922: [*]N1[*][*]C(=N1)[*]
- 13. Unknown ECFP_6 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 14. Unknown ECFP_6 feature: -175021654: [*]N([*])[c](:[cH]:[*]):[cH]:[*]
- 15. Unknown ECFP_6 feature: 129482634: [*]C(=[*])C(=O)C
- 16. Unknown ECFP_6 feature: 1307307440: [*]:[c](:[*])OC

Top features for positive contribution				
Bit/Smiles	Feature Structure	Score		
-1143715940	[*]C1=[*][*]C(=[*])S1	0.13		
-176455838	[*]O[c](:[cH]:[*]):[c H]:[*]	0.106		
3	° → ° N N N N N N N N N N N N N N N N N	0.0924		
Bit/Smiles	Feature Structure	Score		
1	O S N N N N N N N N N N N N N N N N N N	-0.102		
	Bit/Smiles -1143715940 -176455838	Bit/Smiles -1143715940 -176455838 -176455838 -170 Features for negative contribution Bit/Smiles Feature Structure 1		

ECFP_6	-1087070950	.°° .°° .°° .°° .°° .°° .°° .°°	-0.102
FCFP_6	-453677277	[*]C(=[*])[c]1:[cH][*]:[c]([*]):[cH]:[cH	-0.0906

 $C_{26}H_{23}N_5O_3S$

Molecular Weight: 485.55751

ALogP: 4.728 Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: 0.0407

Unit: g/kg_body_weight Mahalanobis Distance: 31.3

Mahalanobis Distance p-value: 5.06e-027

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	DILTIAZEM	RESERPINE	C.I.PIGMENT RED 23
Structure	N N N N N N N N N N N N N N N N N N N	O TAME O	HN COH
Actual Endpoint (-log C)	4.21961	6.38645	2.28997
Predicted Endpoint (-log C)	4.005	5.548	3.52921
Distance	0.706	0.710	0.746
Reference	NDA-18602	NTP 193 22	NTP 411 146

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. OPS PC32 out of range. Value: 4.3704. Training min, max, SD, explained variance: -4.2021, 4.2975, 1.228, 0.0066.
- 2. Unknown ECFP_6 feature: 912478223: [*]S[*]
- 3. Unknown ECFP_6 feature: -175146122: [*]C(=[*])[c](:[cH]:[*]):[cH]:[*]
- 4. Unknown ECFP_6 feature: -177077903: [*]N[c](:[cH]:[*]):[cH]:[*]
- 5. Unknown ECFP_6 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 6. Unknown ECFP_6 feature: 1997021792: [*]:[cH]:[cH]:[cH]:[*]
- 7. Unknown ECFP_6 feature: 1430169877: [*]NC(=0)[c](:[*]):[*]
- 8. Unknown ECFP 6 feature: 562081661: [*]C(=NN=[*])[*]
- 9. Unknown ECFP 6 feature: -819426257: [*]C(=NN=[*])[*]
- 10. Unknown ECFP 6 feature: 189949281: [*]\N=C\1/S[*]=[*]\N1[*]
- 11. Unknown ECFP_6 feature: 2122741631: [*]C1=[*][*]C(=[*])S1
- 12. Unknown ECFP 6 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 13. Unknown ECFP_6 feature: 2092245922: [*]N1[*][*]C(=N1)[*]
- 14. Unknown ECFP_6 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 15. Unknown ECFP_6 feature: -175021654: [*]N([*])[c](:[cH]:[*]):[cH]:[*]
- 16. Unknown ECFP_6 feature: 129482634: [*]C(=[*])C(=O)C
- 17. Unknown ECFP_6 feature: 1307307440: [*]:[c](:[*])OC

Fingerprint	Bit/Smiles	for positive contribution Feature Structure	Score
FCFP_6	-1143715940	O-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z	0.13
ECFP_6	-176455838	[*]C1=[*][*]C(=[*])S1	0.106
FCFP_6	3	H]:[*]	0.0924
		for negative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	991735244	[*][c]1:[*]:[cH]:[cH]:1	-0.134

ECFP_6	1564392544	[*][c]1:[*]:[cH]:[cH] :[cH]:[cH]:1	-0.133
FCFP_6	1	OFF	-0.102

C₂₅H₂₀CIN₅O₂S

Molecular Weight: 489.97659

ALogP: 5.409 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: 0.0654

Unit: g/kg_body_weight Mahalanobis Distance: 31.8

Mahalanobis Distance p-value: 7.4e-028

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds			
Name	FLUVALINATE	D & C RED 9	ASSURE
Structure	THUNK NH	ON OH ON OH	CIANTAL
Actual Endpoint (-log C)	5.30356	3.87715	5.00328
Predicted Endpoint (-log C)	4.89944	3.6546	4.27671
Distance	0.707	0.720	0.726
Reference	EPA COVER SHEET 0281;880630;(1)	NTP REPORT # 225	EPA COVER SHEET 0335;891001;(1)

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_6 feature: 912478223: [*]S[*]
- 3. Unknown ECFP_6 feature: -175146122: [*]C(=[*])[c](:[cH]:[*]):[cH]:[*]
- 4. Unknown ECFP_6 feature: -177077903: [*]N[c](:[cH]:[*]):[cH]:[*]
- 5. Unknown ECFP_6 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 6. Unknown ECFP_6 feature: 1997021792: [*]:[cH]:[cH]:[cH]:[*]
- 7. Unknown ECFP_6 feature: 1430169877: [*]NC(=O)[c](:[*]):[*]
- 8. Unknown ECFP_6 feature: 562081661: [*]C(=NN=[*])[*]
- 9. Unknown ECFP_6 feature: -819426257: [*]C(=NN=[*])[*]
- 10. Unknown ECFP_6 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 11. Unknown ECFP_6 feature: 2122741631: [*]C1=[*][*]C(=[*])S1
- 12. Unknown ECFP_6 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 13. Unknown ECFP_6 feature: 2092245922: [*]N1[*][*]C(=N1)[*]
- 14. Unknown ECFP_6 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 15. Unknown ECFP_6 feature: -175021654: [*]N([*])[c](:[cH]:[*]):[cH]:[*]
- 16. Unknown ECFP_6 feature: 129482634: [*]C(=[*])C(=O)C
- 17. Unknown ECFP_6 feature: -176494269: [*]:[cH]:[c](CI):[cH]:[*]
- 18. Unknown ECFP_6 feature: 99947387: [*]:[c](:[*])Cl

reatures for positive contribution s Feature Structure 940 [*]C1=[*][*]C(=[*])S1 0.101 0.0924
0.13 [*]C1=[*][*]C(=[*])S1 0.101 0.101
[*]C1=[*][*]C(=[*])S1 O_NN S_N N O_NN S_N N O_NN N N O_NN N O_NN N N N
OF STANDARD CONTRACTOR
0.0924
[*]N[*]
eatures for negative contribution
s Feature Structure Score
-0.134 -0.134 [*][c]1:[*]:[cH]:[cH] :[cH]:[cH]:1

ECFP_6	1564392544	[*][c]1:[*]:[cH]:[cH] :[cH]:[cH]:1	-0.133
FCFP_6	1	[*]=O	-0.102

C₂₆H₂₂CIN₅O₃S

Molecular Weight: 520.00258

ALogP: 5.392 Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: 0.013

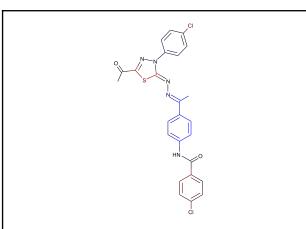
Unit: g/kg_body_weight Mahalanobis Distance: 31.3

Mahalanobis Distance p-value: 4.19e-027

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds			
Name	RESERPINE	FLUVALINATE	C.I.PIGMENT RED 23
Structure		F N N N N N N N N N N N N N N N N N N N	HN COH
Actual Endpoint (-log C)	6.38645	5.30356	2.28997
Predicted Endpoint (-log C)	5.548	4.89944	3.52921
Distance	0.695	0.729	0.755
Reference	NTP 193 22	EPA COVER SHEET 0281;880630;(1)	NTP 411 146


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_6 feature: 912478223: [*]S[*]
- 3. Unknown ECFP_6 feature: -175146122: [*]C(=[*])[c](:[cH]:[*]):[cH]:[*]
- 4. Unknown ECFP_6 feature: -177077903: [*]N[c](:[cH]:[*]):[cH]:[*]
- 5. Unknown ECFP_6 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 6. Unknown ECFP_6 feature: -176494269: [*]:[cH]:[c](CI):[cH]:[*]
- 7. Unknown ECFP_6 feature: 1430169877: [*]NC(=O)[c](:[*]):[*]
- 8. Unknown ECFP_6 feature: 562081661: [*]C(=NN=[*])[*]
- 9. Unknown ECFP_6 feature: -819426257: [*]C(=NN=[*])[*]
- 10. Unknown ECFP_6 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 11. Unknown ECFP_6 feature: 2122741631: [*]C1=[*][*]C(=[*])S1
- 12. Unknown ECFP_6 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 13. Unknown ECFP_6 feature: 2092245922: [*]N1[*][*]C(=N1)[*]
- 14. Unknown ECFP_6 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 15. Unknown ECFP_6 feature: -175021654: [*]N([*])[c](:[cH]:[*]):[cH]:[*]
- 16. Unknown ECFP_6 feature: 129482634: [*]C(=[*])C(=O)C
- 17. Unknown ECFP_6 feature: 99947387: [*]:[c](:[*])Cl
- 18. Unknown ECFP_6 feature: 1307307440: [*]:[c](:[*])OC

ribution	f				
	Feature Structure	Score			
-1143715940	NN NN NN NN NN NN NN N	0.13			
-176455838	[*]O[c](:[cH]:[*]):{c H]:[*]	0.106			
32	 	0.101			
Top Features f	<u>!</u>	n			
Bit/Smiles	Feature Structure	Score			
1		-0.102			
	Top features 1 Bit/Smiles -1143715940 -176455838 32 Top Features 1	Top features for positive contribution Bit/Smiles Feature Structure -1143715940 -176455838 -176455838 Top Features for negative contribution Bit/Smiles Feature Structure 1			

ECFP_6	-1087070950	 	-0.102
FCFP_6	-453677277	[*]C(=[*])[c]1:[c]+ *]:[c]((*]):[cH]:[cH	-0.0906

C₂₅H₁₉Cl₂N₅O₂S

Molecular Weight: 524.42166

ALogP: 6.073 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: 0.0299

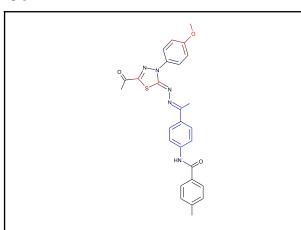
Unit: g/kg_body_weight Mahalanobis Distance: 30.9

Mahalanobis Distance p-value: 3.23e-026

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	FLUVALINATE	RHODAMINE 6G	D & C RED 9	
Structure	O AND THE STATE OF	THE THE PART OF TH	NOH ON OH	
Actual Endpoint (-log C)	5.30356	4.54906	3.87715	
Predicted Endpoint (-log C)	4.89944	4.6787	3.6546	
Distance	0.693	0.747	0.763	
Reference	EPA COVER SHEET 0281;880630;(1)	NTP 364 39	NTP REPORT # 225	


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_6 feature: 912478223: [*]S[*]
- 3. Unknown ECFP_6 feature: -175146122: [*]C(=[*])[c](:[cH]:[*]):[cH]:[*]
- 4. Unknown ECFP_6 feature: -177077903: [*]N[c](:[cH]:[*]):[cH]:[*]
- 5. Unknown ECFP_6 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 6. Unknown ECFP_6 feature: -176494269: [*]:[cH]:[c](CI):[cH]:[*]
- 7. Unknown ECFP_6 feature: 1430169877: [*]NC(=0)[c](:[*]):[*]
- 8. Unknown ECFP_6 feature: 562081661: [*]C(=NN=[*])[*]
- 9. Unknown ECFP_6 feature: -819426257: [*]C(=NN=[*])[*]
- 10. Unknown ECFP_6 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 11. Unknown ECFP_6 feature: 2122741631: [*]C1=[*][*]C(=[*])S1
- 12. Unknown ECFP_6 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 13. Unknown ECFP_6 feature: 2092245922: [*]N1[*][*]C(=N1)[*]
- 14. Unknown ECFP_6 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 15. Unknown ECFP_6 feature: -175021654: [*]N([*])[c](:[cH]:[*]):[cH]:[*]
- 16. Unknown ECFP_6 feature: 129482634: [*]C(=[*])C(=O)C
- 17. Unknown ECFP_6 feature: 99947387: [*]:[c](:[*])Cl

Top features for positive contribution			
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	-1143715940	[*]C1=[*][*]C(=[*])S1	0.13
FCFP_6	32	NN N N N N N N N N	0.101
FCFP_6	3	[*]N[*]	0.0924
	Top Features	for negative contributio	n
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	1	[*]=O	-0.102

ECFP_6	-1087070950	**N***********************************	-0.102
FCFP_6	-453677277	[*]C(=[*])[c]1:[c]+ *]:[c]([*]):[cH]:[cH	-0.0906

 $C_{27}H_{25}N_5O_3S$

Molecular Weight: 499.58409

ALogP: 5.214
Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: 0.018

Unit: g/kg_body_weight Mahalanobis Distance: 31

Mahalanobis Distance p-value: 2.12e-026

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds			
Name	RESERPINE	DILTIAZEM	C.I.PIGMENT RED 23
Structure		N N N N N N N N N N N N N N N N N N N	HAN OH ON N

			0=10-0
Actual Endpoint (-log C)	6.38645	4.21961	2.28997
Predicted Endpoint (-log C)	5.548	4.005	3.52921
Distance	0.698	0.740	0.747
Reference	NTP 193 22	NDA-18602	NTP 411 146

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_6 feature: 912478223: [*]S[*]
- 3. Unknown ECFP_6 feature: -175146122: [*]C(=[*])[c](:[cH]:[*]):[cH]:[*]
- 4. Unknown ECFP_6 feature: -177077903: [*]N[c](:[cH]:[*]):[cH]:[*]
- 5. Unknown ECFP_6 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 6. Unknown ECFP_6 feature: -179515162: [*]:[cH]:[c](C):[cH]:[*]
- 7. Unknown ECFP_6 feature: 1430169877: [*]NC(=O)[c](:[*]):[*]
- 8. Unknown ECFP 6 feature: 562081661: [*]C(=NN=[*])[*]
- 9. Unknown ECFP_6 feature: -819426257: [*]C(=NN=[*])[*]
- 10. Unknown ECFP_6 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 11. Unknown ECFP 6 feature: 2122741631: [*]C1=[*][*]C(=[*])S1
- 12. Unknown ECFP 6 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 13. Unknown ECFP_6 feature: 2092245922: [*]N1[*][*]C(=N1)[*]
- 14. Unknown ECFP_6 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 15. Unknown ECFP_6 feature: -175021654: [*]N([*])[c](:[cH]:[*]):[cH]:[*]
- 16. Unknown ECFP_6 feature: 129482634: [*]C(=[*])C(=O)C
- 17. Unknown ECFP_6 feature: 1307307440: [*]:[c](:[*])OC

Score 0.13
0.13
0.106
0.0924
Score
-0.102
•

ECFP_6	-1087070950	[*]N=[*]	-0.102
FCFP_6	-453677277	[*]C(=[*])[c]1:[c]4 *]:[c]([*]):[cH]:[cH	-0.0906

C₂₆H₂₂CIN₅O₂S

Molecular Weight: 504.00318

ALogP: 5.895 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: 0.0289

Unit: g/kg_body_weight Mahalanobis Distance: 31

Mahalanobis Distance p-value: 1.86e-026

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	FLUVALINATE	RHODAMINE 6G	D & C RED 9	
Structure	F HANDER OF THE PART OF THE PA	The H	ON O	
Actual Endpoint (-log C)	5.30356	4.54906	3.87715	
Predicted Endpoint (-log C)	4.89944	4.6787	3.6546	
Distance	0.698	0.735	0.745	
Reference	EPA COVER SHEET 0281;880630;(1)	NTP 364 39	NTP REPORT # 225	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_6 feature: 912478223: [*]S[*]
- 3. Unknown ECFP_6 feature: -175146122: [*]C(=[*])[c](:[cH]:[*]):[cH]:[*]
- 4. Unknown ECFP_6 feature: -177077903: [*]N[c](:[cH]:[*]):[cH]:[*]
- 5. Unknown ECFP_6 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 6. Unknown ECFP_6 feature: -179515162: [*]:[cH]:[c](C):[cH]:[*]
- 7. Unknown ECFP_6 feature: 1430169877: [*]NC(=0)[c](:[*]):[*]
- 8. Unknown ECFP_6 feature: 562081661: [*]C(=NN=[*])[*]
- 9. Unknown ECFP_6 feature: -819426257: [*]C(=NN=[*])[*]
- 10. Unknown ECFP_6 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 11. Unknown ECFP_6 feature: 2122741631: [*]C1=[*][*]C(=[*])S1
- 12. Unknown ECFP_6 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 13. Unknown ECFP_6 feature: 2092245922: [*]N1[*][*]C(=N1)[*]
- 14. Unknown ECFP_6 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 15. Unknown ECFP_6 feature: -175021654: [*]N([*])[c](:[cH]:[*]):[cH]:[*]
- 16. Unknown ECFP_6 feature: 129482634: [*]C(=[*])C(=O)C
- 17. Unknown ECFP_6 feature: -176494269: [*]:[cH]:[c](CI):[cH]:[*]
- 18. Unknown ECFP_6 feature: 99947387: [*]:[c](:[*])Cl

Feature Cont		ior positivo contributio	a		
Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score		
FCFP_6	-1143715940	CC ZZ ZZ Z T	0.13		
FCFP_6	32	[*]C1=[*][*]C(=[*])S1	0.101		
FCFP_6	3		0.0924		
		[*]N[*]			
	Top Features f	or negative contributio	n		
Fingerprint	Bit/Smiles	Feature Structure	Score		
FCFP_6	1	[*]=O	-0.102		

ECFP_6	-1087070950	[*]N=[*]	-0.102
FCFP_6	-453677277	[*]C(=[*])[c]1:[cH; *]:[c]([*]):[cH]:[cH	-0.0906

HN O N

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4
Donors: 3

Model Prediction

Prediction: 0.00483
Unit: g/kg_body_weight
Mahalanobis Distance: 30

Mahalanobis Distance p-value: 1,21e-024

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Simi	lar Compounds
-----------------	---------------

Name	GLYBURIDE	D & C RED 9	SODIUM ACIFLUORFEN
Structure	HN BO	ON O	F Hu CI OH
Actual Endpoint (-log C)	4.21661	3.87715	4.16036
Predicted Endpoint (-log C)	4.21035	3.6546	4.65915
Distance	0.636	0.722	0.736
Reference	UPJ-26452	NTP REPORT # 225	EPA COVER SHEET 0192;891101;(1)

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_6 feature: -1046436026: [*]F
- 3. Unknown ECFP_6 feature: 99947387: [*]:[c](:[*])Cl
- 4. Unknown ECFP_6 feature: 226796801: [*]C([*])([*])F
- Unknown ECFP_6 feature: 1305253718: [*]:[c](:[*])O[c](:[*]):[*]Unknown ECFP_6 feature: -677309799: [*][c](:[*]):n:[cH]:[*]
- 7. Unknown ECFP_6 feature: 1338334141: [*]C(=[*])NC
- 8. Unknown ECFP_6 feature: -177077903: [*]N[c](:[cH]:[*]):[cH]:[*]
- 9. Unknown ECFP_6 feature: 1336678434: [*][c](:[*]):[c](:[cH]:[*])C([*])([*])[*]
- 10. Unknown ECFP_6 feature: -649580166: [*]NC(=O)N[*]
- 11. Unknown ECFP_6 feature: -1952889961: [*]:[c](:[*])C(F)(F)F
- 12. Unknown ECFP_6 feature: 1413420509: [*]C(=[*])[c](:[cH]:[*]):n:[*]
- 13. Unknown ECFP_6 feature: 1996163143: [*]:[cH]:[cH]:n:[*]
- 14. Unknown ECFP_6 feature: 1430169877: [*]NC(=O)[c](:[*]):[*]
- 15. Unknown ECFP_6 feature: 864287155: [*]NC

Feature Contribution

Top features for positive contribution

Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	-176455838	[*]O[c](:[cH]:[*]):[c H]:[*]	0.106
FCFP_6	32	1941	0.101
		[*]CI	
FCFP_6	3	[*]N[*]	0.0924
	Top Features	for negative contributio	n
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	1	N°	-0.102

Top Features for negative contribution			
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	1	F E CI	-0.102
		[*]=O	

ECFP_6	-1236483485	N	-0.0747
FCFP_6	203677720	[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	-0.0713

 $|C_{21}H_{21}N_5O_3S|$

Molecular Weight: 423.48813

ALogP: 3.064 Rotatable Bonds: 6

Acceptors: 8
Donors: 1

Model Prediction

Prediction: 0.0292

Unit: g/kg_body_weight
Mahalanobis Distance: 9.65

Mahalanobis Distance p-value: 0.000158

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds			
Name	COUMAPHOS	AZINPHOSMETHYL	PARATHION
Structure	CIANOS	N N N N N N N N N N N N N N N N N N N	
Actual Endpoint (-log C)	5.60537	4.65515	5.01172
Predicted Endpoint (-log C)	4.15004	4.22281	3.88389
Distance	0.643	0.665	0.677
Reference	NCI/NTP TR-96	NCI/NTP TR-69	NCI/NTP TR-070

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC9 out of range. Value: 3.7179. Training min, max, SD, explained variance: -2.8548, 3.3954, 1.263, 0.0360.

Feature Contribution Top features for positive contribution				
				Fingerprint
FCFP_2	136627117	°	0.173	

FCFP_2	-1143715940	[*]C1=[*][*]C(=[*])S1	0.095
FCFP_2	1036089772	o, N,	0.0749
		for negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	1872154524	[*]C(=O)[*]	-0.105
FCFP_2	203677720	[*]C(=[*])[c](:[cH]:[0 *]):[cH]:[*]	-0.0829
FCFP_2	1	O N N N N N N N N N N N N N N N N N N N	-0.0796

 $C_{26}H_{23}N_5O_3S$

Molecular Weight: 485.55751

ALogP: 4.728 Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: 0.0279
Unit: g/kg_body_weight

Mahalanobis Distance: 8.69

Mahalanobis Distance p-value: 0.00372

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	RESERPINE	C.I.PIGMENT RED 23	SALICYLAZOSULFAPYRI DINE	
Structure		H N N N N N N N N N N N N N N N N N N N	N N N T N O O O O O O O O O O O O O O O	
Actual Endpoint (-log C)	6.13118	2.30052	3.375	
Predicted Endpoint (-log C)	4.38304	3.55333	2.80292	
Distance	0.658	0.748	0.797	
Reference	NCI/NTP TR-193	NCI/NTP TR-411	NCI/NTP TR-457	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Cont	Feature Contribution				
	Top features	for positive contributio	n		
Fingerprint	Bit/Smiles	Feature Structure	Score		
FCFP_2	136627117	[*]OC	0.173		
		[*]OC			

FCFP_2	-1143715940	[*]C1=[*][*]C(=[*])S1	0.095
FCFP_2	1036089772	[*]:[c](:[*])OC	0.0749
Fin or a reprint		for negative contributio	
Fingerprint FCFP_2	Bit/Smiles 1872154524	Feature Structure	Score
		[*]C(=O)[*]	-0.105
FCFP_2	203677720	[*]C(=[*])[c](:[cH]:[*]	-0.0829
FCFP_2	1	· · · · · · · · · · · · · · · · · · ·	-0.0796

5.06769

4.11907

NCI/NTP TR-320

0.815

C₂₅H₂₀CIN₅O₂S

Molecular Weight: 489.97659

ALogP: 5.409 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: 0.0624
Unit: g/kg_body_weight
Mahalanobis Distance: 9.31

Mahalanobis Distance p-value: 0.000508

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	C.I.PIGMENT RED 3	RESERPINE	ROTENONE
Structure	ON O	Other Harmon	

6.13118

4.38304

NCI/NTP TR-193

0.780

Model Applicability

Actual Endpoint (-log C)

Predicted Endpoint (-log

Distance

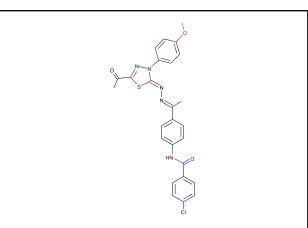
Reference

Structural Similar Compounds

2.65635

2.97957

NCI/NTP TR-407


0.773

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC5 out of range. Value: 5.2711. Training min, max, SD, explained variance: -3.3892, 5.0834, 1.644, 0.0611.

Feature Contribution					
	Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score		
FCFP_2	-1143715940	* C1=[*][*]C(=[*])S1	0.095		

FCFP_2	3	O NN N N N N N N N N N N N N N N N N N	0.0737
FCFP_2	332760439	[*]N([*])[c](:[cH]:[*]	0.0611
		for negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	71476542	o s N N N N N N N N N N N N N N N N N N	-0.134
FCFP_2	1872154524	[*]C(=O)[*]	-0.105
FCFP_2	203677720	[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	-0.0829

C₂₆H₂₂CIN₅O₃S

Molecular Weight: 520.00258

ALogP: 5.392 Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: 0.0336

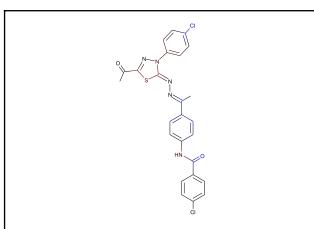
Unit: g/kg_body_weight Mahalanobis Distance: 9.12

Mahalanobis Distance p-value: 0.000974

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	RESERPINE	C.I.PIGMENT RED 23	SALICYLAZOSULFAPYRI DINE	
Structure		DE LA COLLEGE DE	N N N N N N N N N N N N N N N N N N N	
Actual Endpoint (-log C)	6.13118	2.30052	3.375	
Predicted Endpoint (-log C)	4.38304	3.55333	2.80292	
Distance	0.651	0.771	0.849	
Reference	NCI/NTP TR-193	NCI/NTP TR-411	NCI/NTP TR-457	


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC5 out of range. Value: 5.2806. Training min, max, SD, explained variance: -3.3892, 5.0834, 1.644, 0.0611.

Feature Contribution					
	Top features	for positive contribution	n		
Fingerprint Bit/Smiles Feature Structure Score					
FCFP_2	136627117	- s N N O O O O O O O O O O O O O O O O O	0.173		

FCFP_2	-1143715940	[*]C1=[*][*]C(=[*])S1	0.095
FCFP_2	1036089772	[*]:[c](:[*])OC	0.0749
		or negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	71476542	[*]:[c](:[*])CI	-0.134
FCFP_2	1872154524	[*]C(=O)[*]	-0.105
FCFP_2	203677720	[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	-0.0829

 $C_{25}H_{19}CI_2N_5O_2S$

Molecular Weight: 524.42166

ALogP: 6.073 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: 0.0498
Unit: g/kg_body_weight

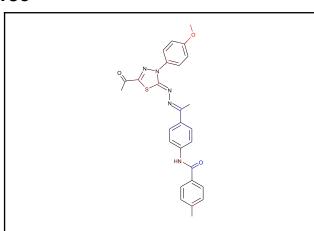
Mahalanobis Distance: 9.27

Mahalanobis Distance p-value: 0.000596

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	RESERPINE	C.I.PIGMENT RED 3	ROTENONE		
Structure		T N T N T N T N T N T N T N T N T N T N			
Actual Endpoint (-log C)	6.13118	2.65635	5.06769		
Predicted Endpoint (-log C)	4.38304	2.97957	4.11907		
Distance	0.776	0.825	0.857		
Reference	NCI/NTP TR-193	NCI/NTP TR-407	NCI/NTP TR-320		


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC5 out of range. Value: 5.3889. Training min, max, SD, explained variance: -3.3892, 5.0834, 1.644, 0.0611.

Feature Cont	ribution			
	Top features	for positive contribution	n	
Fingerprint	Bit/Smiles	Feature Structure	Score	
FCFP_2	-1143715940	[*]C1=[*][*]C(=[*])S1	0.095	

FCFP_2	332760439		0.0737
		[*]N([*])[c](:[cH]:[*]):[cH]:[*]	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	71476542	[*]:[c](:[*])CI	-0.134
FCFP_2	1872154524	[*]C(=O)[*]	-0.105
FCFP_2	203677720	[*]C(=[*])[c](:[cH]:[*]	-0.0829

 $C_{27}H_{25}N_5O_3S$

Molecular Weight: 499.58409

ALogP: 5.214 Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: 0.0228

Unit: g/kg_body_weight
Mahalanobis Distance: 9.35

Mahalanobis Distance p-value: 0.000442

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	RESERPINE	C.I.PIGMENT RED 23	SALICYLAZOSULFAPYRI DINE	
Structure		OH NAME OF THE O	HN HOH	
Actual Endpoint (-log C)	6.13118	2.30052	3.375	
Predicted Endpoint (-log C)	4.38304	3.55333	2.80292	
Distance	0.657	0.754	0.822	
Reference	NCI/NTP TR-193	NCI/NTP TR-411	NCI/NTP TR-457	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Cont	ribution			
	Top features	for positive contributio	n	
Fingerprint	Bit/Smiles	Feature Structure	Score	
FCFP_2	136627117	- NN	0.173	

FCFP_2	-1143715940	[*]C1=[*][*]C(=[*])S1	0.095
FCFP_2	1036089772	[*]:[c](:[*])OC	0.0749
		or negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	1872154524	[*]C(=O)[*]	-0.105
FCFP_2	203677720	[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	-0.0829
FCFP_2	1	[*]=O	-0.0796

C₂₆H₂₂CIN₅O₂S

Molecular Weight: 504.00318

ALogP: 5.895 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: 0.0511
Unit: g/kg_body_weight
Mahalanobis Distance: 9.87

Mahalanobis Distance p-value: 7.21e-005

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	C.I.PIGMENT RED 3	RESERPINE	ROTENONE		
Structure	OH ONEO				
Actual Endpoint (-log C)	2.65635	6.13118	5.06769		
Predicted Endpoint (-log C)	2.97957	4.38304	4.11907		
Distance	0.778	0.786	0.842		
Reference	NCI/NTP TR-407	NCI/NTP TR-193	NCI/NTP TR-320		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Cont	ribution			
	Top features	for positive contributio	n	
Fingerprint	Bit/Smiles	Feature Structure	Score	
FCFP_2	-1143715940	[*]C1=[*][*]C(=[*])S1	0.095	

FCFP_2	3	[*]N[*]	0.0737
FCFP_2	136120670	[*]:[c](:[*])C	0.064
		for negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	71476542	[*]:[c](:[*])CI	-0.134
FCFP_2	1872154524	[*]C(=O)[*]	-0.105
FCFP_2	203677720	[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	-0.0829

HN O HN O F F CI

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4 Donors: 3

Model Prediction

Prediction: 0.0885
Unit: g/kg_body_weight

Mahalanobis Distance: 12.4

Mahalanobis Distance p-value: 1.76e-009

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	FUROSEMIDE	PHENOLPHTHALEIN	DISPERSE YELLOW 3		
Structure	HO O NH2 NH2 S O S O	НО	OH NH		
Actual Endpoint (-log C)	4.04236	2.20184	2.77703		
Predicted Endpoint (-log C)	2.8614	2.8857	2.80195		
Distance	0.741	0.780	0.799		
Reference	NCI/NTP TR-356	NCI/NTP TR-465	NCI/NTP TR-222		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution							
	Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score				
FCFP_2	-885550502	N	0.115				

	3	[*]N[*]	0.0737
FCFP_2	332760439	[*]N([*])[c](:[cH]:[*]):[cH]:[*]	0.0611
		egative contribution	
		Feature Structure	Score
FCFP_2	71476542	[*]:[c](:[*])CI	-0.134
FCFP_2	1872154524	Z: 0 Z: 0 N N N N N N N N N N N N N	-0.105
FCFP_2	203677720	No No No No No No No No	-0.0829

TOPKAT_Rat_Maximum_Tolerated_Dose_Gavage

C₂₁H₂₁N₅O₃S

Molecular Weight: 423.48813

ALogP: 3.064 Rotatable Bonds: 6

Acceptors: 8
Donors: 1

Model Prediction

Prediction: 0.000796
Unit: g/kg_body_weight
Mahalanobis Distance: 10.5

Mahalanobis Distance p-value: 1.14e-006

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	PENICILLIN VK	OCHRATOXIN	PROBENECID		
Structure	O NH O T T T S OH	OH O	OH O S O		
Actual Endpoint (-log C)	2.54455	6.28396	2.85333		
Predicted Endpoint (-log C)	3.9702	5.12358	2.4258		
Distance	0.809	0.882	1.004		
Reference	NCI/NTP TR-336	NCI/NTP TR-358	NCI/NTP TR-395		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. Num_H_Acceptors out of range. Value: 8. Training min, max, mean, SD: 0, 6, 1.6146, 1.644.
- OPS PC6 out of range. Value: -2.6649. Training min, max, SD, explained variance: -2.4321, 2.9885, 1.256, 0.0488.
- 3. Unknown FCFP_2 feature: -1549192822: [*]\N=C(/C)\[c](:[*]):[*]
- 4. Unknown FCFP_2 feature: 580960234: [*]C(=NN=[*])[*]
- 5. Unknown FCFP_2 feature: -1986158408: [*]\N=C\1/S[*]=[*]\N1[*]

Feature Contribution					
	Top features	for positive contributio	n		
Fingerprint	Bit/Smiles	Feature Structure	Score		
FCFP_2	332760439	[*]N([*])[c](:[cH];[*]	0.672		

FCFP_2	1	O S N N N N N N N N N N N N N N N N N N	0.511
FCFP_2	3	ON N N N N N N N N N N N N N N N N N N	0.104
		egative contribution	
Fingerprint		Feature Structure	Score
FCFP_2	136597326	[*]C(=[*])C	-0.489
FCFP_2	203677720	[*]C(=[*])[c](:[cH]:[*]	-0.406
FCFP_2	565998553	O_SNN NHO I*JC(=[*])C1=N[*][*]S	-0.348

TOPKAT_Rat_Maximum_Tolerated_Dose_Gavage

 $C_{26}H_{23}N_5O_3S$

Molecular Weight: 485.55751

ALogP: 4.728 Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: 0.000425 Unit: g/kg_body_weight Mahalanobis Distance: 12.1

Mahalanobis Distance p-value: 6.28e-009

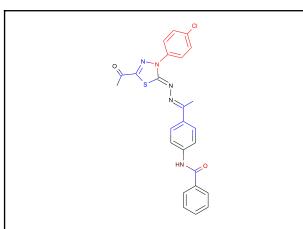
Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	OCHRATOXIN	PENICILLIN VK	SULFISOOXAZOLE		
Structure	OH MAN CI	O NH OH OH	H ₂ N OI N H		
Actual Endpoint (-log C)	6.28396	2.54455	2.82494		
Predicted Endpoint (-log C)	5.12358	3.9702	3.0705		
Distance	0.977	1.125	1.214		
Reference	NCI/NTP TR-358	NCI/NTP TR-336	NCI/NTP TR-138		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.


- 1. Molecular_Weight out of range. Value: 485.56. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. Num_H_Acceptors out of range. Value: 8. Training min, max, mean, SD: 0, 6, 1.6146, 1.644.
- 3. Num_AromaticRings out of range. Value: 3. Training min, max, mean, SD: 0, 2, 0.5625, 0.693.
- 4. OPS PC6 out of range. Value: -3.1548. Training min, max, SD, explained variance: -2.4321, 2.9885, 1.256, 0.0488.
- 5. Unknown FCFP_2 feature: -1549192822: [*]\N=C(/C)\[c](:[*]):[*]
- 6. Unknown FCFP_2 feature: 580960234: [*]C(=NN=[*])[*]
- 7. Unknown FCFP_2 feature: -1986158408: [*]\N=C\1/S[*]=[*]N1[*]

Feature Contribution

Top features for positive contribution					
Fingerprint Bit/Smiles Feature Structure Score					
· · · · · · · · · · · · · · · · · · ·					

FCFP_2	332760439	[*]N([*])[c](:[cH]:[*]	0.672
FCFP_2	1	[*]=O	0.511
FCFP_2	3	[*]N[*]	0.104
-		for negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	136597326	[*]C(=[*])C	-0.489
FCFP_2	203677720	[*]C(=[*])[c](:[cH]:[*]	-0.406

565998553	 ~o	-0.348
	9-NN NN	
	\$	
	, in the second	
	[*]C(=[*])C1=N[*][*]S 1	
	565998553	

 $C_{25}H_{20}CIN_5O_2S$

Molecular Weight: 489.97659

ALogP: 5.409 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: 9.28e-005
Unit: g/kg_body_weight
Mahalanobis Distance: 9.54

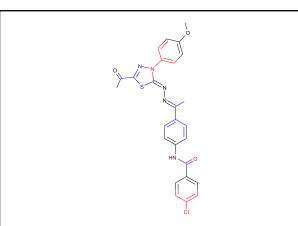
Mahalanobis Distance p-value: 2.35e-005

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	OCHRATOXIN	PENICILLIN VK	SULFISOOXAZOLE	
Structure	OH MANH OH MAN O	O H	H ₂ N OI N H	
Actual Endpoint (-log C)	6.28396	2.54455	2.82494	
Predicted Endpoint (-log C)	5.12358	3.9702	3.0705	
Distance	0.912	1.169	1.199	
Reference	NCI/NTP TR-358	NCI/NTP TR-336	NCI/NTP TR-138	

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. Molecular_Weight out of range. Value: 489.98. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. Num_H_Acceptors out of range. Value: 7. Training min, max, mean, SD: 0, 6, 1.6146, 1.644.
- 3. Num_AromaticRings out of range. Value: 3. Training min, max, mean, SD: 0, 2, 0.5625, 0.693.
- 4. OPS PC5 out of range. Value: -3.4295. Training min, max, SD, explained variance: -3.4, 4.1587, 1.489, 0.0686.
- 5. OPS PC10 out of range. Value: 2.8007. Training min, max, SD, explained variance: -3.9696, 2.3971, 0.982, 0.0298.
- 6. Unknown FCFP_2 feature: -1549192822: [*]\N=C(/C)\[c](:[*]):[*]
- 7. Unknown FCFP_2 feature: 580960234: [*]C(=NN=[*])[*]
- 8. Unknown FCFP_2 feature: -1986158408: [*]\N=C\1/S[*]=[*]N1[*]

Feature Contribution Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score

FCFP_2	332760439	[*]N([*])[c](:[cH]:[*]	0.672
FCFP_2	32	C	0.526
FCFP_2	1	O S N N N N N N N N N N N N N N N N N N	0.511
		for negative contribution	n
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	136597326	O_SNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	-0.489
FCFP_2	203677720	[*]C(=[*])[c](:[cH]:[*]	-0.406

FCFP_2	565998553	9-NN N	-0.348
		Š	
		[*]C(=[*])C1=N[*][*]S 1	

C₂₆H₂₂CIN₅O₃S

Molecular Weight: 520.00258

ALogP: 5.392 Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: 3.39e-005
Unit: g/kg_body_weight
Mahalanobis Distance: 10.8

Mahalanobis Distance p-value: 3.91e-007

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	OCHRATOXIN	PENICILLIN VK	SULFISOOXAZOLE	
Structure	OH NH OH HO WHO WHO WHO WHO WHO WHO WHO WHO	O NH O NH O NH O NH O NH	H ₂ N OI N H	
Actual Endpoint (-log C)	6.28396	2.54455	2.82494	
Predicted Endpoint (-log C)	5.12358	3.9702	3.0705	
Distance	0.978	1.206	1.303	
Reference	NCI/NTP TR-358	NCI/NTP TR-336	NCI/NTP TR-138	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. Molecular_Weight out of range. Value: 520. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. Num_H_Acceptors out of range. Value: 8. Training min, max, mean, SD: 0, 6, 1.6146, 1.644.
- 3. Num_AromaticRings out of range. Value: 3. Training min, max, mean, SD: 0, 2, 0.5625, 0.693.
- 4. OPS PC5 out of range. Value: -4.6392. Training min, max, SD, explained variance: -3.4, 4.1587, 1.489, 0.0686.
- 5. Unknown FCFP_2 feature: -1549192822: [*]\N=C(/C)\[c](:[*]):[*]
- 6. Unknown FCFP_2 feature: 580960234: [*]C(=NN=[*])[*]
- 7. Unknown FCFP_2 feature: -1986158408: [*]\N=C\1/S[*]=[*]N1[*]

Feature Contribution Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score

FCFP_2	332760439	[*]N([*])[c](:[cH]:[*]):[cH]:[*]	0.672
FCFP_2	32	NN NO N	0.526
FCFP_2	1	[*]=O	0.511
		for negative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	136597326	* C(=[*])C	-0.489
FCFP_2	203677720	[*]C(=[*])[c](:[cH]:[*]	-0.406

FCFP_2	565998553	S ⁰	-0.348
		9 NN S N	
		, , ,	
		[*]C(=[*])C1=N[*][*]S	

TOPKAT_Rat_Maximum_Tolerated_Dose_Gavage

 $C_{25}H_{19}CI_2N_5O_2S$

Molecular Weight: 524.42166

ALogP: 6.073 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: 6.42e-005 Unit: g/kg_body_weight Mahalanobis Distance: 9.8

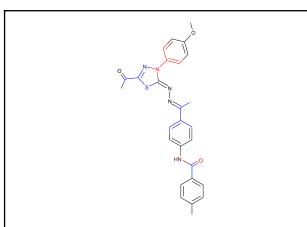
Mahalanobis Distance p-value: 1.08e-005

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	OCHRATOXIN	PENICILLIN VK	PHENYLBUTAZONE	
Structure	OH MANUTURE OF THE PROPERTY OF	O NH OH OH		
Actual Endpoint (-log C)	6.28396	2.54455	3.48909	
Predicted Endpoint (-log C)	5.12358	3.9702	3.17333	
Distance	0.966	1.241	1.250	
Reference	NCI/NTP TR-358	NCI/NTP TR-336	NCI/NTP TR-367	

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- Molecular_Weight out of range. Value: 524.42. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. Num_H_Acceptors out of range. Value: 7. Training min, max, mean, SD: 0, 6, 1.6146, 1.644.
- 3. Num_AromaticRings out of range. Value: 3. Training min, max, mean, SD: 0, 2, 0.5625, 0.693.
- 4. OPS PC5 out of range. Value: -3.4476. Training min, max, SD, explained variance: -3.4, 4.1587, 1.489, 0.0686.
- 5. OPS PC10 out of range. Value: 2.6731. Training min, max, SD, explained variance: -3.9696, 2.3971, 0.982, 0.0298.
- 6. Unknown FCFP_2 feature: -1549192822: [*]\N=C(/C)\[c](:[*]):[*]
- 7. Unknown FCFP_2 feature: 580960234: [*]C(=NN=[*])[*]
- 8. Unknown FCFP_2 feature: -1986158408: [*]\N=C\1/S[*]=[*]N1[*]

Feature Contribution Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score

FCFP_2	332760439	[*]N([*])[c](:[cH]:[*]	0.672
FCFP_2	32	**************************************	0.526
FCFP_2	1	* = O	0.511
		or negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	136597326	[*]C(=[*])C	-0.489
FCFP_2	203677720	[*]C(=[*])[c](:[cH]:[*]	-0.406

FCFP_2	565998553		-0.348
		CI [*]C(=[*])C1=N[*][*]S 1	

 $C_{27}H_{25}N_5O_3S$

Molecular Weight: 499.58409

ALogP: 5.214 Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: 0.000324
Unit: g/kg_body_weight
Mahalanobis Distance: 12.4

Mahalanobis Distance p-value: 2.5e-009

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

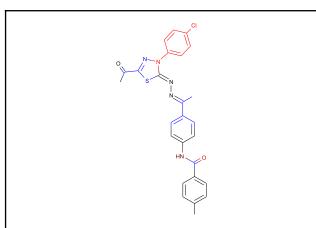
Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	OCHRATOXIN	PENICILLIN VK	SULFISOOXAZOLE	
Structure	OH NH OH NH CI	O NH O NH O NH O NH O NH	H ₂ N OH	
Actual Endpoint (-log C)	6.28396	2.54455	2.82494	
Predicted Endpoint (-log C)	5.12358	3.9702	3.0705	
Distance	1.005	1.169	1.237	
Reference	NCI/NTP TR-358	NCI/NTP TR-336	NCI/NTP TR-138	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. Molecular_Weight out of range. Value: 499.58. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. Num_H_Acceptors out of range. Value: 8. Training min, max, mean, SD: 0, 6, 1.6146, 1.644.
- 3. Num_AromaticRings out of range. Value: 3. Training min, max, mean, SD: 0, 2, 0.5625, 0.693.
- 4. OPS PC6 out of range. Value: -3.2186. Training min, max, SD, explained variance: -2.4321, 2.9885, 1.256, 0.0488.
- 5. Unknown FCFP_2 feature: -1549192822: [*]\N=C(/C)\[c](:[*]):[*]
- 6. Unknown FCFP_2 feature: 580960234: [*]C(=NN=[*])[*]
- 7. Unknown FCFP_2 feature: -1986158408: [*]\N=C\1/S[*]=[*]N1[*]


Feature Contribution

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	
		-	-	

FCFP_2	332760439	[*]N([*])[c](:[cH]:[*]):[cH]:[*]	0.672
FCFP_2	1	[*]=O	0.511
FCFP_2	3	[*]N[*]	0.104
		for negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	136597326	[*]C(=[*])C	-0.489
FCFP_2	203677720	[*]C(=[*])[c](:[cH]![*]):[cH]:[*]	-0.406

FCFP_2	565998553	o ó	-0.348
		9 NN S N	
		\$	
		ф	
		[*]C(=[*])C1=N[*][*]S 1	

TOPKAT_Rat_Maximum_Tolerated_Dose_Gavage

 $|C_{26}H_{22}CIN_5O_2S|$

Molecular Weight: 504.00318

ALogP: 5.895 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: 7.05e-005
Unit: g/kg_body_weight
Mahalanobis Distance: 9.76

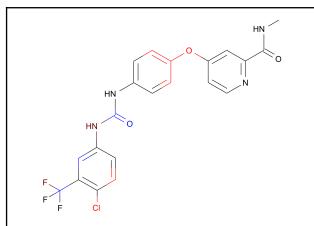
Mahalanobis Distance p-value: 1.21e-005

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	OCHRATOXIN	PENICILLIN VK	SULFISOOXAZOLE	
Structure	OH MANH CI HO WALL CI	O NH O Tres OH	H ₂ N OII N H	
Actual Endpoint (-log C)	6.28396	2.54455	2.82494	
Predicted Endpoint (-log C)	5.12358	3.9702	3.0705	
Distance	0.949	1.217	1.228	
Reference	NCI/NTP TR-358	NCI/NTP TR-336	NCI/NTP TR-138	

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. Molecular_Weight out of range. Value: 504. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. Num_H_Acceptors out of range. Value: 7. Training min, max, mean, SD: 0, 6, 1.6146, 1.644.
- 3. Num_AromaticRings out of range. Value: 3. Training min, max, mean, SD: 0, 2, 0.5625, 0.693.
- 4. OPS PC5 out of range. Value: -3.4178. Training min, max, SD, explained variance: -3.4, 4.1587, 1.489, 0.0686.
- 5. OPS PC10 out of range. Value: 2.7196. Training min, max, SD, explained variance: -3.9696, 2.3971, 0.982, 0.0298.
- 6. Unknown FCFP_2 feature: -1549192822: [*]\N=C(/C)\[c](:[*]):[*]
- 7. Unknown FCFP_2 feature: 580960234: [*]C(=NN=[*])[*]
- 8. Unknown FCFP_2 feature: -1986158408: [*]\N=C\1/S[*]=[*]N1[*]

Feature Contribution Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score

FCFP_2	332760439	[*]N([*])[c](:[cH]:[*]):[cH]:[*]	0.672
FCFP_2	32	[*]Cl	0.526
FCFP_2	1	[*]=O	0.511
		for negative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	136597326	[*]C(=[*])C	-0.489
FCFP_2	203677720	[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	-0.406

FCFP_2	565998553		-0.348
		[*]C(=[*])C1=N[*][*]S 1	

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4
Donors: 3

Model Prediction

Prediction: 0.000918
Unit: g/kg_body_weight
Mahalanobis Distance: 12.2

Mahalanobis Distance p-value: 4.69e-009

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	OCHRATOXIN	SULFISOOXAZOLE	PENICILLIN VK	
Structure	OH MNH HO W	H ₂ N O S N T H	O NH O TO S	
Actual Endpoint (-log C)	6.28396	2.82494	2.54455	
Predicted Endpoint (-log C)	5.12358	3.0705	3.9702	
Distance	0.758	0.997	1.159	
Reference	NCI/NTP TR-358	NCI/NTP TR-138	NCI/NTP TR-336	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. Molecular_Weight out of range. Value: 464.82. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. Num_AromaticRings out of range. Value: 3. Training min, max, mean, SD: 0, 2, 0.5625, 0.693.
- 3. OPS PC5 out of range. Value: -3.5737. Training min, max, SD, explained variance: -3.4, 4.1587, 1.489, 0.0686.
- 4. OPS PC7 out of range. Value: -3.8342. Training min, max, SD, explained variance: -2.8003, 2.9332, 1.16, 0.0416.
- 5. Unknown FCFP_2 feature: 1499521844: [*]NC(=O)N[*]
- 6. Unknown FCFP_2 feature: -1029533685: [*]:[c](:[*])C(F)(F)F
- 7. Unknown FCFP_2 feature: 136686699: [*]NC

Feature Contribution

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score		

FCFP_2	332760439	0.672	
FCFP_2	32	0.526	
FCFP_2	1	0.511 N 0 N 0 [*]=0	
		or negative contribution	
Fingerprint	Bit/Smiles	Feature Structure Score	
FCFP_2	203677720	-0.406	
FCFP_2	1872154524	-0.307 -0.307 -0.307 -0.307 -0.307	

FCFP_2	0	Ņ	-0.29
		й. Д	
		F. C	
		F CI	
		[*]C(=[*])[*]	

 $|C_{21}H_{21}N_5O_3S|$

Molecular Weight: 423.48813

ALogP: 3.064
Rotatable Bonds: 6

Acceptors: 8
Donors: 1

Model Prediction

Prediction: 0.308

Unit: g/kg_body_weight Mahalanobis Distance: 23.6

Mahalanobis Distance p-value: 1.39e-023

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	PYRAZOPHOS	ETHYL-bis- COUMACETATE	PRASOZIN .HCI (HCI STRIPPED)	
Structure	O ZA N	OB OH	H ₂ N ⁴ V	
Actual Endpoint (-log C)	3.234	2.687	2.294	
Predicted Endpoint (-log C)	3.35181	2.7054	3.00765	
Distance	0.644	0.647	0.654	
Reference	KHZDAN 23;538;80	FEPRA7 10;303;51	NIIRDN 6;688;82	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
 Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown FCFP_6 feature: 16: [*]:[cH]:[*]
- 8. Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]
- 9. Unknown FCFP_6 feature: 580960234: [*]C(=NN=[*])[*]
- 10. Unknown FCFP_6 feature: 675799546: [*]=C1[*][*]=NN1[c](:[*]):[*]

Feature Contribution

r catare cont		for positive contribution	•		
Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score		

ECFP_6	642810091	[*][c](:[*]):[*]	0.281
ECFP_6	-1897341097	0, N,	0.216
FCFP_6	136627117	0 N N HO [*]OC	0.17
	Top Features	for negative contribution	١
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	-176455838	[*]O[c](:[cH]:[*]):[c H]:[*]	-0.257
ECFP_6	655739385	[*]N=[*]	-0.239

FCFP_6	566058135	Ö	-0.216
		O, N. N	
		, san	
		HO	
		[*]NC(=O)C	

 $C_{26}H_{23}N_5O_3S$

Molecular Weight: 485.55751

ALogP: 4.728 Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: 0.211

Unit: g/kg_body_weight
Mahalanobis Distance: 23.5

Mahalanobis Distance p-value: 3.37e-023

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	ACEMETACIN	bis-OXATIN ACETATE	1-ACETYL-3;3-bis-[4- (ACETYLOXY)PHENYL]- 1;3-DIHYDRO-2H-INDOL- 2-ONE		
Structure	OH CI	HN			
Actual Endpoint (-log C)	4.235	1.717	2.948		
Predicted Endpoint (-log C)	3.39415	2.40947	2.6866		
Distance	0.651	0.663	0.698		
Reference	ARZNAD 30;1398;80	NIIRDN 6;609;82	JAPMA8 42;468;53		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]\N1[*]
- 6. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown FCFP_6 feature: 16: [*]:[cH]:[*]
- 8. Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]
- 9. Unknown FCFP_6 feature: 580960234: [*]C(=NN=[*])[*]
- 10. Unknown FCFP_6 feature: 675799546: [*]=C1[*][*]=NN1[c](:[*]):[*]

	Top features	for positive contribution	n
Fingerprint	Bit/Smiles	Feature Structure	Score

ECFP_6	642810091	[*][c](:[*]):[*]	0.281
ECFP_6	-1897341097	(*)N[*]	0.216
ECFP_6	1571214559	[*]1:[cH]:[cH]:[cH]:[cH]:[cH]:1	0.19
	Top Features	for negative contribution	1
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	-176455838	[*]O[c](:[cH]:[*]):[c H]:[*]	-0.257
ECFP_6	655739385	0 NN	-0.239

ECFP_6	734603939	O°	-0.201
		0,27,2	
		, o	
		\	
		[*]C	

0.662

NIIRDN 6;609;82

 $C_{25}H_{20}CIN_5O_2S$

Molecular Weight: 489.97659

ALogP: 5.409 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: 0.343

Unit: g/kg_body_weight
Mahalanobis Distance: 23.7

Mahalanobis Distance p-value: 3.46e-024

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Simila	r Compounds		
Name	ACEMETACIN	TALNIFLUMATE	bis-OXATIN ACETATE
Structure	OH OH	O O O O O O O O O O O O O O O O O O O	HN O
Actual Endpoint (-log C)	4.235	1.538	1.717
Predicted Endpoint (-log	3.39415	2.82541	2.40947

Model Applicability

Distance

Reference

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

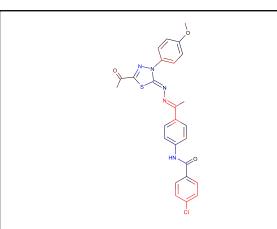
0.639

FRPSAX 36;372;81

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]

ARZNAD 30:1398:80

- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]\N1[*]
- 6. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown FCFP_6 feature: 16: [*]:[cH]:[*]


0.630

- 8. Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]
- 9. Unknown FCFP 6 feature: 580960234: [*]C(=NN=[*])[*]
- 10. Unknown FCFP_6 feature: 675799546: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 11. Unknown FCFP 6 feature: 71476542: [*]:[c](:[*])Cl

Feature Contribution Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score

ECFP_6	642810091	[*][c](:[*]):[*]	0.281
ECFP_6	-1897341097	O-NNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	0.216
ECFP_6	1571214559	[*]1:[cH]:[cH]:[cH]:1	0.19
	Top Features	for negative contributio	n
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	-817402818	[*]CI	-0.263
ECFP_6	655739385	[*]N=[*]	-0.239

ECFP_6	734603939		-0.201
		or start	
		No.	
		[*]C	

 $C_{26}H_{22}CIN_5O_3S$

Molecular Weight: 520.00258

ALogP: 5.392 Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: 0.148

Unit: g/kg_body_weight Mahalanobis Distance: 23.8

Mahalanobis Distance p-value: 1.55e-024

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	ACEMETACIN	RESERPINE	bis-OXATIN ACETATE	
Structure	OH CI	O TA CONTROL OF THE PARTY OF TH	HN O	
Actual Endpoint (-log C)	4.235	3.161	1.717	
Predicted Endpoint (-log C)	3.39415	2.72801	2.40947	
Distance	0.678	0.704	0.736	
Reference	ARZNAD 30;1398;80	PSSCBG 11;555;80	NIIRDN 6;609;82	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]\N1[*]
- 6. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown FCFP_6 feature: 16: [*]:[cH]:[*]
- 8. Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]
- 9. Unknown FCFP_6 feature: 580960234: [*]C(=NN=[*])[*]
- 10. Unknown FCFP_6 feature: 675799546: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 11. Unknown FCFP 6 feature: 71476542: [*]:[c](:[*])Cl

Feature Contribution Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score

ECFP_6	642810001	<i>,</i>	0.281
IEUFP_0	642810091		U.20 I
		[*][c](:[*]):[*]	
ECFP_6	-1897341097	NNN NNN NNO (*)N[*]	0.216
ECED 6	140626017		0.402
FCFP_6	-149636017	[*]C(=[*])[c]1:[c +]:[cH cH]:[c](CI):[cH]:[cH	0.193
	Top Features for ne	egative contribution	
Fingerprint			Score
ECFP_6	-817402818	-NN N N N N N N N N N N N N N N N N N N	-0.263
ECFP_6	-176455838	[*]O[c](:[cH]:[*]):fe H]:[*]	-0.257

ECFP_6	655739385	O °	-0.239
		SNA	
		\$	
		Ö	
		[*]N=[*]	

0.748

NIIRDN 6;609;82

 $C_{25}H_{19}CI_2N_5O_2S$

Molecular Weight: 524.42166

ALogP: 6.073 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: 0.292

Unit: g/kg_body_weight Mahalanobis Distance: 23.8

Mahalanobis Distance p-value: 7.26e-025

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	TALNIFLUMATE	ACEMETACIN	bis-OXATIN ACETATE	
Structure	H H N	OH CO	HN	
Actual Endpoint (-log C)	1.538	4.235	1.717	
Predicted Endpoint (-log C)	2.82541	3.39415	2.40947	

Model Applicability

Distance

Reference

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

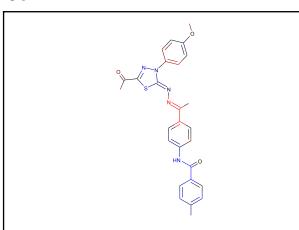
0.704

ARZNAD 30:1398:80

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]

FRPSAX 36:372:81

- Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
 Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown FCFP_6 feature: 16: [*]:[cH]:[*]


0.699

- 8. Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]
- 9. Unknown FCFP_6 feature: 580960234: [*]C(=NN=[*])[*]
- 10. Unknown FCFP_6 feature: 675799546: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 11. Unknown FCFP 6 feature: 71476542: [*]:[c](:[*])Cl

Feature Contribution						
	Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score			
	•		•			

ECFP_6	642810091	~ CI	0.281
		€ NN	
		S N	
		Q _{N O}	
		l B	
		(čí [*][c](:[*]):[*]	
ECFP_6	-1897341097	~ ^{Cl}	0.216
		9 NN	
		N ₀ 0	
		\	
		[*] N [*]	
FCFP_6	-149636017	∠ Cl	0.193
		S N	
		δ	
		NO H	
		[*]C(=[*])[c]1:[cl <mark>*};</mark> cH]:[c](Cl):[cH]:[cH	
]:1	
		egative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	-817402818	O ^{CI}	-0.263
		S N	
		N,O HJ	
		CI	
		[*]CI	
ECFP_6	655739385	O ci	-0.239
		S N	
		δ	
		N _N O	
		[*]N=[*]	
		[*]N=[*]	

ECFP_6	734603939	L NN Co	-0.201
		G S N	
		, , o	
		CI	
		[*]C	

 $|C_{27}H_{25}N_5O_3S|$

Molecular Weight: 499.58409

ALogP: 5.214 Rotatable Bonds: 7

Acceptors: 8
Donors: 1

Model Prediction

Prediction: 0.358

Unit: g/kg_body_weight
Mahalanobis Distance: 23.6

Mahalanobis Distance p-value: 9.56e-024

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	ACEMETACIN	bis-OXATIN ACETATE	RESERPINE	
Structure	OH CI	HN O	Other with the control of the contro	
Actual Endpoint (-log C)	4.235	1.717	3.161	
Predicted Endpoint (-log C)	3.39415	2.40947	2.72801	
Distance	0.678	0.703	0.714	
Reference	ARZNAD 30;1398;80	NIIRDN 6;609;82	PSSCBG 11;555;80	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]\N1[*]
- 6. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown FCFP_6 feature: 16: [*]:[cH]:[*]
- 8. Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]
- 9. Unknown FCFP_6 feature: 580960234: [*]C(=NN=[*])[*]
- 10. Unknown FCFP_6 feature: 675799546: [*]=C1[*][*]=NN1[c](:[*]):[*]

Feature Contribution Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score

ECFP_6	642810091	[*][c](:[*]):[*]	0.281
ECFP_6	-1897341097	[*]N[*]	0.216
FCFP_6	136627117	[*]OC	0.17
	Top Features	for negative contribution	n
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	-176455838	[*]O[c](:[cH]:[*]):[c H]:[*]	-0.257
ECFP_6	655739385	[*]N=[*]	-0.239

ECFP_6	734603939	~wv~o°	-0.201
		, s N	
		\$	
		[*]C	

C₂₆H₂₂CIN₅O₂S

Molecular Weight: 504.00318

ALogP: 5.895 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: 0.581

Unit: g/kg_body_weight Mahalanobis Distance: 23.8

Mahalanobis Distance p-value: 1.2e-024

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	TALNIFLUMATE	ACEMETACIN	bis-OXATIN ACETATE
Structure	H N N		HN

	H H	O OH	HN
Actual Endpoint (-log C)	1.538	4.235	1.717
Predicted Endpoint (-log C)	2.82541	3.39415	2.40947
Distance	0.671	0.672	0.717
Reference	FRPSAX 36;372;81	ARZNAD 30;1398;80	NIIRDN 6;609;82

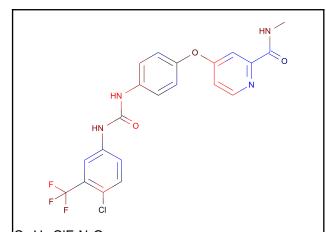
Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]\N1[*]
- 6. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown FCFP_6 feature: 16: [*]:[cH]:[*]

Structural Similar Compounds

- 8. Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]
- 9. Unknown FCFP_6 feature: 580960234: [*]C(=NN=[*])[*]
- 10. Unknown FCFP_6 feature: 675799546: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 11. Unknown FCFP 6 feature: 71476542: [*]:[c](:[*])Cl


Feature Contribution

Top features for positive contribution

Fingerprint	Bit/Smiles	Feature Structure	Score

ECFP_6	642810091	[*][c](:[*]):[*]	0.281
ECFP_6	-1897341097	- NZ	0.216
ECFP_6	99947387	[*]:[c](:[*])CI	0.181
	Top Features	for negative contribution	า
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	-817402818		-0.263
ECFP_6	655739385	S-NN NH NH [*]N=[*]	-0.239

ECFP_6	734603939	O CI	-0.201
		SNN	
		\Diamond	
		[*]C	

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175
Rotatable Bonds: 6

Acceptors: 4
Donors: 3

Model Prediction

Prediction: 0.823

Unit: g/kg_body_weight Mahalanobis Distance: 21

Mahalanobis Distance p-value: 1.93e-012

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	FLUBENDAZOLE	PHOSPHORAMIDOTHIOIC ACID; ACETIMIDOYL-; O;O-bis-(p- CHLOROPHENYL)ESTER	BEZAFIBRATE	
Structure	N NH O	CI NH	H Z O O O O O O O O O O O O O O O O O O	
Actual Endpoint (-log C)	2.088	5.006	1.946	
Predicted Endpoint (-log C)	2.69288	3.23989	2.54395	
Distance	0.697	0.703	0.721	
Reference	YRTMA6 9;11;78	FMCHA2 -;C149;89	ARZNAD 30;2023;80	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_6 feature: 16: [*]:[cH]:[*]
- 3. Unknown FCFP_6 feature: 71476542: [*]:[c](:[*])Cl
- 4. Unknown FCFP_6 feature: 1747237384: [*][c](:[*]):n:[cH]:[*]
 5. Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]
- 6. Unknown FCFP_6 feature: 136686699: [*]NC

Feature Contribution

Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score

FCFP_6	71953198	F CI [*]C([*])([*])F	0.392
ECFP_6	-1046436026	[*]F	0.349
ECFP_6	642810091		0.281
	Top Features	for negative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	226796801	[*]C([*])([*])F	-0.32
ECFP_6	-817402818	F = CI [*]CI	-0.263

ECFP_6	-176455838	Ϋ́	-0.257
		N _o o	
		[*]O[c](:[cH]:[*]):[c	
		H]:[*]	