Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

Supplementary information

Spike rate dependent synaptic characteristics in lamellar, multilayered alpha- MoO_3 based two-terminal devices - efficient way to control the synaptic amplification

^{1,2}Meenu Maria Sunny, and ^{2*}R. Thamankar

¹Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamilnadu - 632014. India ²Centre for Functional Materials, Vellore Institute of Technology, Vellore, Tamilnadu -632014. India.

*Corresponding author E-mail address: rameshm.thamankar@vit.ac.in

Fig.S1 : The electrode configuration used in the investigation. Interdigitated electrodes from MICRUX TECHNOLOGIES, Mora-Garay Industrial Park, Building #6, Juan de la Cierva, SPAIN were considered. The central area where we drop cast the layered MoO_3 is 3mm in diameter. The electrode system contain 150 pairs of Pt/Ti electrodes with 50 nm Ti wetting layer and then 150 nm of Pt electrode deposited. Each pair of electrodes are separated 5 μ m.

Fig.S2 : Read-Write-Erase statistics for 1000 cycles of operation. Here we applied a write voltage of 3 V and Erase voltage of -3 V. The resistance states are measured at 1 V. The measured current difference between the HRS and LRS state is about 0.19 nA, which amounts to 5.26 GOhm

Along (-1,1) to (1,1) direction

Total distance from point A to point B in the intensity profile (in S2a) : $\Delta x = 14.499 \text{ nm}^{-1}$ Average distance of separation : $\frac{14.499 \text{ nm}^{-1}}{4} = 3.62475 \text{ nm}^{-1}$ The average distance in real lattice : $\frac{1}{3.62475 \text{ nm}^{-1}} = 0.276 \text{ nm}$ <u>Along (1,1) to (1,-1) direction</u> Total distance from point B to point C in the intensity profile (in S2c) : $\Delta y = 14.608 \text{ nm}^{-1}$ Average distance of separation : $\frac{14.608 \text{ nm}^{-1}}{4} = 3.652 \text{ nm}^{-1}$ The average distance in real lattice : $\frac{1}{3.652 \text{ nm}^{-1}} = 0.274 \text{ nm}$

Figure (S4) : (a) The pulse voltage dependence of the potentiation in Pt/MoO₃/Pt (Black) and Au/MoO₃/Au (Red) devices. The data points show the change in the post synaptic current (Δ I) during the potentiation. The change in the PSC is independent of the pulse voltages used. (b)The absolute change in the post-synaptic current with number of cycles. Post-synaptic current change is also plotted for various pulse voltage used to measure the potentiation and depression.