Supporting Information

Cu and Zn promoted Al-fumarate metal organic frameworks for electrocatalytic CO₂ reduction

Ung Thi Dieu Thuy^{1,*}, Tran Ngoc Huan^{2,*}, Sandrine Zanna³, Karen Wilson⁴, Adam Lee⁴, Ngoc-Diep Le,² Jim

Mensah,⁵ Venkata D.B.C Dasireddy⁴ and Nguyen Quang Liem^{1,*}

¹Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam

²Laboratoire de Chimie des Processus Biologiques, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France

³Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris (IRCP), 11 rue Pierre et Marie Curie, 75005 Paris, France

⁴School of Environment & Science, Centre for Catalysis and Clean Energy, Griffith University, Gold Coast Campus, QLD 4222, Australia

⁵Centre for Applied Materials and Industrial Chemistry (CAMIC), RMIT University, Australia * Corresponding authors. E-mails: dieuthuy@ims.vast.vn; ngoc-huan.tran@college-de-france.fr; liemng@vast.vn

S1 Experimental

CO₂ electroreduction product analysis:

Gaseous products: An on-line gas chromatograph (SRI instruments, MG#5 GC, Ar carrier) was employed to quantify C_2H_4 , H_2 , CO and CH_4 production. Quantification of H_2 was performed by a thermal conductivity detector with a HaySepD precolumn attached to a 3 m molecular sieve column used to separate H_2 from the other gases. Carbon-containing products were analyzed using a flame-ionization detector with CO and CH_4 separated using a 3 m molecular sieve column, and C_2H_4 and C_2H_6 separated using a 5 m HaySepD column. The GC was calibrated with a gas mixture containing H_2 , CO, CH_4 , C_2H_4 , C_2H_6 and CO_2 as the diluent. Calibration curves for each molecule were obtained by further diluting the gas mixture with CO₂ (both provided by mass flow controllers) before injecting to the GC.

Liquid products: Liquid product yields were determined by ionic chromatrography (MetrohmTM EcoIC) and proton nuclear magnetic resonance spectroscopy (¹H-NMR; Bruker Avance III 300 MHz, 300 K). 400 μ L of reacted catholyte, 100 μ L D₂O (Eurisotop, 99.9%) as a locking solvent and 100 μ L of 5 mM aqueous terephthalic acid solution (terephthalic acid, Sigma-Aldrich, 98%) as a reference were mixed and water peaks for each spectrum eliminated by a Pre-SAT180 water suppression method.

Faradaic efficiencies for each product was calculated using the following equation:

$$FE_{x}(\%) = \frac{n_{x} \times n_{e^{-x}} \times F}{Q} \times 100$$

where n_x is the mols of product x, n_{ex} is the number of electrons required to generate product x from CO, CO₂ or H₂O, F is the Faraday constant (96500 C.mol⁻¹), and Q the charge passed to generate n_x .

Water adsorption analysis: The samples were placed into a small climate chamber with controlled temperature and relative humidity (TA Instruments, Universal V4.5A). The water adsorption of samples was evaluated at 30 °C and ~90% relative humidity. **S2 Results**

Figure S1. (a) Water adsorption on Al-fum, Cu@Al-fum and Cu-Zn@Al-fum and (b) SEM (top) and TEM (below) images of Al-fum and Cu@Al-fum MOFs.

Figure S2. SEM image and corresponding EDX elemental maps of Al, O and Cu for Cu@Al-fum.

Figure S3. (a) Survey, (b) Al 2p and (c) O 1s XPS spectra of the pristine Al-fum, Cu@Al-fum and Cu-Zn@Al-fum MOFs.

Figure S4. Al 2p, O 1s, Cu 2p and Zn 2p XP spectra of Cu-Zn@Al-fum before (designated $Cu^{2+}Zn^{2+}@Al-fum$) and after treatment with NaBH₄.

Figure S5. Cu LMM Auger spectra of Cu and Cu-Zn doped Al-fum.

Figure S6. (a) N_2 adsorption-desorption isotherms, and (b) BJH pore size distributions of Al-fum, Cu@Al-fum and Cu-Zn@Al-fum MOFs.

Figure S7. Thermogravimetric analysis profiles and corresponding first derivatives of Al-fum, Cu@Al-fum and Cu-Zn@Al-fum.

Figure S8. (a) Schematic of cathodic electrochemical cell for CO_2 reduction, (b) time-dependent current density of Cu-Zn@Al-fum/gas diffusion electrode at different cathodic potentials. Measurements made in 0.1 M KHCO₃, saturated with CO_2 bubbled at 7.5 ml/min.

Figure S9. (a) Linear sweep voltammetry curves of Al-fum MOF/GDE and Cu@Al-fum in 0.1 M KHCO₃ aqueous solution saturated with CO₂ or Ar, and (b) Faradaic efficiencies for CO₂ reduction products in 0.1 M KHCO₃-saturated CO₂ at different cathodic potentials of Al-fum MOF/GDE. CO₂ was continuously bubbled at 7.5 mL.min⁻¹ during electrolysis.

Figure S10. Nyquist plots, with fitting curves (solid lines), of Al-fum MOF, Cu@Al-fum, and Cu-Zn@Al-fum samples in CO_2 -saturated 0.1 M KHCO₃ with a frequency $10^5 \div 10^{-1}$ Hz at 10 mV of amplitude. The equivalent circuit model is shown on the insert. Rs stands for the contact resistance, Rct for the charge transfer resistance.

ciccuocatarysis at -1.2 v vs kinz.									
Sample	H ₂ (µmol)	CO (µmol)	HCOOH (µmol)	CH4 (µmol)	C ₂ H ₄ (µmol)	C ₂ H ₅ OH (µmol)ª	Selectivity to C products (%)		
Al-fum	112.4	1.23	1.08	-	-	-	2		
Cu@Al-fum	58.5	6.64	6.9	0.49	0.78	-	20		
Cu-Zn@Al-fum	23.21	14.91	4.45	2.22	0.77	0.68	50		

Table S1. Quantification of products formed after 30 min CO_2 electroreduction over Al-fum derived electrocatalysts at -1.2V vs RHE.

^aFor ethanol analysis, electrolysis sample was collected after 60 min to enable detection by NMR.

Table S2. Fitted contact resistance (Rs) and charge transfer resistance (R_{ct}) values from Nyquist plots.

Electrode	R _s (Ohm)	R _{ct} (Ohm)	Q (Farad)	n
Al-fum	175.38	6943.4	0.00010948	0.9837
Cu@Al-fum	160.13	3208.3	0.0002241	0.5134
Cu-Zn@Al-fum	163.42	2681.2	0.00003986	0.76914