Supporting Information

Performance and mechanism of a bioelectrochemical system for the reduction in heavy metal cadmium ions

XiaXia Wang^a, Yu Zhao^{*a}, Li'E Jin^{*a}, Bin Liu^a,

^aInstitute of Clean Chemical Engineering, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China.

* Corresponding authors

E-mail	address:	zhaoyu@tyut.edu.cn	(Zhao)	and
lejin2003	@163.com(Jin)		

TEXT (1)

FIGURES (8)

TABLE (3)

PAGES (7)

- S1. Materials and methods
- 1. Current density (A/cm²):

$$I_D = I/S \tag{1}$$

2. Total coulombs transferred (CT):

$$Q = \int_{0}^{t} I dt \tag{2}$$

3. Cathodic coulomb efficiency (CEca) :

$$CE_{ca}cd = \frac{a \times V_{ca} \times \Delta C_{cd} \times F}{M_{cd} \times \int_{0}^{t} Idt} \times 100\%$$
(3)

4. Cathode energy efficiency:

$$\eta_{E_{cd}} = \frac{a \times n_{cd} \times E_{cd} \times F}{\int_{0}^{t} I dt \times E_{ps}} \times 100\%$$
(4)

5. The unit energy consumption of the cathode (kwh/kg):

$$energy\ consumption = \frac{1000 \times E_{ps} \times \int_{0}^{L} Idt}{n_{cd} \times M_{cd} \times 3600 \times 1000}$$
(5)

In the above formula:

- a-number of electrons consumed to reduce a unit amount of Cd;
- F—Faraday's constant $(9.64853 \times 10^4 \text{C} \cdot \text{mol}^{-1})$;
- I-current (A);
- S—Cathode electrode area (cm^2) ;
- ∆t—running time per cycle (s);

V_{ca}—an effective volume of the cathode chamber of the MECs(V);

 Δ Cd—the difference in Cd(II) concentration between the inlet and outlet water of the

MECs cathode (mg·L⁻¹);

M_{cd}—relative atomic weight of cadmium (g·mol⁻¹);

n_{cd}—amount of Cd(II) removed by MECs per cycle (mol);

E_{cd}—the standard electrode potential of Cd(II) (V);

E_{ps}—applied voltage (V);

Fig.S 1 Part of Cyclic voltammograms (A) for biocathodes and non-biocathodes (initial Cd(II): 40 mg·L-1, 60 mg·L-1; applied voltage: 0.5 V).

Fig.S 2 Cyclic voltammograms with biocathodes and abiotic cathodes (A $\ B \ C$)(initial acetate: 1.0 g·L⁻¹; initial Cd(II): 20 mg·L⁻¹; applied voltage:0.5V).

Fig.S 3 Standard deviations are plotted for different times(A)as well as for different concentrations (B).

Fig.S 4 Cyclic voltammograms for different scan rates (A) (initial acetate: 1.0 g-L^{-1} ; initial Cd(II): 20 mg-L^{-1} ; scan rate : $1-10 \text{mV} \cdot \text{s}^{-1}$;) and electrochemical impedance diagram for different concentrations of Cd(II) solutions (B)(initial Cd(II):20-

	Cd(II)mg/L	Rs/Ω	Rct/Ω	W/Ω
biotic	20	3.0126	7.7990	28.618
	40	2.7346	2.6872	26.255
	60	3.3384	1.7643	20.544
	80	2.3696	2.0566	11.539
	100	2.9131	7.5825	37.940

Table.S 1 Equivalent circuit data analysis table for electrochemical impedance spectra of different concentrations of Cd (II) solutions (initial acetate: 1.0 g·L⁻¹; applied voltage: 0.5 V).

 $\label{eq:comparison} Table.S\ 2\ Comparison\ of\ cathodic\ electrons\ for\ cathodic\ Cd(II)\ reduction\ (CEca,\ Cd)\ at\ different\ initial\ Cd(II)\ concentrations, and\ energy\ efficiency\ of\ energy\ consumed\ for\ Cd(II)\ reduction\ (\eta E,\ Cd),\ cathodic\ unit\ energy\ consumption\ (kwh\cdot kg^{-1}).initial\ acetate\ concentration:\ 1.0\ g\cdot L^{-1})$

Cd(II)(mg·L ⁻¹)	d	Q(C)	∆cd(mg·L ⁻¹)	CEca, Cd	η_{E} , Cd	Kwh∙kg ⁻¹
20	1	125425.8	14.606	1.60%	1.29%	14.91
	2	224866.8	17.624	1.08%	0.87%	22.15
	3	277160.4	18.514	0.92%	0.74%	25.99
	4	317682	18.159	0.79%	0.63%	30.37
40	1	123832	35.374	3.92%	3.16%	6.08
	2	184182.66	37.528	2.80%	2.26%	8.52
	3	253914.48	38.154	2.06%	1.66%	11.55
	4	297979.56	37.751	1.74%	1.40%	13.70
60	1	162016.5	53.513	4.54%	3.66%	5.26
	2	248972.7	54.88	3.03%	2.44%	7.88
	3	292424.7	57.691	2.71%	2.18%	8.80
	4	315608.7	58.156	2.53%	2.04%	9.42
80	1	79038	72.52	15.75%	12.70%	1.51
	2	215982	73.39	5.83%	4.70%	4.09
	3	264925.8	76.23	4.94%	3.98%	4.83
	4	283933.8	78	4.72%	3.80%	5.06
100	1	75639.42	94.17	17.10%	13.78%	1.39
	2	164903.94	96.81	8.06%	6.50%	2.96
	3	225868.86	97	5.90%	4.75%	4.04
	4	278735.94	98.08	4.83%	3.89%	4.93

Table.S 3 Similarity-based OTUs and species richness and diversity estimates

	OTUs	Shannon	Simpson	ACE	Chaol	Coverage/%
CA_1_Cd	1923	7.59	0.96	1978.27	1956.40	99.78%
OR_1	1658	5.75	0.83	1748.33	1716.26	99.70%

Fig.S 5Krona graph for the order classification of cadmium-containing sludge.

Fig.S 6 Krona graph for the order classification of raw sludge.