Supplementary Information for

Br doping-induced evolution of the electronic band structure in dimorphic and hexagonal SnSe₂ thermoelectric materials

Se-Jun Kim,^{†a} Minsu Heo,^{†a} Sang-il Kim,^{†a} Hyunjin Park,^a Jeong-Yeon Kim,^a Won-Seon Seo,^b and Hyun-Sik Kim^{*a}

^a Department of Materials Science and Engineering, University of Seoul, Seoul 02504, South Korea ^b Department of Materials Science and Engineering, Yonsei University, Seoul 03722, South Korea

[†]These authors contributed equally to this study.

* Corresponding author (hyunsik.kim@uos.ac.kr)

Fig. S1 Temperature-dependent (a) σ , (b) S, (c) κ_{tot} , and (d) zT of SnSe_{2-x}Br_x (x = 0 - 0.10).¹

Fig. S2 (a) Calculated and experimental *S* as a function of n_H , (b) temperature-dependent m_d^* , (c) calculated and experimental μ_H as a function of n_H , (d) temperature-dependent μ_0 , (e) calculated and experimental *PF* as a function of n_H , (f) temperature-dependent μ_W , (g) calculated and experimental *zT* as a function of n_H , (h) temperature-dependent *B*-factor for pristine SnSe₂ at 50 – 300 K.²

Fig. S3 (a) Experimental total thermal conductivity (κ_{tot}), (b) calculated κ_e , (c) experimental σ , and (d) calculated *L* for different Br doping content (*x*).¹

References

- 1. M. Liu, J. Zhang, J. Xu, B. Hu, B. Liu, K. Sun, Y. Yang, J. Wang and B. Du, *J. Solid State Chem.*, 2020, **289**, 121468.
- 2. J. Wang, X. Jia, S. Lou, G. Li, S. Zhou, ACS Omega, 2020, 5, 12409.