# **Supplementary Information**

## High-Throughput Synthesis of Nanoparticles Using Oscillating Feedback

#### **Microreactor: Selective Scaling-out Strategy**

Mingxin Li, <sup>a</sup> Wensheng Wang <sup>a</sup> and Cong Xu <sup>a\*</sup>

<sup>a</sup> Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing,

100084, P.R China

## **Corresponding Author:**

Cong Xu

Institute of Nuclear and New Energy Technology, Tsinghua University

Chengfu Road, Haidian District, Beijing

P. O. Box 1021, Postcode 102201

People's Republic of China

Tel: 86- 10- 89796075, Fax: 86-10- 62771740, E-mail: c-xu@mail.tsinghua.edu.cn

# **Co-author:**

Mingxin Li, Wensheng Wang

Institute of Nuclear and New Energy Technology, Tsinghua University

Chengfu Road, Haidian District, Beijing

P. O. Box 1021, Postcode 102201

People's Republic of China

Tel: 86- 10- 89796222, Fax: 86-10- 62771740

Email: limx21@mails.tsinghua.edu.cn; wws19@mails.tsinghua.edu.cn

#### SI-1 Oscillating Feedback Microreactor Fabrication

As shown in Fig. S1, the LSmicro2020 CNC engraving machine was used to carve the flow channel on a transparent PMMA plate with a processing speed of 22000 rpm, a feed rate of 35 mm/min, and a processing time of 2 h. Then the carved plate and a smooth cover plate were cleaned ultrasonically several times. After that, the two PMMA plates were placed in a vacuum-drying oven at a temperature of 80 °C for 30 min. The surfaces of the two dried PMMA plates were further treated in plasma with a plasma power of 170 W, vacuum pressure of 30mTorr, and treatment time of 30 s. Then, the carved plate and the cover plate were immediately stacked together in the vacuum heat press LSmicro-nanoprint 100 for hot pressing bonding. The heating rate is 9°C/min, the hot pressing temperature is 115°C, the hot pressing pressure is 3 Bar, and the hot pressing time is 33 min. After hot pressing device was removed when the temperature was lowered to below 45°C, and a complete OFM was obtained.



Fig. S1 Manufacturing process diagram of OFM

### SI-2 Flow Pattern Classification

Flow patterns in OFMs are essential for mixing and mass transfer efficiency. To

investigate the flow characteristics in OFMs during the synthesis of BaSO<sub>4</sub> NPs, a series of flow pattern experiments were performed in the 1X OFM. As shown in Fig. S2, deionized water dissolving quantitative red dye was fed into the OFM from the right sides of the Y-channel, and its throughput was defined as  $Q_R$ . A colorless Na<sub>2</sub>SO<sub>4</sub> solution of 0.1 mol/L containing 20% anhydrous ethanol was fed from the left side of the Y-channel and its throughput was defined as  $Q_L$ . In all experiments,  $Q_R$  and  $Q_L$  were always kept equal and their values were between 0.5-28.34 mL/min in the flow pattern experiments. The flow patterns inside the 1X OFM were recorded by the highspeed camera.

• Laminar flow: Fig. S2(a) (Video S1) showed an ordered flow pattern at a very low throughput of  $Q_R$ =0.5 mL/min (*Re*=16.94). A clear interface between the red and colorless liquids could be found, which was a typical feature of laminar flow. The two liquids pass directly through the OFM without any convection transverse to the main flow. And there was no feedback flow circulating through the feedback channels. In this case, it was predictable that NP synthesis was dominated by low-efficiency molecular diffusion, and the precipitation reaction was concentrated at the interface between the two liquids <sup>1</sup>.

• Vortex flow and feedback flow: As shown in Fig. S2(b) (Video S2), there was still a clear interface between the two phases as  $Q_R$  increased to 2.0 mL/min (*Re*=67.76), but obvious secondary flows appeared. An obvious counterclockwise vortex formed on the colorless left side. Moreover, some red liquid entered the feedback channel and

slowly circulated back to the mixing chamber. Such secondary flows of the vortex and the feedback flow became more noticeable when the  $Q_R$  was further increased to 5.0 mL/min (Fig. S2(c) and Video S3) (*Re*=169.4). This case indicated that NPs could also be synthesized in the bulk phase of the two liquids, not only at the interface. The secondary flow, i.e., the convection transverse to the main flow could promote the mixing and mass transfer, which was beneficial for NP synthesis. However, the clear and straight interface throughout the whole OFM indicated that low-efficiency molecular diffusion was still a dominant factor for NP synthesis.

• Oscillating flow: When  $Q_R$  was increased to 12.5 mL/min (*Re*=423.5), an oscillation occurred, as shown in Fig. S2(d) and Fig. S2(e) (Video S4). In Fig. S2(d), the interface deviated to the right and immediately began to deviate to the left (Fig. S2(e)), which produced an oscillation. Fig. S2(f) (Video S5) showed a more intense oscillating flow at  $Q_R$ =28.3 mL/min (*Re*=960.1). The straight interface throughout the OFM was disrupted and feedback flows circulated rapidly through the feedback channels. In this case, the colors of all liquids in the OFM were essentially identical, indicating a sufficient mixing between the red and colorless liquids. The oscillating flow was popular for the high-throughput synthesis of NPs because of the efficient and rapid mixing and mass transfer rates with the high throughput <sup>2</sup>.



**Fig. S2** Flow patterns in 1X OFM ( $Q_R = Q_L$ ): (a)  $Q_R = 0.5$  mL/min; (b)  $Q_R = 2.0$  mL/min; (c)

*Q*<sub>R</sub>= 5.0 mL/min; (d-e) *Q*<sub>R</sub>=12.5 mL/min; (f) *Q*<sub>R</sub>= 28.3 mL/min

#### SI-3 Flow Patterns: Scaling Effects

The flow patterns essentially affect the mixing performance. Therefore, the effects of the scale-up on flow patterns were further investigated to determine the feasibility of scaled-out OFMs for high-throughput synthesis of NPs. All experimental conditions were the same as those described in Section SI-2 "Flow Pattern Classification". The laminar, vortex, and oscillating flows were also observed in the 2X $\sim$ 4X OFMs, but the scaling effects were noticeable.

• Laminar flow: As shown in Fig. S3(a) (Video S6- Video S9), the  $1X \sim 4X$  OFMs were all in laminar flow at *Re*=16.94. However, the mixing performance was affected by the enlargement ratio. In the 2X OFM  $\sim 4X$  OFMs, the red deionized water phase diffused into the colorless Na<sub>2</sub>SO<sub>4</sub> phase. It could be concluded that the mass that transferred from the red water to the colorless Na<sub>2</sub>SO<sub>4</sub> phase was dominated by low-efficiency molecular diffusion since no secondary flow such as the vortex was observed. Furthermore, the larger the EF of the OFM, the larger the red water phase dispersion. This was because a long residence time was critical for increasing the diffusion mixing efficiency. This non-uniform mixing was not conducive to producing high-quality NPs with narrow particle size distribution, and therefore the laminar flow mode should be avoided in scaled-out OFMs.

• Vortex and feedback flow: As shown in Fig. S3(b) (Video S10- Video S13), the secondary flows such as vortex and partial feedback flows occurred in the 1X OFM at Re = 67.76, but the 4X OFM still maintained the laminar flow with a rather clear interface throughout the whole OFM. As for the 2X OFM, the vortex flow was only observed in the mixing chamber. When the OFM size was increased to 3X, there was no vortex and feedback flow to be observed. Compared with the 1X OFM, the mixing performance of the  $2X \sim 4X$  OFMs was inferior. Although the *Re* was the same, the velocity in the scaled-out OFMs was lower than that in the 1X OFM. The larger the size of the OFM, the lower the velocity near the exit of the OFM. Consequently, the mixing chamber could not generate sufficient pressure difference between both ends of the feedback channel to form the recirculating flow. The lower pressure difference between the Coanda step and the exit of the mixing chamber also could not generate a vortex. Therefore, the  $2X \sim 4X$  OFMs could not have excellent mixing performance.

• Circulating flow: As shown in Fig. S3(c) (Video S14- Video S17), the 1X $\sim$ 4X OFMs all generated an intense oscillating flow at *Re* of 960.1. The two phases were mixed

relatively uniformly in the mixing chamber, but there was still a significant color difference between the left and right channels. In the 4X OFM, the oscillation frequency was lower than that of the 1X OFM, indicating a relatively poorer mixing performance. It could be seen that the depth of the red color on the left side of the 4X OFM was a little lighter than that on its right side. When the *Re* number was further increased to 3178, the colors of the two phases in the  $1X \sim 4X$  OFMs were almost identical, as shown in Fig. S3(d) (Video S18- Video S21). Here, complete mixing was achieved where the concentration was uniform everywhere and the residence time was rather short due to the high velocity at such high *Re*. The uniform concentration field and short residence time were essential for the synthesis of high-quality NPs. In this case, the scaling effects of the scaled-out OFMs could be neglected, making these OFMs ideal NP synthesizers.



Fig. S3 Effects of the enlargement factor EF and Reynolds number on flow patterns in

OFMs: (a) Re=16.94; (b) Re=67.76; (c) Re=960.1; (d) Re=3178

#### SI-4 OFM without feedback channels

Fig. S4 shows the structure of the 2X OFM without feedback channels. Except for the feedback channels, the other structure is the same as the 2X OFM.



Fig. S4 OFM without feedback channels

#### SI-5 Measurement of BaSO<sub>4</sub> NP Production Rate and Yield

As shown in Fig. S5, set the concentration ratio of BaCl<sub>2</sub> and Na<sub>2</sub>SO<sub>4</sub> to maintain 1:1 at all times and change the concentrations to 0.1, 0.15, 0.2, 0.25, and 0.3 moL/L. The flow rates of the two phases were both 140.7 mL/min (the total flow rate was 281.4 mL/min), and the volumes of BaCl<sub>2</sub> and Na<sub>2</sub>SO<sub>4</sub> solutions were both 10 mL (the total volume of reactant solutions,  $V_{total}$ =20mL). The two reactant solutions were fed into the 4X OFM. A bottle containing 200 mL of deionized water was placed at the outlet of the 4X OFM to collect NPs. The amount of deionized water was much higher than the amount of reactants so the unreacted reactants were sufficiently diluted in the collection bottle. As a result, the reaction between unreacted BaCl<sub>2</sub> and Na<sub>2</sub>SO<sub>4</sub> coming out of the OFM could be neglected. Namely, the NP synthesis reaction could be quenched in the collection bottle so as not to affect the yield and production rate measurement of NPs generated within the OFM. Then, the collected product solution in the bottle was immediately centrifuged (8000 rpm, 1 min) to obtain wet  $BaSO_4$  NPs (Quality  $M_c$ , g). The collected NPs were washed once with water and twice with anhydrous ethanol, and the wet NPs were further dried to obtain white NPs (50 °C, 24 h). As a result, the actual NP production rate and yield could be determined by the following equations.

BaSO<sub>4</sub> NP production rate 
$$(g/h)=M_c/(V_{total}/Q_{total})$$
 \*60 (Eq. S1)

BaSO<sub>4</sub> NP yield (%)=
$$M_c/M_i^*100\%$$
 (Eq. S2)

Where  $V_{total}$ =20 mL and  $Q_{total}$ =281.4 mL/min.  $M_c$  is the quality (g) of the dried BaSO<sub>4</sub> NPs collected in the bottle.  $M_i$  is the theoretical generation quality (g) of BaSO<sub>4</sub> NPs when BaCl<sub>2</sub> and Na<sub>2</sub>SO<sub>4</sub> react completely. Table S3 shows the result of production rates and yields at different reactant concentrations.



Fig. S5 Morphologies and size distributions of NPs synthesized in 4X OFM with

different concentrations (a) 0.1 moL/L; (b) 0.15 moL/L; (c) 0.2 moL/L; (d) 0.25 moL/L;

(e) 0.3 moL/L. The concentrations of  $BaCl_2$  and  $Na_2SO_4$  are the same.

 Table S1 Comparison between OFM reactor and other reactors in terms of throughput.

| zhput<br>min)          |  |
|------------------------|--|
| ∩3                     |  |
| J-                     |  |
| $\approx 10.64$ (food) |  |
| (ieeu)                 |  |
| 1 05                   |  |
| 1-9-                   |  |
| 1.2 <sup>6</sup>       |  |
| 7                      |  |
| -47                    |  |
| 28                     |  |
| 6.5 <sup>9</sup>       |  |
| 1010                   |  |
| 11                     |  |
| ,12                    |  |
|                        |  |

# Table S2 Original data of nanoparticle size distribution obtained from TEM images in

Fig.s 6, 8, and 10.

|        | Particle size (nm) |           |           |           |           |           |            |            |
|--------|--------------------|-----------|-----------|-----------|-----------|-----------|------------|------------|
| Number | Fig. 6(a)          | Fig. 6(b) | Fig. 6(c) | Fig. 8(a) | Fig. 8(b) | Fig. 8(c) | Fig. 10(a) | Fig. 10(b) |
| 1      | 69.985             | 42.266    | 30.479    | 20.927    | 11.725    | 12.289    | 11.33      | 10.943     |
| 2      | 71.703             | 43.434    | 31.902    | 24.14     | 12.653    | 12.717    | 12.637     | 11.021     |
| 3      | 84.929             | 46.404    | 34.543    | 24.772    | 12.883    | 13.171    | 12.813     | 12.815     |
| 4      | 86.968             | 56.951    | 36.715    | 25.693    | 13.332    | 13.171    | 13.086     | 13.319     |
| 5      | 101.9              | 58.093    | 43.223    | 26.062    | 13.387    | 13.286    | 13.968     | 13.464     |
| 6      | 102.69             | 62.052    | 43.698    | 26.062    | 13.55     | 13.646    | 13.982     | 13.941     |
| 7      | 113.009            | 63.122    | 47.064    | 27.023    | 14.35     | 13.646    | 13.982     | 14.005     |
| 8      | 122.946            | 66.696    | 47.761    | 27.672    | 15.186    | 13.646    | 14.158     | 14.057     |
| 9      | 125.729            | 67.345    | 51.404    | 27.934    | 15.215    | 13.869    | 14.471     | 14.787     |
| 10     | 126.428            | 68.225    | 55.274    | 28.064    | 15.33     | 14.07     | 14.595     | 14.804     |
| 11     | 128.266            | 71.897    | 60.618    | 28.37     | 15.718    | 14.286    | 14.671     | 14.891     |
| 12     | 129.539            | 71.497    | 66.092    | 28.37     | 15.941    | 14.708    | 14.94      | 15.366     |
| 13     | 130.796            | 73.153    | 66.419    | 29.457    | 16.014    | 14.725    | 15.06      | 16.061     |
| 14     | 133.925            | 76.227    | 69.205    | 30.174    | 16.591    | 15.017    | 15.208     | 16.095     |
| 15     | 137.985            | 78.986    | 70.167    | 30.31     | 16.811    | 15.017    | 15.722     | 16.197     |
| 16     | 139.903            | 78.285    | 72.354    | 30.37     | 16.811    | 15.135    | 15.722     | 16.321     |
| 17     | 142.43             | 83.203    | 72.71     | 30.668    | 17.217    | 15.6      | 15.742     | 16.327     |
| 18     | 147.15             | 84.162    | 72.71     | 31.256    | 17.353    | 15.666    | 15.907     | 16.334     |
| 19     | 150.475            | 86.834    | 73.262    | 31.719    | 17.696    | 15.731    | 15.961     | 16.374     |
| 20     | 154.62             | 86.925    | 74.158    | 31.891    | 17.721    | 15.731    | 16.251     | 16.546     |
| 21     | 157.173            | 90.419    | 75.208    | 32.076    | 17.878    | 15.86     | 16.3       | 16.561     |
| 22     | 158.085            | 90.569    | 77.772    | 32.499    | 17.919    | 15.972    | 16.312     | 16.583     |
| 23     | 170.659            | 90.659    | 79.349    | 32.569    | 18.017    | 16.614    | 16.357     | 16.657     |
| 24     | 174.602            | 90.262    | 81.378    | 32.611    | 18.017    | 16.614    | 16.357     | 16.667     |
| 25     | 175.977            | 91.758    | 81.606    | 33.288    | 18.404    | 16.66     | 16.403     | 16.794     |
| 26     | 179.577            | 92.9      | 82.336    | 33.736    | 18.908    | 16.66     | 16.792     | 16.892     |
| 27     | 183.866            | 96.877    | 84.184    | 33.763    | 18.97     | 16.736    | 17.202     | 17.102     |
| 28     | 187.637            | 98.321    | 85.353    | 33.763    | 18.97     | 16.858    | 17.213     | 17.192     |
| 29     | 191.928            | 98.196    | 90.426    | 33.884    | 19.063    | 16.978    | 17.288     | 17.267     |
| 30     | 193.949            | 99.337    | 91.684    | 34.138    | 19.094    | 16.978    | 17.342     | 17.686     |
| 31     | 198.129            | 101.459   | 91.999    | 34.165    | 19.178    | 17.261    | 17.658     | 17.866     |
| 32     | 198.561            | 102.701   | 93.225    | 34.47     | 19.224    | 17.438    | 17.704     | 17.922     |
| 33     | 205.588            | 104.32    | 95.099    | 34.942    | 19.542    | 17.742    | 17.728     | 17.98      |
| 34     | 206.096            | 104.439   | 95.24     | 35.085    | 19.55     | 17.857    | 17.784     | 18.016     |
| 35     | 208.916            | 108.913   | 95.845    | 35.189    | 19.58     | 18.028    | 17.91      | 18.034     |
| 36     | 209.016            | 109.957   | 97.161    | 35.318    | 19.58     | 18.07     | 18.065     | 18.06      |
| 37     | 212.152            | 109.537   | 100.246   | 35.728    | 19.632    | 18.07     | 18.321     | 18.203     |
| 38     | 214.711            | 110.432   | 100.308   | 35.767    | 19.729    | 18.183    | 18.362     | 18.256     |
| 39     | 215.19             | 111.545   | 101.199   | 35.767    | 19.878    | 18.211    | 18.453     | 18.256     |
| 40     | 215.643            | 112.875   | 102.103   | 35.856    | 20.062    | 18.309    | 18.614     | 18.262     |

| 41 | 217.035 | 117.006 | 104.737 | 35.919 | 20.062 | 18.695 | 18.873 | 18.407 |
|----|---------|---------|---------|--------|--------|--------|--------|--------|
| 42 | 228.732 | 118.708 | 110.865 | 36.335 | 20.12  | 18.749 | 18.873 | 18.53  |
| 43 | 231.079 | 119.183 | 111.783 | 36.522 | 20.171 | 18.858 | 18.873 | 18.568 |
| 44 | 247.797 | 119.2   | 111.922 | 36.82  | 20.403 | 18.871 | 18.951 | 18.613 |
| 45 | 256.472 | 128.572 | 112.336 | 36.87  | 20.41  | 19.019 | 19.049 | 18.669 |
| 46 | 257.767 | 129.025 | 117.65  | 37.128 | 20.432 | 19.019 | 19.286 | 18.769 |
| 47 | 264.819 | 129.499 | 117.956 | 37.324 | 20.639 | 19.166 | 19.325 | 18.837 |
| 48 | 269.368 | 130.85  | 119.262 | 37.845 | 20.745 | 19.219 | 19.36  | 18.858 |
| 49 | 296.755 | 132.979 | 123.697 | 37.845 | 20.858 | 19.233 | 19.501 | 19.065 |
| 50 | 305.744 | 133.314 | 125.289 | 38.001 | 20.858 | 19.233 | 19.545 | 19.155 |
| 51 | 318.713 | 137.832 | 128.774 | 38.465 | 20.922 | 19.299 | 19.552 | 19.37  |
| 52 | 342.918 | 139.777 | 131.503 | 38.982 | 21.048 | 19.339 | 19.641 | 19.424 |
| 53 | 343.822 | 139.6   | 133.063 | 39.122 | 21.083 | 19.431 | 19.647 | 19.453 |
| 54 | 362.859 | 139.733 | 135.835 | 39.134 | 21.11  | 19.496 | 19.723 | 19.47  |
| 55 | 393.054 | 146.519 | 135.835 | 39.134 | 21.387 | 19.653 | 20.041 | 19.527 |
| 56 | 394.77  | 147.917 | 135.979 | 39.504 | 21.442 | 19.704 | 20.44  | 19.573 |
| 57 | 397.836 | 147.073 | 148.1   | 39.539 | 21.585 | 19.898 | 20.495 | 19.573 |
| 58 | 413.842 | 150.439 | 150.362 | 39.711 | 21.585 | 19.923 | 20.51  | 19.906 |
| 59 | 415.223 | 150.69  | 152.034 | 39.768 | 21.68  | 20.013 | 20.826 | 20.007 |
| 60 | 433.726 | 162.165 | 158.079 | 39.814 | 21.687 | 20.051 | 21.084 | 20.023 |
| 61 | 438.634 | 171.23  | 160.534 | 40.088 | 21.707 | 20.127 | 21.087 | 20.228 |
| 62 | 443.005 | 173.037 | 162.204 | 40.088 | 21.822 | 20.203 | 21.19  | 20.322 |
| 63 | 452.235 | 177.084 | 164.598 | 40.269 | 21.822 | 20.203 | 21.435 | 20.449 |
| 64 | 456.694 | 177.173 | 167.168 | 40.539 | 21.849 | 20.203 | 21.443 | 21.146 |
| 65 | 495.055 | 177.967 | 167.716 | 40.841 | 21.95  | 20.203 | 21.608 | 21.429 |
| 66 | 518.957 | 181.917 | 171.339 | 41.031 | 22.063 | 20.203 | 21.7   | 21.51  |
| 67 | 621.107 | 183.649 | 172.09  | 41.075 | 22.229 | 20.228 | 21.859 | 21.704 |
| 68 | 630.507 | 185.897 | 176.777 | 41.13  | 22.249 | 20.454 | 22.077 | 21.789 |
| 69 | 768.771 | 187.673 | 181.978 | 41.296 | 22.249 | 20.454 | 22.187 | 21.994 |
| 70 | 775.483 | 190.903 | 184.519 | 41.296 | 22.249 | 20.466 | 22.198 | 22.038 |
| 71 | 836.672 | 191.965 | 188.52  | 41.428 | 22.282 | 20.466 | 22.254 | 22.085 |
| 72 |         | 191.623 | 188.892 | 41.472 | 22.282 | 20.616 | 22.299 | 22.305 |
| 73 |         | 196.127 | 190.508 | 41.735 | 22.301 | 20.763 | 22.346 | 22.523 |
| 74 |         | 212.91  | 192.341 | 41.822 | 22.328 | 20.763 | 22.39  | 22.693 |
| 75 |         | 215.508 | 197.431 | 42.082 | 22.407 | 20.763 | 22.432 | 22.903 |
| 76 |         | 217.692 | 198.505 | 42.373 | 22.459 | 20.8   | 22.545 | 22.906 |
| 77 |         | 219.714 | 210.953 | 42.556 | 22.544 | 20.862 | 22.914 | 22.906 |
| 78 |         | 223.532 | 219.785 | 42.598 | 22.648 | 20.862 | 22.958 | 23.324 |
| 79 |         | 223.666 | 236.616 | 42.673 | 22.751 | 20.862 | 23.24  | 23.404 |
| 80 |         | 226.417 | 269.246 | 42.673 | 22.79  | 21.008 | 23.291 | 23.423 |
| 81 |         | 235.746 | 273.446 | 42.726 | 22.848 | 21.008 | 23.368 | 23.473 |
| 82 |         | 239.264 | 286.961 | 42.769 | 22.867 | 21.008 | 23.411 | 23.515 |
| 83 |         | 240.246 | 306.496 | 42.886 | 23.002 | 21.093 | 23.516 | 23.624 |
| 84 |         | 243.813 | 309.552 | 42.886 | 23.059 | 21.153 | 23.532 | 23.624 |
| 85 |         | 250.539 | 333.234 | 42.981 | 23.078 | 21.201 | 23.535 | 23.862 |
| 86 |         | 254.143 | 373.53  | 43.119 | 23.174 | 21.201 | 23.661 | 23.867 |
| 87 |         | 259.884 | 396.752 | 43.602 | 23.199 | 21.237 | 23.701 | 23.903 |

| 88  | 260.832 | 404.369 | 43.935 | 23.382 | 21.237 | 23.974 | 24.332 |
|-----|---------|---------|--------|--------|--------|--------|--------|
| 89  | 261.581 | 429.751 | 43.955 | 23.513 | 21.429 | 24.74  | 24.339 |
| 90  | 262.761 | 578.293 | 43.986 | 23.532 | 21.44  | 24.74  | 24.46  |
| 91  | 275.365 |         | 44.028 | 23.613 | 21.771 | 24.76  | 24.514 |
| 92  | 279.868 |         | 44.059 | 23.632 | 21.806 | 24.83  | 25.255 |
| 93  | 282.507 |         | 44.11  | 23.632 | 22.189 | 24.97  | 25.299 |
| 94  | 300.889 |         | 44.11  | 23.762 | 22.315 | 25.188 | 25.441 |
| 95  | 305.012 |         | 44.511 | 23.854 | 22.418 | 25.392 | 25.593 |
| 96  | 314.487 |         | 44.552 | 23.854 | 22.418 | 25.47  | 25.785 |
| 97  | 317.524 |         | 44.725 | 23.959 | 22.554 | 25.657 | 25.978 |
| 98  | 317.709 |         | 44.725 | 24.002 | 22.588 | 25.819 | 26.295 |
| 99  | 334.652 |         | 45.04  | 24.075 | 22.588 | 25.879 | 26.41  |
| 100 | 336.716 |         | 45.131 | 24.148 | 22.7   | 25.924 | 26.579 |
| 101 | 338.115 |         | 45.612 | 24.172 | 22.7   | 25.944 | 26.608 |
| 102 | 345.863 |         | 45.901 | 24.203 | 22.79  | 26.011 | 26.918 |
| 103 | 346.254 |         | 46.197 | 24.39  | 23.035 | 26.345 | 26.922 |
| 104 | 351.984 |         | 46.197 | 24.486 | 23.035 | 26.461 | 27.129 |
| 105 | 353.995 |         | 46.785 | 24.51  | 23.134 | 26.515 | 27.388 |
| 106 | 380.567 |         | 46.94  | 24.54  | 23.234 | 26.592 | 27.723 |
| 107 | 416.46  |         | 47.076 | 24.54  | 23.255 | 26.875 | 28.072 |
| 108 | 429.903 |         | 47.134 | 24.719 | 23.255 | 26.905 | 28.15  |
| 109 | 467.58  |         | 48.137 | 24.719 | 23.266 | 26.995 | 28.43  |
| 110 | 504.603 |         | 48.702 | 24.725 | 23.398 | 27.199 | 28.627 |
| 111 | 507.436 |         | 48.767 | 24.985 | 23.43  | 27.275 | 28.688 |
| 112 | 546.434 |         | 49.49  | 25.009 | 23.582 | 27.461 | 28.838 |
| 113 |         |         | 49.811 | 25.283 | 23.658 | 27.601 | 29.607 |
| 114 |         |         | 49.811 | 25.388 | 23.744 | 27.87  | 29.652 |
| 115 |         |         | 49.811 | 25.543 | 23.744 | 27.876 | 29.743 |
| 116 |         |         | 50.093 | 25.566 | 23.787 | 27.905 | 29.994 |
| 117 |         |         | 50.644 | 25.584 | 24     | 28.07  | 30.222 |
| 118 |         |         | 50.869 | 25.618 | 24     | 28.072 | 30.338 |
| 119 |         |         | 51.083 | 25.71  | 24.254 | 28.078 | 30.952 |
| 120 |         |         | 51.721 | 25.71  | 24.328 | 28.116 | 31.46  |
| 121 |         |         | 52.063 | 25.841 | 24.328 | 28.118 | 31.931 |
| 122 |         |         | 52.307 | 25.858 | 24.328 | 28.415 | 32.511 |
| 123 |         |         | 53.059 | 25.886 | 24.432 | 28.668 | 33.036 |
| 124 |         |         | 53.512 | 25.909 | 24.432 | 29.098 | 33.539 |
| 125 |         |         | 53.512 | 25.954 | 24.578 | 29.166 | 33.848 |
| 126 |         |         | 54.129 | 26.028 | 24.578 | 29.175 | 34.074 |
| 127 |         |         | 54.129 | 26.061 | 24.599 | 29.209 | 35.283 |
| 128 |         |         | 54.398 | 26.219 | 24.754 | 29.79  | 35.318 |
| 129 |         |         | 55.981 | 26.269 | 24.846 | 30.336 | 36.67  |
| 130 |         |         | 56.128 | 26.342 | 24.877 | 30.411 | 36.681 |
| 131 |         |         | 56.933 | 26.608 | 24.949 | 31.054 | 37.057 |
| 132 |         |         | 57.188 | 26.647 | 25.041 | 31.202 | 37.994 |
| 133 |         |         | 57.829 | 26.773 | 25.081 | 31.661 | 40.287 |
| 134 |         |         | 60.597 | 26.779 | 25.122 | 32.109 | 42.499 |

| 135 |  | 63.782 | 27.003 | 25.163 | 32.113 |  |
|-----|--|--------|--------|--------|--------|--|
| 136 |  | 64.864 | 27.391 | 25.274 | 32.434 |  |
| 137 |  | 65.291 | 27.407 | 25.274 | 32.787 |  |
| 138 |  | 66.178 | 27.407 | 25.274 | 32.806 |  |
| 139 |  | 66.178 | 27.536 | 25.274 | 33.267 |  |
| 140 |  | 66.178 | 27.637 | 25.334 | 33.557 |  |
| 141 |  | 67.039 | 27.637 | 25.435 | 35.239 |  |
| 142 |  | 69.65  | 27.664 | 25.525 | 35.793 |  |
| 143 |  | 69.663 | 27.785 | 25.575 | 36.481 |  |
| 144 |  | 71.105 | 28.001 | 25.764 | 36.8   |  |
| 145 |  | 72.826 | 28.043 | 25.803 | 39.99  |  |
| 146 |  | 75.436 | 28.361 | 25.892 | 40.99  |  |
| 147 |  | 76.556 | 28.454 | 26     | 43.167 |  |
| 148 |  | 78.945 | 28.619 | 26.069 | 46.704 |  |
| 149 |  | 79.771 | 28.619 | 26.283 | 53.854 |  |
| 150 |  |        | 28.619 | 26.745 |        |  |
| 151 |  |        | 28.639 | 26.84  |        |  |
| 152 |  |        | 28.665 | 26.84  |        |  |
| 153 |  |        | 28.726 | 26.954 |        |  |
| 154 |  |        | 29.127 | 27.002 |        |  |
| 155 |  |        | 29.188 | 27.152 |        |  |
| 156 |  |        | 29.393 | 27.479 |        |  |
| 157 |  |        | 29.578 | 27.784 |        |  |
| 158 |  |        | 29.652 | 27.793 |        |  |
| 159 |  |        | 29.672 | 28.14  |        |  |
| 160 |  |        | 29.672 | 28.302 |        |  |
| 161 |  |        | 29.766 | 28.329 |        |  |
| 162 |  |        | 29.766 | 28.446 |        |  |
| 163 |  |        | 29.825 | 28.464 |        |  |
| 164 |  |        | 29.85  | 28.571 |        |  |
| 165 |  |        | 29.855 | 28.571 |        |  |
| 166 |  |        | 30.299 | 28.58  |        |  |
| 167 |  |        | 30.396 | 28.687 |        |  |
| 168 |  |        | 30.526 | 28.794 |        |  |
| 169 |  |        | 30.545 | 28.794 |        |  |
| 170 |  |        | 30.66  | 28.9   |        |  |
| 171 |  |        | 30.761 | 28.926 |        |  |
| 172 |  |        | 30.818 | 29.146 |        |  |
| 173 |  |        | 30.818 | 29.155 |        |  |
| 174 |  |        | 30.899 | 29.181 |        |  |
| 175 |  |        | 30.97  | 29.321 |        |  |
| 176 |  |        | 31.159 | 29.321 |        |  |
| 177 |  |        | 31.366 | 29.77  |        |  |
| 178 |  |        | 31.604 | 30.009 |        |  |
| 179 |  |        | 31.923 | 30.372 |        |  |
| 180 |  |        | 32.093 | 30.456 |        |  |
| 181 |  |        | 32.193 | 30.673 |        |  |

| 182 |   |   |   | 32.416 | 30.673 |   |   |
|-----|---|---|---|--------|--------|---|---|
| 183 |   |   |   | 32.489 | 30.814 |   |   |
| 184 |   |   |   | 32.633 | 31.012 |   |   |
| 185 |   |   |   | 32.741 | 31.119 |   |   |
| 186 |   |   |   | 32.969 | 31.119 |   |   |
| 187 |   |   |   | 33.009 | 31.241 |   |   |
| 188 |   |   |   | 33.08  | 31.623 |   |   |
| 189 |   |   |   | 33.504 | 31.896 |   |   |
| 190 |   |   |   | 33.735 | 31.984 |   |   |
| 191 |   |   |   | 33.84  | 32.103 |   |   |
| 192 |   |   |   | 34.129 | 32.103 |   |   |
| 193 |   |   |   | 34.979 | 32.467 |   |   |
| 194 |   |   |   | 35.13  | 32.576 |   |   |
| 195 |   |   |   | 35.168 | 32.639 |   |   |
| 196 |   |   |   | 35.176 | 33.579 |   |   |
| 197 |   |   |   | 35.645 | 33.882 |   |   |
| 198 |   |   |   | 36.168 | 33.882 |   |   |
| 199 |   |   |   | 36.681 | 34.024 |   |   |
| 200 |   |   |   | 36.685 | 34.077 |   |   |
| 201 |   |   |   | 37.079 | 34.144 |   |   |
| 202 |   |   |   | 37.087 | 34.293 |   |   |
| 203 |   |   |   | 38.391 | 34.883 |   |   |
| 204 |   |   |   | 38.578 | 35.664 |   |   |
| 205 |   |   |   | 38.578 | 35.949 |   |   |
| 206 |   |   |   | 38.589 | 36.056 |   |   |
| 207 |   |   |   | 39.092 | 36.147 |   |   |
| 208 |   |   |   | 39.28  | 36.422 |   |   |
| 209 |   |   |   | 39.447 | 36.957 |   |   |
| 210 |   |   |   | 39.459 | 37.253 |   |   |
| 211 |   |   |   | 40.013 | 37.253 |   |   |
| 212 |   |   |   | 40.502 | 37.253 |   |   |
| 213 |   |   |   | 41.085 | 37.253 |   |   |
| 214 |   |   |   | 41.257 | 37.253 |   |   |
| 215 |   |   |   | 41.367 | 37.253 |   |   |
| 216 |   |   |   | 42.377 | 37.253 |   |   |
| 217 |   |   |   | 44.196 | 37.253 |   |   |
| 218 |   |   |   | 44.829 | 37.253 |   |   |
| 219 |   |   |   | 45.904 | 37.253 |   |   |
| 220 |   |   |   | 45.917 | 37.266 |   |   |
| 221 |   |   |   | 47.204 | 38.598 |   |   |
| 222 |   |   |   | 48.793 | 38.717 |   |   |
| 223 |   |   |   | 51.593 | 39.227 |   |   |
| 224 |   |   |   |        | 41.607 |   |   |
| 225 |   |   |   |        | 42.917 |   |   |
| 226 |   |   |   |        | 44.544 |   |   |
| 227 |   |   |   |        | 45.378 |   |   |
| 228 |   |   |   |        | 45.815 |   |   |
| L   | 1 | 1 | 1 | 1      |        | 1 | 1 |

| 229 |  |  | 52.314 |  |
|-----|--|--|--------|--|
|     |  |  |        |  |

Table S3 The NP production rates and yields in 4X OFM with different concentrations

Theoretical NP  $BaCl_2$  $Na_2SO_4$ Actual NP Production Yield (moL/L) (moL/L) quality M<sub>i</sub>(g) quality  $M_{\rm C}$  (g) rate (g/h) 0.1 0.233 0.2125 179.4 0.1 91.2% 0.15 0.3495 0.32129 91.93% 0.15 271.23 0.2 0.466 93.28% 366.97 0.2 0.4347 0.25 0.25 0.5825 0.52736 90.53% 445.20 0.3 0.3 0.699 0.63774 91.24% 538.38

(total throughput, 281.4mL/min; Re=3178)

#### **Screenshots Of Movie Clips**

The images below are screenshots of Movie clips.



**Video S1** Movie of flow pattern in 1X OFM:  $Q_R = Q_L = 0.5$  mL/min: stable laminar flow

# (it seems to be stationary)



**Video S2** Movie of flow pattern in 1X OFM:  $Q_R = Q_L = 2 \text{ mL/min}$ : vortex flow and

#### feedback flow



**Video S3** Movie of flow pattern in 1X OFM:  $Q_{\rm R} = Q_{\rm L} = 5$  mL/min: vortex flow and



feedback flow

**Video S4** Movie of flow pattern in 1X OFM:  $Q_R = Q_L = 12.5 \text{ mL/min}$ : oscillating flow



**Video S5** Movie of flow pattern in 1X OFM:  $Q_R = Q_L = 28.3 \text{ mL/min: oscillating flow}$ 



Video S6- Video S9 Movies of flow patterns in 1X OFM – 4X OFM when *Re* = 16.94:



Video S10- Video S13 Movies of flow patterns in 1X OFM – 4X OFM when Re = 67.76:



Video S14- Video S17 Movies of flow patterns in 1X OFM – 4X OFM when Re = 960.1:





oscillating flow



# Video S22 and Video S25 Movies of flow patterns with and without NP synthesis in

2X OFM:  $Q_R = Q_L = 0.07 \text{ mL/min}$  (laminar flow synthesis)



# Video S23 and Video S26 Movies of flow patterns with and without NP synthesis in



2X OFM:  $Q_R = Q_L = 0.7 \text{ mL/min}$  (laminar flow synthesis)

Video S24 and Video S27 Movies of flow patterns with and without NP synthesis in

2X OFM:  $Q_R = Q_L = 7 \text{ mL/min}$  (vortex and feedback flow synthesis)



Video S28- Video S30 Movies of flow patterns without NP synthesis in 2X OFM: (a)

 $Q_{\rm R} = Q_{\rm L} = 17 \text{ mL/min}$ ; (b)  $Q_{\rm R} = Q_{\rm L} = 33 \text{ mL/min}$ ; (c)  $Q_{\rm R} = Q_{\rm L} = 70 \text{ mL/min}$  (chaotic



convection mode, i.e., intense oscillating flow)

Video S31- Video S33 Movies of flow patterns with NP synthesis in 2X OFM: (a)  $Q_R$  =

 $Q_L$  = 17 mL/min; (b)  $Q_R$  =  $Q_L$  = 33 mL/min; (c)  $Q_R$  =  $Q_L$  = 70 mL/min (chaotic convection





OFM when Re = 1920 (chaotic convection synthesis)



**Video S37- Video S39** Movies of flow patterns with NP synthesis in 2X OFM – 4X OFM when Re = 3178 (chaotic convection synthesis)

### **References:**

- 1. M. Yang, L. Yang, J. Zheng, N. Hondow, R. A. Bourne, T. Bailey, G. Irons, E. Sutherland, D. Lavric and K. J. Wu, *Chemical Engineering Journal*, 2021, **412**, 128565.
- 2. M. Yang, L. Luo and G. Chen, 2020, **66**, e16950.
- 3. H. Yang, S. X. Wei, H. Chen, L. Chen, C.T. Au, T. L. Xie and S. F. Yin, 2022, **68**, e17810.
- 4. C. Xu and Y. F. Chu, 2015, **61**, 1054-1063.
- 5. T. L. Xie, M. Chen, C. Xu and J. Chen, *Chemical Engineering Journal*, 2019, **356**, 382-392.
- 6. Y. F. Su, H. Kim, S. Kovenklioglu and W. Y. Lee, *Journal of Solid State Chemistry*, 2007, **180**, 2625-2629.
- N. Sen, V. Koli, K. K. Singh, L. Panicker, R. Sirsam, S. Mukhopadhyay and K. T. Shenoy, *Chemical Engineering and Processing - Process Intensification*, 2018, 125, 197-206.
- 8. A. V. Pandit and V. V. Ranade, *Industrial & Engineering Chemistry Research*, 2020, **59**, 3996-4006.
- 9. D. Jeevarathinam, A. K. Gupta, B. Pitchumani and R. Mohan, *Chemical Engineering Journal*, 2011, **173**, 607-611.
- 10. Z. Dong, D. Fernandez Rivas and S. Kuhn, Lab on a Chip, 2019, **19**, 316-327.
- 11. C. Delacour, C. Lutz and S. Kuhn, *Ultrasonics Sonochemistry*, 2019, **55**, 67-74.
- 12. F. Castro, S. Kuhn, K. Jensen, A. Ferreira, F. Rocha, A. Vicente and J. A. Teixeira, *Chemical Engineering Journal*, 2013, **215-216**, 979-987.