Integration of a Cu₂O/ZnO heterojunction and Ag@SiO₂ into

a photoanode for enhanced solar water oxidation

Xuyang Zeng,^{ab} Qianyu Gao,^{ab} Peilin Song,^b Xinru Zhang,^b Jiaying Xie,^b Qingwen Dong,^b Junjie Qi,^b Xiu-Shuang Xing,^{*b} and Jimin Du^{*ab}

^aCollege of Chemistry, Zhengzhou University, Zhengzhou 450000, P. R. China. Email: djm@iccas.ac.cn

^bHenan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P.

R. China. E-mail: xsxing0621@163.com

Fig. S1 The top-view SEM images of (a) FTO/ZnO, (b) $FTO/ZnO/Cu_2O-1$, (c) $FTO/ZnO/Cu_2O-2$ and (d) $FTO/ZnO/Cu_2O-3$ photoanodes.

Fig. S2 The XRD patterns of FTO/ZnO, FTO/ZnO/Cu₂O-1, FTO/ZnO/Cu₂O-2 and FTO/ZnO/Cu₂O-3 photoanodes.

Fig. S3 The UV–vis diffuse reflectance spectra of FTO/ZnO, FTO/ZnO/Cu₂O-1, FTO/ZnO/Cu₂O-2 and FTO/ZnO/Cu₂O-3 photoanodes.

Fig. S4 The XRD patterns of FTO/ZnO, FTO/ZnO/Cu₂O, FTO/ZnO/Cu₂O/Ag and FTO/ZnO/Cu₂O/Ag@SiO₂ photoanodes.

Fig. S5 The UV–vis diffuse absorbance spectra of FTO/ZnO, FTO/ZnO/Cu₂O, FTO/ZnO/Cu₂O/Ag and FTO/ZnO/Cu₂O/Ag@SiO₂ photoanodes.

Fig. S6 XPS survey spectra of FTO/ZnO, FTO/ZnO/Cu₂O, FTO/ZnO/Cu₂O/Ag and FTO/ZnO/Cu₂O/Ag@SiO₂ photoanodes.

Fig. S7 J-t curves of the FTO/ZnO/Cu₂O/Ag@SiO₂ photoanode at 1.23 V_{RHE} for stability study.

Fig. S8 The SEM images before and after stability test of $FTO/ZnO/Cu_2O/Ag@SiO_2$ photoanode.

Fig. S9 The XPS spectra before and after stability test of $FTO/ZnO/Cu_2O/Ag@SiO_2$ photoanode.

Fig. S10 The XRD patterns before and after stability test of $FTO/ZnO/Cu_2O/Ag@SiO_2$ photoanode.

Photoanode	Film texture	Optimized sample (<i>J-V</i> curves)	$J_{ m ph@1.23V}$ $U_{ m on}$	Testing conditions (Under AM 1.5G irradiation)	Key Method	Ref.
ZnO/CdO/rGO		(c) $1 + \frac{1}{2} + \frac{1}{2$	0.38 mA/cm ² -0.2 V (vs. Ag@AgCl)	0.5 M Na ₂ SO ₄	thermal decomposition and spin coating	[1]
ZnNi MOF @ZnO		Current of the second s	0.88 mA/cm ² 0.3 V _{RHE}	0.5M Na ₂ SO ₄	hydrothermal	[2]
Pt/ZnO/Co-Pi	(с) 1 <u>ш</u> т	Li (a) Zao i PRZACC-Pret PRZACC-Pret PRZACC-Pret PRZACC-Pret PRZACC-Pret PRZACC-Pret PRZACC-Pret PRZACC-Pret PRZACC-Pret PRZACC-Pret PRZACC-Pret PRZACC-Pret PRZACC-Pret PRZACC-Pret PRZACC-Pret PRZACC-Pret PRZACC-Pret PRZACC-PRET PR	0.8 mA/cm ² 0.07 V _{RHE}	0.1 M K ₃ PO ₄	hydrothermal and photoelectrode position	[3]
ZnO/CdS/Au		(a) ¹ 	1 mA/cm ² -0.5 V (vs. Ag@AgCl)	0.25 M Na ₂ S 0.35 M Na ₂ SO ₃	chemical bath deposition and sulfuric acid corrosion	[4]
ZnO/ZnS	a) Bitter 2.0µm	14 (a) = C0.3046 C0.3048 (c) = C0.3046 (c) = C0.3048 (c) = C0	0.08 mA/cm ² -0.5 V (vs. Ag/AgCl)	0.5 M Na ₂ SO ₃	hydrothermal	[5]
FTO/TiO ₂ /Zn O/NiO		1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.91 mA/cm ² 0.35 V _{RHE}	1.0 M NaOH	atomic layer deposition and immersion	[6]

Tab. S1 A comparison of the PEC-WS performances between the ZnO photoanodes in

the related literature and our present FTO/ZnO/Cu₂O/Ag@SiO₂ photoanode.

ZnO/CuFeO ₂	(2) 	100 100 100 100 100 100 100 100	54 μA/cm ² 0.5 V (Ag/AgCl)	0.5 M Na ₂ SO ₄	spin coating and electrochemic ally depositing	[7]
Eu ₁₅₀ /ZnO	0: 315 2r. 452 Eu: 165 200 nm	$a \xrightarrow{1}_{(1)} \underbrace{1}_{(2)} \underbrace{1}_{($	1.4 mA/cm ² 0.3 V _{RHE}	0.5M Na ₂ SO ₄	electrodepositi on	[8]
ZnO/ZCO	(b) 500 nm	Current and the second	1.58 mA/cm ² 0.5 V _{RHE}	0.5 M Na ₂ SO ₄	two-step aqueous chemical bath growth and electrodepositi on	[9]
ZnO/CoO	(c) 6 560 nm	15 12 12 12 12 12 12 12 12 12 12	1.25 mA/cm ² -0.3 V (vs. Ag@AgCl)	10, 30 mM borax with sodium hydroxide	ALD and CBD and ECD	[10]
FTO/ZnO/Cu ₂ O/Ag@SiO ₂		- 11 - 11 - 11 - 12 - 12 - 12 - 12 - 12	0.77 mA/cm ² 0.4 V _{RHE}	1.0 M NaOH	hydrothermal and immersion	This work

Reference

- [1] L. Sun, J. Sun, X. Sun, S. Bai, Y. Zhao, R. Luo, D. Li and A. Chen, J. Colloid Interfaces Sci., 2022, 608, 2377–2386.
- [2] Z. Peng, S. C. Abbas, J. Lv, R. Yang, M. Wu and Y. Wang, Int. J. Hydrogen Energy, 2019, 44, 2446–2453.
- [3] S. Zhang, Z. Liu, M. Ruan, Z. Guo, L. E, W. Zhao, D. Zhao, X. Wu and D. Chen, *Appl. Catal. B: Environ.*, 2020, 262, 118279.

- [4] R.-B. Wei, P.-Y. Kuang, H. Cheng, Y.-B. Chen, J.-Y. Long, M.-Y. Zhang and Z.-Q. Liu, ACS Sustain. Chem. Eng., 2017, 5, 4249–4257.
- [5] C. Li, S. Chen, Y. Wang and Z. Hou, Int. J. Hydrogen Energy, 2019, 44, 25416–25427.
- [6] X. Ren, X. Zeng, Y. Wang, X. Liu, A. Li, X.-S. Xing and J. Du, *ChemistrySelect*, 2022, 7, e202203608.
- [7] K. Karmakar, A. Sarkar, K. Mandal and G. G. Khan, *Nanotechnology*, 2017, 28, 325401.
- [8] S. Xie, W. Wei, S. Huang, M. Li, P. Fang, X. Lu and Y. Tong, *J. Power Sources*, 2015, 2977, 9–15.
- [9] D. Maity, K. Karmakar, D. Pal, S. Saha, G. G. Khan and K. Mandal, ACS Appl. Energy Mater., 2021, 4, 11599–11608.
- [10]K. R. Nandanapalli, D. Mudusu, J.-S. Yu and S. Lee, J. Colloid Interfaces Sci., 2020, 558, 9–20.