Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

Supplementary file

Ultrafast and simultaneous removal of four tetracyclines from aqueous solutions using waste material derived graphene oxide-supported cobalt-iron magnetic nanocomposites

Md. Sohag Hossain^{1,2}, Md Humayun Kabir^{1*}, Md Aftab Ali Shaikh^{1,2*}, Md. Anamul Haque², Sabina Yasmin^{1*},

¹Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka-1205, Bangladesh ²Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh *Corresponding author e-mail: (Sabina Yasmin) sabinayasmin@bcsir.gov.bd *Corresponding author e-mail: (Md Humayun Kabir) <u>humayunkabir@bcsir.gov.bd</u> *Corresponding author e-mail: (Md Aftab Ali Shaikh) aftabshaikh@du.ac.bd

Fig. S1: Mechanism of adsorption of TCs on GO/Co-Fe composite

Adsorption mechanism:

Fig. 10 shows the adsorption mechanism of TCs onto the surface of the GO/Co-Fe composite. The numerous -COOH and -OH groups on the composite's surface create a favourable environment for effective adsorption. The interaction between amino groups (-NH₂) of TCs and oxygenated functional groups of the GO/Co-Fe composite is facilitated by hydrogen bonding ¹. Moreover, the presence of Fe³⁺ and Co²⁺ in the GO/Co-Fe composite, which was verified by XPS, enhances adsorption through electrostatic interaction². Additionally, the benzene rings and C=C double bonds of TCs interact with graphene-conjugated basal planes through the π - π interactions and finally increase the adsorption capability^{1 2}.

Experiment		Factor Level				Temperature	
		Dose (mg)	Time	pН	Concentration		Optimum
			(min)		(ppm)	(°C)	
Adsorption Study	Effect of	0.5-12	30	7	0.2	25	3 mg
	Dose						
	Effect of	3	0.5-20	7	0.2	25	0.5 min
	Time						
	Effect of	3	0.5	2-12	0.2	25	pH 7
	pН						-
	Effect of	2	0.5	7	0.2	25	0.2
	Conc.	3	0.5	/	0.2	23	0.2 ppm
Kinetic study		3	0.5-90	7	0.2	25	Fitted
							with
							pseudo
							second
							order
Isotherm study		3	0.5	7	0.2-10	30, 40 and	Fitted
						50	with
							Langmuir
							Isotherm

Table 1: Table with all treatments (combinations of levels of the factors)

References:

1B. P. Upoma, S. Yasmin, Md. A. Ali Shaikh, T. Jahan, Md. A. Haque, M. Moniruzzaman and M. H. Kabir, *ACS Omega*, 2022, 7, 29655–29665.
2H. Zhu, T. Chen, J. Liu and D. Li, *RSC Adv.*, 2018, 8, 2616–2621.