Supplementary information

Spike rate dependent synaptic characteristics in lamellar, multilayered alpha- MoO_{3} based two-terminal devices - efficient way to control the synaptic amplification
${ }^{1,2}$ Meenu Maria Sunny, and ${ }^{2 *}$ R. Thamankar
${ }^{1}$ Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamilnadu - 632014. India
${ }^{2}$ Centre for Functional Materials, Vellore Institute of Technology, Vellore, Tamilnadu -632014. India.
*Corresponding author
E-mail address: rameshm.thamankar@vit.ac.in

Fig.S1: The electrode configuration used in the investigation. Interdigitated electrodes from MICRUX TECHNOLOGIES, Mora-Garay Industrial Park, Building \#6, Juan de la Cierva, SPAIN were considered. The central area where we drop cast the layered MoO_{3} is 3 mm in diameter. The electrode system contain 150 pairs of $\mathrm{Pt} / \mathrm{Ti}$ electrodes with 50 nm Ti wetting layer and then 150 nm of Pt electrode deposited. Each pair of electrodes are separated $5 \mu \mathrm{~m}$.

Fig.S2 : Read-Write-Erase statistics for 1000 cycles of operation. Here we applied a write voltage of 3 V and Erase voltage of -3 V . The resistance states are measured at 1 V . The measured current difference between the HRS and LRS state is about 0.19 nA , which amounts to 5.26 GOhm

Figure (S3): Detailed analysis of Fourier transform image of the transmission electron microscopy image showing fig.(1h). (S3a) represent the line scan of the intensity along $(-1,1)$ to $(1,1)$ direction as shown by the red dashed line in S3b. The average distance between the peaks along this direction is 0.266 nm .
(S3c) shows the intensity profile along $(1,1)$ to $(1,-1)$ direction as shown by the blue dotted curve in fig(S1b). The average distance between the peaks along this direction is 0.274 nm .

Along (-1,1) to (1,1) direction

Total distance from point A to point B in the intensity profile (in S2a) : $\Delta x=14.499 \mathrm{~nm}^{-1}$
Average distance of separation : $\frac{14.499 \mathrm{~nm}^{-1}}{4}=3.62475 \mathrm{~nm}^{-1}$
The average distance in real lattice $: \frac{1}{3.62475 \mathrm{~nm}^{-1}}=0.276 \mathrm{~nm}$

Along (1,1) to ($\mathbf{1 , - 1) \text { direction } , ~}$

Total distance from point B to point C in the intensity profile (in S2c) : $\Delta y=14.608 \mathrm{~nm}^{-1}$
Average distance of separation : $\frac{14.608 \mathrm{~nm}^{-1}}{4}=3.652 \mathrm{~nm}^{-1}$
The average distance in real lattice $: \frac{1}{3.652 \mathrm{~nm}^{-1}}=0.274 \mathrm{~nm}$

Figure (S4) : (a) The pulse voltage dependence of the potentiation in $\mathrm{Pt} / \mathrm{MoO}_{3} / \mathrm{Pt}$ (Black) and $\mathrm{Au} / \mathrm{MoO}_{3} / \mathrm{Au}$ (Red) devices. The data points show the change in the post synaptic current ($\Delta \mathrm{I}$) during the potentiation. The change in the PSC is independent of the pulse voltages used. (b)The absolute change in the post-synaptic current with number of cycles. Post-synaptic current change is also plotted for various pulse voltage used to measure the potentiation and depression.

