Supplementary Information

Toxic Gas Sensing Performance of Arsenene functionalized by

Single-atom (Ag, Au): a DFT Study

Ping Wu¹, Zihao Zhao², Zijie Huang², Min Huang^{2,*}

¹Shandong Engineering Research Center of New Optoelectronic Information Technology and Devices, School of Mathematics and Physics, Qingdao University of Science & Technology, Qingdao 266061, People's Republic of China

²School of Physics, Key Laboratory of Intelligent Sensing System and Security (Hubei University), Ministry of Education, Hubei University, Wuhan 430062, People's Republic of China.

* Corresponding author, E-mail address: <u>huangmin@hubu.edu.cn</u>

Table S1 Total energy (E_t) of NO/Ag-arsenene after fully relaxation with variousK-points in supercell of (4×4×1).

K-points	5×5×1	7×7×1	9×9×1
$E_{\rm t}~({\rm eV})$	-163.3871	-163.3862	-163.3859

Table S2 Total energy (E_t) of NO/Ag-arsenene after fully relaxation with various
energy cutoff.

$E_{\text{cut-off}}(\text{eV})$	400	420	450	500
$E_{\rm t}({\rm eV})$	-163.3891	-163.3871	-163.3862	-163.3894

Table S3 Total energy (E_t) for NO/Ag-arsenene system with different vacuum height.

vacuum height(Å)	20	22	25
$E_{\rm t}({\rm eV})$	-163.3862	-163.3865	-163.3862

Table S4 Adsorption energy (E_{ads}) for NO adsorbed on Ag-arsenene surface with
different size of supercell.

supercell	4 ×4 ×1	5×5×1	6×6×1
$E_{\rm ads}~({\rm eV})$	-0.724	-0.726	-0.727

Figure S1 (a)-(c) Optimized structures, band structure and density of states (PDOS) for pristine arsenene, respectively.

Figure S2 (a)-(b) Total density of states (TDOS) and Project Density of states (PDOS) for Ag and Au-doped arsenene systems, respectively.

Figure S3 (a)-(f) Top (upper panel) and side views (lower panel) of the most favorable configurations of pristine arsenene with adsorption of CO, NO, NO₂, SO₂, NH₃ and H₂S, respectively.

Figure S4 (a)-(f) Top (upper panel) and side views (lower panel) of the most favorable configurations of Au-arsenene with the adsorption of CO, NO, NO₂, SO₂, NH₃ and H₂S, respectively.

Figure S5 (a)-(f) Density of states (PDOS) for considered gas molecules CO, NO, NO₂, SO₂, NH₃ and H₂S adsorbed at Au-arsenene, respectively. E_F is set to be 0 eV denoted by dash lines. The magnetization charge density difference for NO/Au-arsenene is plotted in the insert of (b) and the magnetization charge density isosurface value is $0.001e/Å^3$.

Figure S6 (a)-(f) Spin-polarized band structures for CO, NO, NO₂, SO₂, NH₃ and H₂S adsorbed at Au-arsenene, respectively. The black and red lines show spin up and spin down band structures, respectively. $E_{\rm F}$ is set to be 0eV denoted by the black dash lines.

Figure S7 (a)-(f) Top (upper panel) and side views (lower panel) of the charge density difference for the most favorable configurations of pristine arsenene with adsorption of CO, NO, NO₂, SO₂, NH₃ and H₂S, respectively.