Electronic Supplementary document (ESI)

New Triazole-based Coordination Complexes as Antitumor Agents against Triple Negative Breast Cancer MDA-MB-468 Cell Line

Youssef Draoui,¹ Smaail Radi,^{*,1} Yousra Bahjou,^{1,2} Abderrazaka Idir,³ Amal El Mahdaoui,¹ Abdelmajidb Zyad,³ Haralampos N. Miras,⁴ Marilena Ferbinteanu,⁵ Aurelian Rotaru,⁶ Yann Garcia^{*,2}

¹ LCAE, Department of Chemistry, Faculty of Science, University Mohamed I, P.O. Box 524, Oujda 60 000, Morocco.

- ² Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain, Place L. Pasteur 1, 1348 Louvain-la-Neuve, Belgium.
- ³ Team of Experimental Oncology and Natural Substances, Cellular and Molecular Immuno pharmacology, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni-Mellal, Morocco.

⁴ School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK.

⁵ Inorganic Chemistry Department, Faculty of Chemistry, University of Bucharest, Panduri Road, no. 90, Bucharest 050663, Romania
⁶ Department of Electrical Engineering and Computer Science & Research Center MANSiD, "Stefan cel Mare" University, University Street, No. 13, Suceava 720229, Romania

E-mail: yann.garcia@uclouvain.be; s.radi@ump.ac.ma

Content:

Table S1. Summary of crystallographic data and refinement for 5-11	3
Table S2. Selected bond lengths [Å] and angles [°] for 5-11.	4
¹ H NMR LM	5
¹³ C NMR LM	6
Figure S1. Diffuse reflectance spectroscopic comparison of LM and 5-11	7
Figure S2. SQUID measurement on 9 carried out over the temperature range (300-5 K) over three consecutive runs	8
Figure S3. Mössbauer spectrum in transmission mode of 9 recorded at room temperature	9
HRMS of LM	10
HRMS of 5	11
HRMS of 6	12
HRMS of 7	13
HRMS of 8	14
HRMS of 10	15

Compounds	(5)	(6)	(7)	(8)	(9)	(10)	(11)
Empirical formula	C ₂₆ H ₃₉ Cl ₂ N ₁₅ NiOS	C ₅₂ H ₇₆ Cl ₄ Co ₂ N ₃₀ O ₁₇	$C_{16}H_{22}CdCl_2N_{10}$	C ₁₆ H ₂₂ CuN ₁₂ O ₆	C ₂₄ H ₃₃ B ₂ F ₈ Fe	$C_{24}H_{33}B_2F_8Zn$	$C_{16}H_{22}N_{12}ZnO_{6}$
					N ₁₅	N ₁₅	
Formula weight	867.39	1653.08	537.73	541.99	761.12	770.64	543.82
Crystal size (mm)	0.30 x 0.20 x 0.10	0.30 x 0.14 x 0.10	0.60 x 0.40 x	0.50 x 0.30 x	0.40 x 0.35 x	0.50 x 0.47 x	0.20 x 0.18 x
			0.30	0.25	0.15	0.20	0.15
Crystal system	Triclinic	triclinic	monoclinic	Monoclinic	triclinic	Triclinic	monoclinic
Space group	P -1 (#2)	P -1 (#2)	<i>P</i> 2 ₁ / <i>c</i> (#14)	C 2/c (#15)	P -1 (#2)	P -1 (#2)	C 2/c (#15)
<i>a</i> (Å)	11.1956(13)	11.7384(12)	7.1207(3)	15.2108(11)	11.6977(19)	11.7208(8)	15.3500(5)
b (Å)	14.8446(14)	11.7537(11)	17.0820(8)	14.0236(9)	11.7249(9)	11.7347(10)	13.6196(4)
c (Å)	14.8844(18)	15.3103(9)	8.8551(4)	11.5087(9)	15.229(2)	15.1727(9)	11.4186(3)
α (°)	119.056(11)	80.114(7)	90	90	79.371(9)	79.553(6)	90
β(°)	92.646(10)	78.156(8)	94.076(2)	108.678(9)	79.491(12)	79.334(6)	109.496(3)
γ(°)	110.233(10)	73.278(9)	90	90	73.371(10)	73.196(7)	90
Volume (Å ³)	1958.6(4)	1965.6(3)	1074.37(8)	2325.6(3)	1948.3(5)	1945.0(3)	2250.31(12)
Ζ	2	1	2	4	2	2	4
ρcalc.(g/cm ³)	1.471	1.397	1.662	1.548	1.297	1.316	1.605
F(000)	900	856	540.00	1116	780	788	1120
μ MoK $_{\alpha}$ (cm ⁻¹)	0.752	0.637	1.291	0.999	0.463	0.707	1.153
Т (К)	293(2)	293(2)	293	293(2)	293(2)	297(2)	150(2)
θ min/max	3.157/26.158	3.035/26.203	3.106/ 27.500	3.455/26.040	2.873/26.165	3.096/26.157	2.454/53.701
Refl. collected/unique	30651/7776	27103/7827	4681/2316	7610/2272	20213/ 7758	15416/7190	17389/7841
Data/restraints/paramet	7776/156/ 555	7827/50/551	2316/0/133	2272/62/194	7758/60/522	7190/110/506	7841/1/178
ers							
Goodness of fit on <i>F</i> ²	1.046	1.068	1.065	1.078	1.068	1.030	1.056
Final <i>R</i> indices [I>2σ(I)]	R ₁ = 0.0514, wR ₂ =0.1412	R ₁ =0.0478, wR ₂ = 0.1397	$R_1 = 0.0469,$ w $R_2 = 0.1278$	R ₁ =0.0452, wR ₂ =0.1284	R₁=0.0554, wR₂=0.1499	R ₁ =0.0456, wR ₂ =0.1268	R ₁ =0.0587, wR ₂ =0.1700

 $R_1 = 0.0489$,

 $wR_2 = 0.1312$

R₁= 0.0472,

wR₂=0.1299

R₁=0.0723,

wR₂=0.1635

R₁=0.0506,

wR₂=0.1304

Table S1. Summary of crystallographic data and refinement for 5-11.

R indices (all data)

 $R_1 = 0.0584$,

wR₂=0.1462

 $R_1 = 0.0558$,

wR₂=0.1458

R₁=0.0990,

wR₂=0.1894

Compound	Bor	nd lengths, Å	Bond angles, °		
5	Ni(1)-N(30)	2.072(2)	N(30)-Ni(1)-N(2)	91.94(9)	
	Ni(1)-N(10)	2.073(2)	N(30)-Ni(1)-N(22)	77.68(8)	
	Ni(1)-N(50)	2.080(2)	N(50)-Ni(1)-N(22)	93.84(9)	
	Ni(1)-N(2)	2.136(2)	N(2)-Ni(1)-N(22)	98.81(8)	
	Ni(1)-N(22)	2.138(2)	N(50)-Ni(1)-N(42)	77.18(9)	
	Ni(1)-N(42)	2.142(2)	N(2)-Ni(1)-N(42)	100.49(9)	
6	Co(1)-N(10)	2.100(2)	N(10)-Co(1)-N(2)	77.14(8)	
	Co(1)-N(50)	2.116(2)	N(50)-Co(1)-N(2)	95.50(8)	
	Co(1)-N(30)	2.125(2)	N(30)-Co(1)-N(22)	75.84(8)	
	Co(1)-N(2)	2.170(2)	N(2)-Co(1)-N(22)	89.40(9)	
	Co(1)-N(22)	2.170(2)	N(10)-Co(1)-N(42)	93.70(8)	
	Co(1)-N(42)	2.173(2)	N(22)-Co(1)-N(42)	101.25(8)	
7	Cd(1)-N(3)#1	2.411(3)	N(1)#1-Cd(1)-N(1)	180.0	
	Cd(1)-N(3)	2.411(3)	N(3)#1-Cd(1)-Cl(1)	89.24(8)	
	Cd(1)-N(1)#1	2.414(2)	N(3)-Cd(1)-Cl(1)	90.76(8)	
	Cd(1)-N(1)	2.414(2)	N(1)#1-Cd(1)-Cl(1)	89.24(6)	
	Cd(1)-Cl(1)	2.5426(9)	N(3)#1-Cd(1)-Cl(1)#1	90.76(8)	
	Cd(1)-Cl(1)#1	2.5426(9)	Cl(1)-Cd(1)-Cl(1)#1	180.0	
8	Cu(1)-O(23)	2.018(5)	O(23)-Cu(1)-N(2)	86.42(17)	
	Cu(1)-N(2)	2.042(2)	N(2)#1-Cu(1)-N(10)#1	79.22(9)	
	Cu(1)-N(2)#1	2.042(2)	O(23)-Cu(1)-N(10)	100.97(14)	
	Cu(1)-N(10)#1	2.112(2)	N(2)-Cu(1)-N(10)	79.22(9)	
	Cu(1)-N(10)	2.112(2)	N(2)#1-Cu(1)-N(10)	97.82(10)	
			N(10)#1-Cu(1)-N(10)	104.36(13)	
9	Fe(1)-N(30)	2.152(2)	N(10)-Fe(1)-N(50)	87.89(9)	
	Fe(1)-N(10)	2.161(2)	N(30)-Fe(1)-N(42)	102.94(8)	
	Fe(1)-N(50)	2.186(2)	N(50)-Fe(1)-N(42)	74.03(8)	
	Fe(1)-N(42)	2.196(2)	N(30)-Fe(1)-N(22)	75.53(8)	
	Fe(1)-N(22)	2.201(2)	N(42)-Fe(1)-N(22)	92.11(9)	
	Fe(1)-N(2)	2.216(2)	N(30)-Fe(1)-N(2)	94.02(8)	
10	Zn(1)-N(30)	2.1104(18)	N(10)-Zn(1)-N(22)	95.60(8)	
	Zn(1)-N(10)	2.1411(19)	N(30)-Zn(1)-N(42)	101.03(7)	
	Zn(1)-N(50)	2.1512(19)	N(50)-Zn(1)-N(42)	75.16(7)	
	Zn(1)-N(22)	2.191(2)	N(22)-Zn(1)-N(42)	91.87(8)	
	Zn(1)-N(42)	2.191(2)	N(30)-Zn(1)-N(2)	94.04(7)	
	Zn(1)-N(2)	2.211(2)	N(42)-Zn(1)-N(2)	99.48(8)	
11	N(6)-Zn(1)	2.1884(14)	N(11)-Zn(1)-N(11)#1	105.08(8)	

N(11)-Zn(1)	2.0637(14)	N(11)#1-Zn(1)-O(30)#1	97.75(5)
O(30)-Zn(1)	2.1682(14)	O(30)#1-Zn(1)-O(30)	59.80(7)
		N(11)-Zn(1)-N(6)	77.57(5)
		O(30)#1-Zn(1)-N(6)	95.53(5)
		O(30)-Zn(1)-N(6)	89.40(5)
	N(11)-Zn(1) O(30)-Zn(1)	N(11)-Zn(1) 2.0637(14) O(30)-Zn(1) 2.1682(14)	N(11)-Zn(1) 2.0637(14) N(11)#1-Zn(1)-O(30)#1 O(30)-Zn(1) 2.1682(14) O(30)#1-Zn(1)-O(30) N(11)-Zn(1)-N(6) O(30)#1-Zn(1)-N(6) O(30)-Zn(1)-N(6) O(30)-Zn(1)-N(6)

<u>¹H NMR LM</u>

13C NMR LM:

Figure S1. Diffuse reflectance spectroscopic comparison of LM and 5-11.

Figure S2. SQUID measurement on **9** carried out over the temperature range (300-5 K) over three consecutive runs.

Figure S3. Mössbauer spectrum in transmission mode of 9 recorded at room temperature.

HRMS of LM:

HRMS of 5:

Elemental Composition Results					
Peak Mass	Display Formula	MS Cov. [%]	Delta [ppm]	Theo. mass	
688.18712	C ₂₄ H ₃₃ O ₄ N ₁₅ ³⁵ Cl ⁵⁸ Ni	99.94	-0.76	688.18765	

HRMS of 6:

Elemental Composition Results					
Peak Mass	Display Formula	MS Cov. [%]	Delta [ppm]	Theo. mass	
295.11811	C48H66N30 ⁵⁹ Co2	78.07	-0.37	295.11822	
Peak Mass	Display Formula	MS Cov. [%]	Delta [ppm]	Theo. mass	
295.11811	C ₂₄ H ₃₃ N ₁₅ ⁵⁹ Co	99.21	-0.37	295.11822	

HRMS of 7:

Elemental Composition Results					
Peak Mass	Display Formula	MS Cov. [%]	Deita [ppm]	Theo. mass	
230.05410	C16H22N10 ¹⁰⁶ Cd	99.53	-0.11	230.05413	

HRMS of 8:

Elemental Composition Results					
Peak Mass	Display Formula	MS Cov. [%]	Delta (ppm)	Theo. mass	
479.11979	C ₁₆ H ₂₂ O ₃ N ₁₁ ⁶³ Cu	99.23	0.06	479.11976	

HRMS of 10:

Elemental Composition Results					
Peak Mass	Display Formula	MS Cov. [%]	Delta [ppm]	Theo. mass	
297.61606	C ₂₄ H ₃₃ N ₁₅ ⁶⁴ Zn	99.02	-0.46	297.61619	