Electronic supporting information for

"Electronic substituent effect on conformation of phenylalanine-incorporated cyclic

peptide"

Akiko Asano*, Yukiko Kawanami, Mao Fujita, Yuta Yano, Rio Ide, Katsuhiko Minoura, Takuma Kato and

Mitsunobu Doi

Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.

Contents:

Synthesis and characterization of the peptides 1, 2, 3, 6, 7, 8, 9 and 10 ·····Page 2-5
¹ H NMR spectra for peptides 1 , 2 , 3 , 6 , 7 , 8 , 9 and 10 Page 6-29
Crystallographic data for peptides 2, 3, 6, 7, 8 and 9Page 30, 31
Hydrogen bonds in the crystal structures of 2 , 3 , 6 , 7 , 8 and 9 Page 32
The CH \cdots π contacts within the folded forms of 2 and 4 \cdots Page 33,34
Thermodynamic parameters and van't Hoff plots for peptides 1, 2, 3, 5, 6, 7, 8, 9 and 10. Page 35-43
Coupling constants $({}^{2}J_{\beta 1\beta 2}, {}^{3}J_{\alpha \beta 1} \text{ and } {}^{3}J_{\alpha \beta 2})$ of Phe(X) residue at 273-333 K ······Page 44
Chemical structure of <i>d</i> ASC and T3ASC as reference peptides

Synthesis and characterization of the peptides 1, 2, 3, 6, 7, 8, 9 and 10.

General Experimental Methods

Pure products were obtained after liquid chromatography using Merck silica gel 60 (40-63 μ m). Analytical thin-layer chromatography was carried out on Merck silica gel F₂₅₄ plates with the following solvent system (v/v); chloroform : methanol : acetic acid (95 : 10 : 3). The plates were visualized with UV light ($\lambda = 254$ nm) and revealed with a 5 % solution of ninhydrin in ethanol. ¹H NMR spectra were recorded on an Agilent DD2 600-MHz NMR spectrometer (Agilent Technologies, California, USA). Peptide concentrations were about 5.0 mM in CD₃CN. Chemical shifts were measured relative to internal trimethylsilane at 0.00 ppm. The protons were assigned using two dimensional correlated spectroscopy (2D-COSY) and rotating-frame Overhauser effect spectroscopy (ROESY; mixing time = 500 ms). Low-resolution mass spectra (LR-MS) were obtained by using matrix-assisted laser desorption ionization (MALDI-TOF) mass spectroscopy on a Bruker microflex LRF (Bruker, Massachusetts, USA).

Synthesis of Boc-D-Val(Thz)-OMe

Boc-D-Val(Thz)-OMe was prepared according to previous report (Y. Hamada *et. al., J. Org. Chem.*, 1987, **52**, 1252-1255) (Scheme S1). N-(*tert*-butoxycarbonyl)-D-valine (Boc-D-Val-OH) was first converted to the corresponding methyl ester by using methyl iodide in the presence of potassium hydrogen carbonate in *N*, *N*-dimethylformamide (DMF) at room temperature. The methyl ester was reduced with lithium chloride-sodium borohydride in tetrahydrofuran (THF) to give the amino alcohol derivative. Oxidation of the amino alcohol derivative was conveniently accomplished by the dimethyl sulfoxide (DMSO) oxidation using sulfur trioxide-pyridine complex ($Py \cdot SO_3$) in the presence of trimethylamine (Et₃N), giving the amino aldehyde derivative. Condensation of the amino aldehyde derivative with L-cysteine methyl ester (H-L-Cys-OMe) afforded the thiazolidine derivative as a mixture of C-2 epimers. Oxidation of the thiazolidine derivative to the Boc-D-Val(Thz)-OMe was performed with activated manganese dioxide (Sigma-Aldrich Co. Llc., St. Louis, USA) in benzene.

Scheme S1

General procedure for the condensation

Peptides were synthesized by a conventional liquid-phase method according to Scheme S2. The liner peptide were synthesized using 1-hydroxy-benzotiazole (HOBt) (Watanabe Chemical Ind. Ltd., Hiroshima, Japan) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC·HCl) (Watanabe Chemical Ind. Ltd., Hiroshima, Japan), and cyclization was conducted with benzotriazolyloxy-tris(pyrrolidino)-phosphonium hexafluorophosphate (PyBOP) (Watanabe Chemical Ind. Ltd., Hiroshima, Japan) in the presence of 4-dimethylaminopyridine (DMAP) (Nacalai tesque, Kyoto, Japan).

1; X=OCH₃, 2; X=CH₃, 3; X=C(CH₃)₃, 6; X=I 7; X=Cl, 8; X=Br, 9; X=CF₃, 10; X=NO₂

Scheme S2

Synthesis of oxazoline rings

The oxazoline (Oxz) rings were formed by reacting the Ile–*allo*-Thr moiety with bis(2methoxyethyl)aminosulfur trifluoride (Deoxo-Fluor) (Fujifilm Wako Pure Chemical, Osaka, Japan) according to previous report (A. J. Phillips *et. al.*, *Org. Lett.*, 2000, **2**, 1165-1168) (Scheme S3).

1; X=OCH₃, **2**; X=CH₃, **3**; X=C(CH₃)₃, **6**; X=I **7**; X=CI, **8**; X=Br, **9**; X=CF₃, **10**; X=NO₂

Scheme S3

Peptide	Mass type	Calculated mass	Observed mass
	$[M+H]^+$	821.35	821.59
1	[M+Na] ⁺	843.33	843.58
	$[M+K]^+$	859.30	ND
	$[M+H]^+$	805.35	805.57
2	$[M+Na]^+$	827.33	827.56
	$[M+K]^+$	843.31	ND
	$[M+H]^{+}$	847.40	ND
3	$[M+Na]^+$	869.38	869.69
	$[M+K]^+$	885.36	ND
	$[M+H]^+$	917.23	917.54
6	[M+Na] ⁺	939.22	939.54
	$[M+K]^+$	955.19	ND
	$[M+H]^{+}$	825.30	825.53
7	[M+Na] ⁺	847.28	847.52
	$[M+K]^+$	863.25	ND
	$[M+H]^+$	869.55	869.53
8	$[M+Na]^+$	891.23	891.51
	$[M+K]^+$	907.20	ND
	$[M+H]^+$	859.32	859.66
9	$[M+Na]^+$	881.31	881.65
	$[M+K]^+$	897.28	897.62
	$[M+H]^+$	836.32	836.68
10	[M+Na] ⁺	858.30	858.65
	$[M+K]^+$	874.28	874.63

Table S1.MALDI-TOF Mass spectroscopic data for 1, 2, 3, 6, 7, 8, 9 and 10.

Fig. S1 1D ¹H NMR spectrum of peptide 1 in CD₃CN at 298 K.

Desides	δ HN (ppm)	$δ$ H α (ppm)	δ Hβ (ppm)	δ H _γ (ppm)		δ H $δ$ (ppm)	δ Other protons	(ppm)
Residue	³ J (Hz)	³ J (Hz)	³ J (Hz)	³ J (Hz)		³ J (Hz)	³ J (Hz)	
	7.82	5.02	γCH ₂ 3.24, 3.17			7.16	εH6.84, OM	e 3.74
File(Olvie)	d, J = 6.6	ddd, J = 11.4, 6.6, 5.4	dd, J = 13.2, 11.4, dd, J = 13.2, 5.4			d, J = 9.0	d, J = 9.0,	s
$0xz^2$		4.10	4.73	1.19				
0/L2		d, J = 3.6	qd, $J = 6.0, 3.6$	d, <i>J</i> = 6.0				
D_Val ^{3or7}	7.11	5.15	2.37	γCH ₃ 1.11, γ'CH ₃ 1.10				
D-Vai	d, <i>J</i> = 10.2	dd, J = 10.2, 4.8	m	d, J = 6.6, d, J = 6.6				
Th-40r8							7.55	
IIIZ							s	
lle ⁵	7.60	4.63	2.30	γCH ₂ 1.59, 1.32	γCH ₃ 1.01	0.87		
lic	d, J = 7.8	dd, J = 10.2, 7.8	m	m, m	d, J = 6.6	t, J = 7.2		
0.76		4.34	4.92	1.42				
UXZ		d, J = 4.2	qd, J = 6.6, 4.2	d, J = 6.6				
	7.15	5.14	2.36	γCH ₃ 1.10, γ'CH ₃ 1.07				
D-va	d, J = 10.2	dd, J = 10.2, 4.8	m	d, J = 7.2, d, J = 7.2				
Thz ^{4or8}							7.60	
1112							s	

Fig. S2 2D ¹H-¹H COSY spectrum of peptide 1 in CD₃CN at 298 K.

Fig. S3 2D ¹H-¹H ROESY spectrum of peptide 1 in CD₃CN at 298 K.

Fig. S4 1D ¹H NMR spectrum of peptide 2 in CD₃CN at 298 K.

Posiduo	δ HN (ppm)	$δ$ H α (ppm)	δ Hβ (ppm)	δ Hγ (ppm)		δ Hδ (ppm)	δ Other protons (ppm)
Residue	³ J (Hz)	³ J (Hz)	³ J (Hz)	³ J (Hz)		³ J (Hz)	³ J (Hz)
Pho(Mo) ¹	7.83	5.04	γCH ₂ 3.26, 3.19			7.13	εH7.10, Me 2.29
FIIC(INC)	d, J = 6.6	ddd, J = 11.4, 6.6, 5.4	dd, J = 13.2, 11.4, dd, J = 13.2, 5.4			d, J = 8.4	d, J =7.8, s
$O_{1}\sigma^{2}$		4.10	4.72	1.19			
UXZ		d, J = 3.6	qd, <i>J</i> = 6.0, 3.6	d, J = 6.6			
	7.15	5.14	2.33	γCH ₃ 1.10, γ'CH ₃ 1.06			
D-Vai	d, J = 10.2	dd, J = 10.2, 3.6	sept. d, <i>J</i> = 6.6, 3.6	d, J = 6.6, d, J = 6.6			
Thz ^{4or8}							7.56
THZ							S
llo ⁵	7.60	4.63	2.28	γCH ₂ 1.59, 1.38	γCH ₃ 1.01	0.87	
IIC	d, J = 7.8	dd, J = 10.2, 7.8	m	m, m	d, J = 7.2	t, J = 7.2	
		4.33	4.91	1.41			
0.2		d, J = 4.2	qd, J = 6.6, 3.6	d, J = 6.6			
	7.10	5.15	2.36	γCH ₃ 1.11, γ'CH ₃ 1.10			
D-va	d, J = 10.2	dd, J = 10.2, 3.6	sept. d, <i>J</i> = 6.6, 3.6	d, J = 6.6, d, J = 6.6			
Thz ^{4or8}							7.57
1112							s

Fig. S5 2D ¹H-¹H COSY spectrum of peptide 2 in CD₃CN at 298 K.

Fig. S6 2D ¹H-¹H ROESY spectrum of peptide 2 in CD₃CN at 298 K.

Fig. S7 1D ¹H NMR spectrum of peptide 3 in CD₃CN at 298 K.

r		· · · · ·		· · · · ·			
Posiduo	δ HN (ppm)	δ Hα (ppm)	δ Hβ (ppm)	δ H _γ (ppm)		δ H $δ$ (ppm)	δ Other protons (ppm)
Itesiuue	³ J (Hz)	³ J (Hz)	³ J (Hz)	³ J (Hz)		³ J (Hz)	³ J (Hz)
	7.81	5.07	γCH ₂ 3.28, 3.20			7.18	εH 7.35, tBu 1.29
File(IDU)	d, J = 6.6	ddd, J = 11.4, 6.6, 5.4	dd, J = 13.2, 11.4, dd, J = 13.2, 5.4			d, J = 8.4	d, <i>J</i> = 8.4, s
$\Omega r \sigma^2$		4.10	4.72	1.15			
0,2		d, J = 3.6	qd, $J = 6.0, 3.6$	d, J = 6.0			
	7.16	5.14	2.36	γCH ₃ 1.11, γ'CH ₃ 1.07			
D-vai	d, <i>J</i> = 10.2	dd, J = 10.2, 6.6	m	d, J = 6.6, d, J = 6.6			
That40r8							7.55
THZ							S
llo ⁵	7.59	4.63	2.32	γCH ₂ 1.45, 1.31	γCH ₃ 1.03	0.87	
lie	d, J = 7.8	dd, J = 10.8, 7.8	m	m, m	d, <i>J</i> = 7.2	t, J = 7.8	
0.76		4.34	4.91	1.41			
0,2		d, J = 4.2	qd, $J = 6.6, 4.2$	d, J = 6.6			
	7.11	5.15	2.36	γCH ₃ 1.11, γ'CH ₃ 1.10			
D-va	d, <i>J</i> = 10.2	dd, J = 10.2, 6.6	m	d, J = 6.6, d, J = 6.6			
Thz ^{4or8}							7.56
1112							s

Fig. S8 2D ¹H-¹H COSY spectrum of peptide 3 in CD₃CN at 298 K.

Fig. S9 2D ¹H-¹H ROESY spectrum of peptide 3 in CD₃CN at 298 K.

Fig. S10 1D ¹H NMR spectrum of peptide 6 in CD₃CN at 298 K.

	δ HN (ppm)	δ Hα (ppm)	δ Hβ (ppm)	δ Hγ (ppm)		δ Hδ (ppm)	δ Other protons (ppm)
Residue	^{3}J (Hz)	^{3}J (Hz)	^{3}J (Hz)	^{3}J (Hz)		³ J (Hz)	³ J (Hz)
$Dh_{\alpha}(4)^{1}$	7.83	5.05	γCH ₂ 3.24, 3.20			7.05	εH 7.66
Phe(4I)	d, J = 7.2	ddd, J = 11.4, 7.2, 6.6	dd, J = 13.5, 11.4, dd, J = 13.5, 6.6			d, J = 8.4	d, J = 8.4
Oxz ²		4.12 d, <i>J</i> = 3.6	4.73 qd, <i>J</i> = 6.6, 3.6	1.18 d, <i>J</i> = 6.6			
	7.13	5.14	2.35	γCH ₃ 1.10, γ'CH ₃ 1.06			
D-Vai	d, J = 10.8	dd, J = 10.8, 4.2	hept. d, <i>J</i> = 6.6, 4.2	d, J = 6.6, d, J = 6.6			
Thz ^{4or8}							7.57
							S
lle ⁵	7.59	4.63	2.27	γCH ₂ 1.58, 1.31	γCH ₃ 1.00	0.86	
10	d, J = 7.2	dd, J = 10.2, 7.2	m	m, m	d, J = 7.2	t, J = 7.8	
		4.33	4.91	1.41			
0,2		d, J = 3.6	qd, J = 6.6, 3.6	d, J = 6.6			
$D Vo^7$	7.11	5.15	2.37	γCH ₃ 1.11, γ'CH ₃ 1.10			
D-va	d, J = 10.8	dd, J = 10.8, 4.2	hept. d, <i>J</i> = 6.6, 4.2	d, J = 6.6, d, J = 6.6			
Thz ^{4or8}							7.58
1112							s

Fig. S11 2D ¹H-¹H COSY spectrum of peptide 6 in CD₃CN at 298 K.

Fig. S12 2D ¹H-¹H ROESY spectrum of peptide 6 in CD₃CN at 298 K.

Fig. S13 1D ¹H NMR spectrum of peptide 7 in CD₃CN at 298 K.

D	δ HN (ppm)	δ Hα (ppm)	δ Hβ (ppm)	δ H _γ (ppm)		δ Hδ (ppm)	δ Other protons (ppm)
Residue	³ J (Hz)	³ J (Hz)	³ J (Hz)	³ J (Hz)		³ J (Hz)	³ J (Hz)
	7.84	5.06	γCH ₂ 3.28, 3.23			7.24	εH 7.30
FIIe(4CI)	d, J = 6.6	ddd, J = 10.8, 6.6, 6.0	dd, J = 13.2, 10.8, dd, J = 13.2, 6.0			d, J = 8.4	d, J = 8.4
$\Omega x z^2$		4.12	4.73	1.18			
0/12		d, <i>J</i> = 3.6	qd, <i>J</i> = 6.6, 3.6	d, J = 6.6			
D_Val ³	7.14	5.14	2.35	γCH ₃ 1.10, γ'CH ₃ 1.06			
D-vai	d, <i>J</i> = 10.2	dd, J = 10.2, 4.2	hept. d, <i>J</i> = 6.6, 4.2	d, J = 6.6, d, J = 6.6			
Thz ^{4or8}							7.57
1112							S
lle ⁵	7.60	4.63	2.27	γCH ₂ 1.57, 1.31	γCH ₃ 1.00	0.86	
lic	d, J = 9.6	dd, J = 9.6, 7.8	m	m, m	d, J = 7.2	t, J = 7.8	
$O \times 7^6$		4.34	4.91	1.42			
0.2		d, J = 3.6	qd, $J = 6.0, 3.6$	d, J = 6.0			
	7.12	5.15	2.37	γCH ₃ 1.11, γ'CH ₃ 1.09			
D-va	d, J = 10.2	dd, J = 10.2, 4.2	hept. d, <i>J</i> = 6.6, 4.2	d, J = 6.6, d, J = 6.6			
Thz ^{4or8}							7.59
1112							s

Fig. S14 2D ¹H-¹H COSY spectrum of peptide 7 in CD₃CN at 298 K.

Fig. S15 2D ¹H-¹H ROESY spectrum of peptide 7 in CD₃CN at 298 K.

Fig. S16 1D ¹H NMR spectrum of peptide 8 in CD₃CN at 298 K.

Desides	δ HN (ppm)	δ H _α (ppm)	δ Hβ (ppm)	δ H _γ (ppm)		δ Hδ (ppm)	δ Other protons (ppm)
Residue	³ J (Hz)	³ J (Hz)	^{3}J (Hz)	^{3}J (Hz)		³ J (Hz)	³ J (Hz)
$Pho(4Br)^{1}$	7.84	5.06	γCH ₂ 3.21, 3.26			7.18	εH 7.46
FIIe(4DI)	d, J = 7.2	ddd, J = 11.4, 7.2, 5.4	dd, J = 13.2, 11.4, dd, J = 13.2, 5.4			d, J = 8.4	d, J = 8.4
$0x7^2$		4.12	4.73	1.18			
0/12		d, J = 3.6	qd, $J = 6.0, 3.6$	d, J = 6.0			
D-Val ³	7.13	5.14	2.35	γCH ₃ 1.10, γ'CH ₃ 1.06			
D-vai	d, J = 10.2	dd, J = 10.2, 3.6	hept. d, J = 6.6, 3.6	d, J = 6.6, d, J = 6.6			
Thz ^{4or8}							7.57
1112							S
llo ⁵	7.59	4.63	2.27	γCH ₂ 1.58, 1.31	γCH ₃ 1.00	0.86	
	d, J = 7.2	dd, J = 10.2, 7.2	m	m, m	d, J = 7.2	t, J = 7.8	
0v7 ⁶		4.33	4.91	1.42			
0,2		d, J = 3.6	qd, $J = 6.0, 3.6$	d, J = 6.0			
	7.11	5.15	2.37	γCH ₃ 1.11, γ'CH ₃ 1.10			
D-va	d, J = 10.2	dd, J = 10.2, 3.6	hept. d, J = 7.2, 3.6	d, J = 7.2, d, J = 7.2			
Thz ^{4or8}							7.58
1112							S

Fig. S17 2D ¹H-¹H COSY spectrum of peptide 8 in CD₃CN at 298 K.

Fig. S18 2D ¹H-¹H ROESY spectrum of peptide 8 in CD₃CN at 298 K.

Fig. S19 1D ¹H NMR spectrum of peptide 9 in CD₃CN at 298 K.

Desidue	δ HN (ppm)	δ Hα (ppm)	δ Hβ (ppm)	δ Hγ (ppm)		δ Hδ (ppm)	δ Other protons (ppm)
Residue	³ J (Hz)	³ J (Hz)	³ J (Hz)	³ J (Hz)		³ J (Hz)	³ J (Hz)
	7.87	5.13	γCH ₂ 3.37, 3.33			7.45	εH 7.63
FIIe(CF3)	d, J = 6.6	dt, J = 10.8, 6.6	dd, J = 13.2, 10.8, dd, J = 13.2, 6.6			d, J = 8.4	d, J = 8.4
$\Omega x z^2$		4.11	4.73	1.15			
0,72		d, J = 3.6	qd, J = 6.0, 3.6	d, J = 6.0			
	7.14	5.15	2.36	γCH ₃ 1.11, γ'CH ₃ 1.07			
D-Vai	d, J = 10.2	dd, J = 10.2, 4.8	m	d, J = 6.6, d, J = 6.6			
Thz ^{4or8}							7.57
1112							S
lle ⁵	7.60	4.64	2.29	γCH ₂ 1.58, 1.31	γCH ₃ 1.01	0.86	
10	d, J = 7.8	dd, J = 10.8, 7.8	m	m, m	d, J = 6.6	t, J = 7.8	
$O_{1}\sigma^{6}$		4.34	4.92	1.43			
0x2		d, J = 4.2	qd, <i>J</i> = 6.0, 4.2	d, J = 6.0			
	7.12	5.16	2.37	γCH ₃ 1.11, γ'CH ₃ 1.10			
D-va	d, <i>J</i> = 10.2	dd, J = 10.2, 4.8	m	d, J = 6.6, d, J = 6.6			
Thz ^{4or8}							7.59
1112							s

Fig. S20 2D ¹H-¹H COSY spectrum of peptide 9 in CD₃CN at 298 K.

Fig. S21 2D ¹H-¹H ROESY spectrum of peptide 9 in CD₃CN at 298 K.

Fig. S22 1D ¹H NMR spectrum of peptide 10 in CD_3CN at 298 K.

D i I.	δ HN (ppm)	δ Hα (ppm)	δ H β (ppm)	δ H _γ (ppm)		δ Hδ (ppm)	δ Other protons (ppm)
Residue	³ J (Hz)	³ J (Hz)	^{3}J (Hz)	³ J (Hz)		³ J (Hz)	³ J (Hz)
	7.89	5.15	γCH ₂ 3.41, 3.37			7.47	εH 8.12
File(NO2)	d, J = 6.6	m	dd, J = 13.5, 10.8, dd, J = 13.5, 6.6			d, J = 8.4	d, <i>J</i> = 8.4
Oxz ²		4.12 d, <i>J</i> = 3.6	4.74 qd, <i>J</i> = 6.0, 3.6	1.18 d, <i>J</i> = 6.0			
D Val ^{3or7}	7.13	5.15	2.36	γCH ₃ 1.11, γ'CH ₃ 1.09			
D-vai	d, <i>J</i> = 10.2	dd, J = 10.2, 6.6	m	d, J = 7.2, d, J = 7.2			
Thz ^{4or8}							7.60
							S
11e ⁵	7.61	4.64	2.24	γCH ₂ 1.56, 1.29	γCH ₃ 0.98	0.86	
10	d, J = 7.8	dd, J = 9.9, 7.8	m	m, m	d, J = 7.2	t, J = 7.8	
		4.34	4.92	1.43			
0.2		d, J = 4.2	qd, J = 6.6, 4.2	d, J = 6.6			
	7.13	5.15	2.36	γCH ₃ 1.10, γ'CH ₃ 1.05			
D-va	d, J = 10.2	dd, J = 10.2, 6.6	m	d, J = 6.6, d, J = 6.6			
Thz ^{4or8}							7.63
1112							s

Fig. S23 2D ¹H-¹H COSY spectrum of peptide 10 in CD₃CN at 298 K.

Fig. S24 2D ¹H-¹H ROESY spectrum of peptide 10 in CD₃CN at 298 K.

Peptide	2	3	6
Formula	$C_{40}H_{52}N_8O_6S_2,$	C ₄₃ H ₅₈ N ₈ O ₆ S ₂ ,	$2(C_{39}H_{48}IN_8O_6S_2),$
	C_2H_3N	C_2H_3N, H_2O	C ₄ H ₉ NO
Formula Weight	846.07	906.16	1919.88
Cell System	orthorhombic	triclinic	monoclinic
Space Group	$P2_{1}2_{1}2_{1}$	P1	P2 ₁
<i>a</i> , Å	15.6599(13)	9.38850(10)	13.7742(6)
b, Å	16.5029(14)	10.0778(2)	21.7130(16)
<i>c</i> , Å	17.2608(14)	13.0183(2)	15.1389(6)
α , deg	90.0	82.6590(10)	90.0
β, deg	90.0	86.0780(10)	91.337(4)
γ, deg	90.0	80.1310(10)	90.0
Volume, Å ³	4460.8(6)	1202.20(3)	4526.5(4)
Ζ	4	1	2
Dc, g cm ⁻³	1.260	1.252	1.409
<i>F</i> (000)	1800	484	1982
μ , mm ⁻¹	0.175 (Μο Κα)	1.473 (Cu Ka)	6.876 (Cu Ka)
Wavelength, Å	0.71073	1.54184	1.54184
No. of reflections (obs)	36244	20933	26294
R _{INT}	0.0397	0.0307	0.0779
$\theta_{\rm max}$, deg	26.37	66.559	68.251
No. of reflections	8537	7368	9911
(<i>I</i> >2 σ (<i>I</i>))			
Flack parameter	-0.02(9)	0.010(7)	0.000(10)
<i>R</i> 1	0.0681	0.0462	0.1093
wR	0.1719	0.1315	0.2930
Goodness of fit	1.096	1.047	1.170
$(\Delta/\sigma)_{\rm max}$	0.002	0.008	0.000
Fraction for θ_{\max}	1.000	0.996	0.999
$\Delta \rho_{max}, e \ \text{\AA}^{-3}$	0.532	0.860	4.104
Δho_{min} , e Å ⁻³	-0.177	-0.439	-2.411
CCDC Number	2289960	2289964	2289961

Table S2. Crystal and experimental data for 2, 3 and 6.

Peptide	7	8	9
Formula	C ₃₉ H ₄₉ ClN ₈ O ₆ S ₂ ,	$2(C_{39}H_{49}BrN_8O_6S_2),$	$C_{40}H_{47}F_3N_8O_6S_2,$
	$0.5(C_2H_3N)$	C_2H_3N	C_3H_6O
Formula Weight	845.96	1780.82	915.05
Cell System	monoclinic	monoclinic	triclinic
Space Group	P2 ₁	P2 ₁	P1
<i>a</i> , Å	15.6272(2)	15.64800(10)	9.4424(4)
b, Å	16.6962(2)	16.8169(2)	9.8919(4)
<i>c</i> , Å	16.1368(2)	16.1537(2)	12.9370(6)
α , deg	90.0	90.0	80.097(4)
β, deg	95.4400(10)	95.6830(10)	80.867(4)
γ, deg	90.0	90.0	84.776(4)
Volume, Å ³	4191.37(9)	4229.97(8)	1172.74(9)
Ζ	4	2	1
Dc, g cm ⁻³	1.341	1.398	1.296
<i>F</i> (000)	1788	1860	482
μ , mm ⁻¹	2.205 (Cu Kα)	2.711 (Cu Kα)	1.607 (Cu Kα)
Wavelength, Å	1.54184	1.54184	1.54184
No. of reflections (obs)	46819	33721	17517
R _{INT}	0.0287	0.0838	0.0439
$\theta_{\rm max}$, deg	74.452	68.247	63.685
No. of reflections	16132	12539	4779
(<i>I</i> >2 σ (<i>I</i>))			
Flack parameter	0.019(4)	-0.010(12)	0.023(15)
<i>R</i> 1	0.0428	0.0719	0.1268
wR	0.1329	0.1901	0.3550
Goodness of fit	0.718	1.069	1.500
$(\Delta/\sigma)_{\rm max}$	0.001	0.000	0.005
Fraction for θ_{\max}	0.986	0.983	0.995
$\Delta \rho_{max}$, e Å ⁻³	0.769	1.929	0.749
Δho_{min} , e Å ⁻³	-0.354	-0.899	-0.429
CCDC Number	2289963	2289962	2289965

Table S3. Crystal and experimental data for 7, 8 and 9.

	<u> </u>			
	Donor	Acceptor	Distance (Å)	Angle (°)
Peptide	D–H	А	DA	D–HA
	N[Phe(CH ₃) ¹]–H	$O^{\gamma}(Oxz^6)$	3.371	155.5
r	N(D-Val ³)–H	O(Thz ⁸)	3.180	139.8
2	N(Ile ⁵)–H	$O^{\gamma}(Oxz^2)$	3.229	159.3
	N(D-Val ⁷)–H	O(Thz ⁴)	3.225	133.8
	W–H	$N(Oxz^2)$	2.994	150.7
3	W–H	N(Oxz ⁶)	3.004	153.6
5	$N[Phe(C(CH_3)_3)^1]-H$	W	2.981	146.8
	N(Ile ⁵)–H	W	2.964	146.9
	N[Phe(I) ¹]–H	$O^{\gamma}(Oxz^6)$	3.056	153.9
6	N(D-Val ³)–H	O(Thz ⁸)	3.077	147.0
(molecule A)	N(Ile ⁵)–H	$O^{\gamma}(Oxz^2)$	3.196	124.1
	N(D-Val ⁷)–H	O(Thz ⁴)	3.491	155.4
	N[Phe(I) ¹]–H	$O^{\gamma}(Oxz^6)$	3.089	152.7
6	N(D-Val ³)–H	O(Thz ⁸)	3.099	145.6
(molecule B)	N(Ile ⁵)–H	$O^{\gamma}(Oxz^2)$	3.321	155.0
	N(D-Val ⁷)–H	O(Thz ⁴)	3.201	129.0
	N[Phe(Cl) ¹]–H	$O^{\gamma}(Oxz^6)$	3.200	159.6
7	N(D-Val ³)–H	O(Thz ⁸)	3.067	140.9
(molecule A)	N(Ile ⁵)–H	$O^{\gamma}(Oxz^2)$	3.325	161.0
	N(D-Val ⁷)–H	O(Thz ⁴)	3.149	131.1
	N[Phe(Cl) ¹]–H	$O^{\gamma}(Oxz^6)$	3.225	157.1
7	N(D-Val ³)–H	O(Thz ⁸)	3.160	148.3
(molecule B)	N(Ile ⁵)–H	$O^{\gamma}(Oxz^2)$	3.241	158.1
	N(D-Val ⁷)–H	O(Thz ⁴)	3.165	135.6
	N[Phe(Br) ¹]–H	$O^{\gamma}(Oxz^6)$	3.194	158.1
8	N(D-Val ³)–H	O(Thz ⁸)	3.066	142.4
(molecule A)	N(Ile ⁵)–H	$O^{\gamma}(Oxz^2)$	3.312	160.7
	N(D-Val ⁷)–H	O(Thz ⁴)	3.158	130.5
	N[Phe(Br) ¹]–H	$O^{\gamma}(Oxz^6)$	3.280	155.3
8	N(D-Val ³)–H	O(Thz ⁸)	3.154	149.6
(molecule B)	N(Ile ⁵)–H	$O^{\gamma}(Oxz^2)$	3.282	157.7
	N(D-Val ⁷)–H	O(Thz ⁴)	3.181	136.8
0	N[Phe(CF ₃) ¹]–H	O(Ac ₂ O)	3.122	153.0
y	N(Ile ⁵)–H	$O(Ac_2O)$	3.054	162.6

Table S4.Hydrogen bonds in the crystal structures of 2, 3, 6, 7, 8 and 9.

A letter of W represents the oxygen atom of water.

The CH··· π contacts within the folded forms of 2 and 4.

The distances between the γ H atoms of Oxz² side chains to the π -orbital of Phe(X)¹ in folded forms were estimated by surveying the CH… π contacts for the six-membered π -system, as described by Umezawa *et al.* (Y. Umezawa *et al.*, *Bull. Chem. Soc. Jpn.*, 1998, **71**, 1207-1213) (Fig. S25). The distance between a C-H hydrogen atom and the π -plane, the distance between H and the line C¹-C², and the H/C¹ interatomic distance are defined as D_{pln} , D_{lin} and D_{atm} , respectively. These distance parameters (D_{pln} , D_{lin} and D_{atm}) correspond to regions 1, 2 and 3, respectively. A C-H hydrogen atom is positioned above the π -plane in region 1 or at a position where it is able to contact the π -orbital in regions 2 and 3. An alkyl group can interact with the π -group in regions where the hydrogen atom is above the π -plane but slightly offset, outside the ring. The dihedral angles determined by the π -plane, plane H-C¹-C² and angle \angle H-X-C¹ (X=C, O, etc.) are defined as ω and θ , respectively. The distances from the γ H atoms of Oxz² to the π -orbital of the Phe(X)¹ residue in the crystal structures of peptides are listed in Table S5.

Fig. S25 Method for surveying CH… π contacts in a six-membered π -system (Y. Umezawa *et al.*, *Bull. Chem. Soc. Jpn.*, 1998, **71**, 1207-1213). (a) O: center of the plane. C¹ and C²: nearest and second nearest sp²-carbons to H. ω : dihedral angle defined by the C¹OC² and HC¹C² planes. θ : \angle HXC¹. D_{pln} : H/ π -plane distance (H/I). D_{atm} : interatomic distance (H/C¹). D_{lin} : distance between H and line C¹C² (H/J). (b) 1: region where H is above the aromatic ring. 2 and 3: regions where H is outside region 1 but may interact with the π -orbitals. $D_{pln} < D_{max}$, $\theta < 60^\circ$, $|\omega| < 90^\circ$ for region 1; $D_{lin} > D_{max}$, $\theta < 60^\circ$, $90^\circ < |\omega| < 130^\circ$ for region 2; and $D_{atm} < D_{max}$, $\theta < 60^\circ$, $50^\circ < \phi < 90^\circ$ for region 3 (ϕ : HC¹I). (θ should be smaller than 60° to avoid contact of atom X with C¹). D_{max} : cutoff value in every region.

Table S5. The distances from the γ H atoms of Oxz^2 side chains to the π -orbital of the Phe(X)¹ residue and angle parameters (θ and ω) within the crystal structures of peptides were estimated by surveying the CH··· π contacts in a six-membered π -system.

	2	4
$ heta(\degree)$	35.10	40.69
$\omega(\degree)$	96.54	72.89
Region	2	1
Distance (Å)	3.233 ^a	2.893 ^b

 a These distance parameters determined as $D_{\rm lin}$ correspond to region 2.

^{*b*} This distance parameter determined as D_{pln} corresponds to region 1.

<i>T</i> (K)	δ_{obs} Thz ^{4or8} H (ppm)	<i>K</i> *	$\Delta G^{\circ} (J \cdot mol^{-1})^{**}$
273	7.50	3.901	-3089
283	7.52	3.265	-2784
293	7.55	2.709	-2428
303	7.58	2.253	-2046
313	7.61	1.835	-1580
323	7.64	1.513	-1112
333	7.68	1.236	-586

Table S6. Equilibrium parameters of peptide 1.

** $\Delta G^{\rm o} = - \operatorname{RTln} K$

Fig. S26 van't Hoff plot of peptide 1.

Table S7. Thermodynamic parameters of peptide 1.

ΔH° (kJ•mol ⁻¹)	$\Delta S^{\circ} (J - mol^{-1})$	$\Delta G^{\circ}_{298\mathrm{K}} (\mathrm{kJ} \cdot \mathrm{mol}^{-1})^*$
-14.48	-41.37	-2.15

Т (К)	$\delta_{obs} \operatorname{Thz}^{4or8} H (ppm)$	K*	$\Delta G^{\circ} (J \cdot mo\Gamma^{1})^{**}$
273	7.511	3.596	-2905
283	7.533	3.044	-2619
293	7.558	2.558	-2288
303	7.588	2.109	-1880
313	7.620	1.741	-1442
323	7.653	1.442	-983
333	7.688	1.189	-480

 Table S8. Equilibrium parameters of peptide 2.

** $\Delta G^{o} = - \operatorname{RTln} K$

Fig. S27 van't Hoff plot of peptide 2.

 Table S9. Thermodynamic parameters of peptide 2.

ΔH° (kJ•mol ⁻¹)	$\Delta S^{\circ} (J \cdot mol^{-1})$	$\Delta G^{\circ}_{298\mathrm{K}} (\mathrm{kJ} \cdot \mathrm{mol}^{-1})^*$
-14.89	-42.90	-2.10

<i>T</i> (K)	$\delta_{obs} \operatorname{Thz}^{4or8} H (ppm)$	K*	$\Delta G^{\circ} (J \cdot mo\Gamma^{1})^{**}$
273	7.51	3.540	-2869
283	7.53	3.077	-2645
293	7.56	2.601	-2329
303	7.58	2.197	-1982
313	7.61	1.841	-1588
323	7.64	1.517	-1119
333	7.68	1.256	-631

Table S10. Equilibrium parameters of peptide 3.

** $\Delta G^{o} = - \operatorname{RTln} K$

Fig. S28 van't Hoff plot of peptide 3.

Table S11. Thermodynamic parameters of peptide 3.

ΔH° (kJ•mol ⁻¹)	$\Delta S^{\circ} (J \cdot mol^{-1})$	$\Delta G^{\circ}_{298\mathrm{K}} (\mathrm{kJ} \cdot \mathrm{mol}^{-1})^*$
-13.09	-37.00	-2.07

Т (К)	$\delta_{obs} \operatorname{Thz}^{4or8} H (ppm)$	K*	$\Delta G^{\circ} (J \cdot mo\Gamma^{1})^{**}$
273	7.52	3.485	-2834
283	7.54	2.895	-2501
293	7.57	2.387	-2119
303	7.60	1.931	-1657
313	7.64	1.565	-1166
323	7.68	1.260	-620
333	7.72	1.005	-15

Table S12. Equilibrium parameters of peptide 5.

** $\Delta G^{o} = - \operatorname{RTln} K$

Fig. S29 van't Hoff plot of peptide 5.

Table S13. Thermodynamic parameters of peptide 5.

ΔH° (kJ•mol ⁻¹)	$\Delta S^{\circ} (J \cdot mol^{-1})$	$\Delta G^{\circ}_{298\mathrm{K}} (\mathrm{kJ} \cdot \mathrm{mol}^{-1})^*$
-15.65	-46.51	-1.79

Т (К)	$\delta_{obs} \operatorname{Thz}^{4or8} H (ppm)$	K*	$\Delta G^{\circ} (J \cdot mo\Gamma^{1})^{**}$
273	7.50	3.805	-3033
283	7.53	3.134	-2688
293	7.56	2.575	-2304
303	7.59	2.083	-1849
313	7.62	1.701	-1382
323	7.66	1.360	-827
333	7.70	1.102	-270

Table S14. Equilibrium parameters of peptide 6.

** $\Delta G^{o} = - \operatorname{RTln} K$

Fig. S30 van't Hoff plot of peptide 6.

Table S15. Thermodynamic parameters of peptide 6.

ΔH° (kJ•mol ⁻¹)	$\Delta S^{\circ} (J \cdot mol^{-1})$	$\Delta G^{\circ}_{298K} (kJ \cdot mol^{-1})^*$
-15.62	-45.74	-1.99

Т (К)	$\delta_{obs} \operatorname{Thz}^{4or8} H (ppm)$	K*	$\Delta G^{\circ} (J \cdot mo\Gamma^{1})^{**}$
273	7.51	3.512	-2851
283	7.54	2.915	-2518
293	7.57	2.410	-2143
303	7.60	1.937	-1665
313	7.64	1.578	-1188
323	7.68	1.266	-634
333	7.72	1.005	-15

Table S16. Equilibrium parameters of peptide 7.

** $\Delta G^{o} = - \operatorname{RTln} K$

Fig. S31 van't Hoff plot of peptide 7.

 Table S17. Thermodynamic parameters of peptide 7.

ΔH° (kJ•mol ⁻¹)	$\Delta S^{\circ} (J \cdot mol^{-1})$	$\Delta G^{\circ}_{298\mathrm{K}} (\mathrm{kJ} \cdot \mathrm{mol}^{-1})^*$
-15.73	-46.70	-1.81

Т (К)	$\delta_{obs} \operatorname{Thz}^{4or8} H (ppm)$	K*	$\Delta G^{\circ} (J \cdot mo\Gamma^{1})^{**}$
273	7.52	3.485	-2834
283	7.54	2.936	-2534
293	7.57	2.418	-2151
303	7.60	1.960	-1695
313	7.64	1.578	-1188
323	7.68	1.266	-634
333	7.72	1.011	-30

Table S18. Equilibrium parameters of peptide 8.

** $\Delta G^{o} = - \operatorname{RTln} K$

Fig. S32 van't Hoff plot of peptide 8.

Table S19. Thermodynamic parameters of peptide 8.

ΔH° (kJ•mol ⁻¹)	$\Delta S^{\circ} (J \cdot mol^{-1})$	$\Delta G^{\circ}_{298\mathrm{K}} (\mathrm{kJ} \cdot \mathrm{mol}^{-1})^*$
-15.66	-46.46	-1.81

Т (К)	$\delta_{obs} \operatorname{Thz}^{4or8} H (ppm)$	K*	$\Delta G^{\circ} (J \cdot mo\Gamma^{1})^{**}$
273	7.53	3.111	-2576
283	7.55	2.645	-2289
293	7.58	2.210	-1932
303	7.61	1.841	-1537
313	7.64	1.513	-1077
323	7.68	1.236	-568
333	7.72	1.000	0

 Table S20. Equilibrium parameters of peptide 9.

** $\Delta G^{o} = - \operatorname{RTln} K$

Fig. S33 van't Hoff plot of peptide 9.

 Table S21. Thermodynamic parameters of peptide 9.

ΔH° (kJ•mol ⁻¹)	$\Delta S^{\circ} (J \cdot mol^{-1})$	$\Delta G^{\circ}_{298\mathrm{K}} (\mathrm{kJ} \cdot \mathrm{mol}^{-1})^*$
-14.27	-42.40	-1.64

<i>T</i> (K)	$\delta_{obs} \operatorname{Thz}^{4or8} H (ppm)$	K*	$\Delta G^{\circ} (J \cdot mo\Gamma^{1})^{**}$
273	7.54	2.957	-2461
283	7.57	2.442	-2101
293	7.60	2.002	-1691
303	7.63	1.629	-1229
313	7.67	1.313	-708
323	7.71	1.058	-152
333	7.75	0.852	442

 Table S22. Equilibrium parameters of peptide 10.

** $\Delta G^{o} = - \operatorname{RTln} K$

Fig. S34 van't Hoff plot of peptide 10.

 Table S23. Thermodynamic parameters of peptide 10.

ΔH° (kJ•mol ⁻¹)	$\Delta S^{\circ} (J \cdot mol^{-1})$	$\Delta G^{\circ}_{298\mathrm{K}} (\mathrm{kJ} \cdot \mathrm{mol}^{-1})^*$
-15.69	-48.05	-1.37

Peptide 1 (X=OCH₃)

T (K)	$^{2}J_{\beta^{1}\beta^{2}}$	${}^{3}J_{\alpha\beta1}$	$^{3}J_{\alpha\beta^{2}}$
273	13.2	5.4	13.2
283	13.2	5.4	13.2
293	13.2	5.4	13.2
303	13.2	5.4	11.4
313	13.2	6.0	11.4
323	13.2	6.0	10.8
333	13.2	6.6	10.8

eptide 2	(X=CH ₃)
----------	----------------------

Peptide 2 (X=CH ₃)				
T (K)	$^{2}J_{\beta^{1}\beta^{2}}$	$^{3}J_{\alpha\beta}$	${}^{3}J_{\alpha\beta^{2}}$	
273	13.2	4.8	12.6	
283	13.2	5.4	11.4	
293	13.2	5.4	11.4	
303	13.2	5.4	10.8	
313	13.2	5.4	10.8	
323	13.2	5.4	10.8	
333	13.2	6.0	10.2	

Peptide **3** [X=C(CH₃)₃]

1 opinio -	[11 0(011	.5)5]	
T (K)	$^{2}J_{\beta^{1}\beta^{2}}$	$^{3}J_{\alpha\beta}$	${}^{3}J_{\alpha\beta^{2}}$
273	13.2	5.4	13.2
283	13.2	5.4	12.0
293	13.2	5.4	12.0
303	13.2	6.0	11.4
313	13.2	6.0	11.4
323	13.2	6.6	10.2
333		7.8	7.8

Peptide 4 (X=H)

$r epide + (\Lambda - \Pi)$					
T (K)	$^{2}J_{\beta1\beta2}$	${}^{3}J_{\alpha\beta1}$	$^{3}J_{\alpha\beta2}$		
273	13.2	4.8	13.2		
283	13.2	5.4	13.2		
293	13.2	5.4	11.4		
303	13.2	5.4	10.8		
313	13.5	5.4	10.8		
323	13.5	6.0	10.2		
333	13.5	6.0	10.2		

Peptide 5 (X=F)				
T (K)	$^{2}J_{\beta1\beta2}$	${}^{3}J_{\alpha\beta1}$	${}^{3}J_{\alpha\beta2}$	
273	12.9	5.4	12.6	
283	13.2	5.4	11.4	
293	13.5	5.4	11.4	
303	13.2	5.4	10.8	
313	13.2	5.4	10.8	
323	13.8	5.4	10.2	
333	13.8	6.0	9.6	

Peptide 6 (X=I)

T (K)	$^{2}J_{\beta1\beta2}$	$^{3}J_{\alpha\beta1}$	$^{3}J_{\alpha\beta2}$		
273	13.2	5.4	12.0		
283	13.2	6.0	12.0		
293	13.2	6.0	11.4		
303	13.2	6.0	10.8		
313	13.2	6.0	10.2		
323	13.2	6.0	9.6		
333		7.8	7.8		

Peptide	7	(X=Cl)
---------	---	--------

T (K)	$^{2}J_{\beta^{1}\beta^{2}}$	${}^{3}J_{\alpha\beta1}$	$^{3}J_{\alpha\beta^{2}}$	
273	13.2	5.4	12.0	
283	13.2	5.4	11.4	
293	13.2	5.4	10.8	
303	13.2	5.4	10.8	
313	13.2	7.2	10.8	
323	13.2	7.2	9.6	
333	13.2	7.8	7.8	

Peptide 8 (X=Br)					
T (K)	$^{2}J_{\beta^{1}\beta^{2}}$	$^{3}J_{\alpha\beta}$	$^{3}J_{\alpha\beta^{2}}$		
273	13.2	5.4	12.0		
283	13.2	5.4	11.4		
293	13.2	5.4	11.4		
303	13.2	5.4	11.4		
313	13.2	6.6	9.6		
323	13.2	6.6	9.6		
333		7.8	7.8		

Peptide 9	$(X=CF_3)$
-----------	------------

-	()		
T (K)	$^{2}J_{\beta^{1}\beta^{2}}$	${}^{3}J_{\alpha\beta1}$	$^{3}J_{\alpha\beta^{2}}$
273	13.2	5.4	12.0
283	13.5	6.0	12.0
293	13.8	6.6	11.4
303	13.2	6.6	10.2
313	13.2	7.2	9.6
323		8.4	8.4
333	13.5	9.6	6.6

Peptide 10 (X=NO₂)

T (K)	$^{2}J_{\beta1\beta2}$	$^{3}J_{\alpha\beta1}$	${}^{3}J_{\alpha\beta2}$
273	13.2	5.4	12.0
283	13.8	5.4	11.4
293	13.5	5.4	11.4
303	13.8	6.0	10.8
313	13.5	6.0	10.2
323	13.2	6.6	9.6
333		7.8	7.8

Chemical structures of dASC and T3ASC as reference peptides.

Fig. S35 Chemical structures of T3ASC (A. Asano *et al.*, *J. Pept. Sci.*, 2018, e3120) and *d*ASC (A. Asano *et al.*, *Biopolymers*, 2001, **58**, 295–304). T3ASC and *d*ASC were used as reference peptides to provide reference chemical shifts for the fully square and folded forms, respectively.