## **Supporting information**

## N-doped CNTs Wrapped Sulfur-Loaded Hierarchical Porous Carbon Cathode for for Li-Sulfur Battery Studies

Arunakumari Nulu, Venugopal Nulu, Keun Yong Sohn\*

Department of Nanoscience and Engineering, Center for Nano Manufacturing, Inje University, 197 Inje-ro, Gimhae, Gyeongnam-do 50834, Republic of Korea

\*Corresponding author, E-mail address: ksohn@inje.ac.kr



Fig. S1. XRD patterns (a) CNT and N-doped CNTs (b) SHPC and SHPC 6535.



Fig. S2. Elemental analysis mapping by SEM-EDX of SHPC-NCNT (a) SEM image (b) EDX element layered Image (c) S mapping (d) C mapping (e) N-mapping (f) Corresponding SEM-EDX spectra of SHPC-NCNT.



Fig. S3. Cyclic voltammograms (a) First cycles of SHPC and SHPC-NCNT (b) SHPC-6535.



Fig. S4. Specific capacity vs. voltage plots for the first three cycles (a) SHPC at 0.2 C (b) SHPC-



NCNT at 0.2 C.

Fig. S5. Cylability results of SHPC6535, SHPC8515, and SNCNT8515 materials.



Fig. S6. Specific capacity vs. voltage plots for the first three cycles (a) SHPC at 0.5 C (b) SHPC-



NCNT at 0.5 C.

Fig. S7. EIS Spectra of SHPC and SHPC-NCNT electrodes (b) after 10 cycles (c) after 50 cycles.

Table S1. Comparison of electrochemical performance of biomass-derived carbons and other porous carbons as sulfur cathode host.

| Host material                | Applied                | Cycle life | Specific capacity       | Capacity             | Ref. |  |  |  |  |
|------------------------------|------------------------|------------|-------------------------|----------------------|------|--|--|--|--|
|                              | current                |            | after cycling           | retention            |      |  |  |  |  |
|                              |                        |            |                         | (vs. 2 <sup>nd</sup> |      |  |  |  |  |
|                              |                        |            |                         | cycle)               |      |  |  |  |  |
| Biomass-derived carbon hosts |                        |            |                         |                      |      |  |  |  |  |
| Nano-porous carbon beads     | 0.1 C                  | 100        | 480 mAh g <sup>-1</sup> | ~70.5%               | 1    |  |  |  |  |
| Porous ramie                 | 0.1 C                  | 500        | 812 mAh g <sup>-1</sup> | ~62.0%               | 2    |  |  |  |  |
| Carbon/MWCNT                 |                        |            |                         |                      |      |  |  |  |  |
| Honeycomb-derived N-         | 1 C                    | 500        | 350 mAh g <sup>-1</sup> | ~69.0%               | 3    |  |  |  |  |
| doped hierarchical porous    |                        |            |                         |                      |      |  |  |  |  |
| carbon                       |                        |            |                         |                      |      |  |  |  |  |
| Mango-stone-derived          | 800 mA g <sup>-1</sup> | 500        | 526 mAh g <sup>-1</sup> | ~61.8%               | 4    |  |  |  |  |
| porous carbon                |                        |            |                         |                      |      |  |  |  |  |
| Rice straw-derived CoO-      | 1 C                    | 800        | 412 mAh g <sup>-1</sup> | ~46.0%               | 5    |  |  |  |  |
| embedded porous carbon       |                        |            |                         |                      |      |  |  |  |  |
| host                         |                        |            |                         |                      |      |  |  |  |  |
| biomass silkworm feces       | 3 C                    | 1000       | 641 mAh g <sup>-1</sup> | ~54.0%               | 6    |  |  |  |  |
| derived porous carbon        |                        |            |                         |                      |      |  |  |  |  |
| Corncob-derived activated    | 0.3 C                  | 200        | 799 mAh g <sup>-1</sup> | ~60.9%               | 7    |  |  |  |  |
| carbon                       |                        |            |                         |                      |      |  |  |  |  |
| Hair-derived porous carbon   | 0.5 C                  | 300        | 870 mAh g <sup>-1</sup> | ~82.0%               | 8    |  |  |  |  |
| waste tea-based porous       | 0.05 C                 | 100        | 627 mAh g <sup>-1</sup> | ~59.7%               | 9    |  |  |  |  |
| carbons                      |                        |            |                         |                      |      |  |  |  |  |
| Yam derived carbon           | 1 C                    | 450        | 401 mAh g <sup>-1</sup> | ~48.6%               | 10   |  |  |  |  |

| Other porous carbon hosts  |            |     |                         |        |           |  |  |
|----------------------------|------------|-----|-------------------------|--------|-----------|--|--|
| Multi porous carbon        | 200 mA g-1 | 70  | 500 mAh g <sup>-1</sup> | ~35.7% | 11        |  |  |
| N-doped porous carbon      | 0.5 C      | 400 | 571 mAh g <sup>-1</sup> | ~71.7% | 12        |  |  |
| G/CNT hybrids              | 1 C        | 100 | 530 mAh g <sup>-1</sup> | ~58.8% | 13        |  |  |
| Porous carbon              | 0.2 C      | 200 | 446 mAh g <sup>-1</sup> | ~55.7% | 14        |  |  |
| N-doped porous carbon      | 0.1 C      | 239 | 502 mAh g <sup>-1</sup> | ~54.2% | 15        |  |  |
| Interconnected Micro/meso  | 0.1 C      | 100 | 700 mAh g <sup>-1</sup> | ~57.3% | 16        |  |  |
| porous carbon              |            |     |                         |        |           |  |  |
| This work                  | 0.2 C      | 150 | 664 mAh g <sup>-1</sup> | 74.8%  |           |  |  |
| Spent coffee waste-derived |            |     |                         |        | This work |  |  |
| hierarchical porous carbon | 0.5 C      | 150 | 532 mAh g <sup>-1</sup> | 73.9%  |           |  |  |
| (HPC)/ N-MWCNT             |            |     |                         |        |           |  |  |

References:

- S. Choudhury, B. Krüner, P. M. Balleste, A. Tolosa, C. Prehal, I. Grobelsek, O.Paris, L. Borchardt, V. Presser, J Power Sources, 2017, 357, 198–208.
- L. Han, Z. Li, Y. Feng, L. Wang, B. Li, Z. Lei, W. Wang, W. Huang, Processes., 2022, 10(1), 136.
- H. Li, Z. Zhao, Y. Li, M. Xiang, J. Guo, H. Bai, X. Liu, X. Yang, C. Su, Dalton Trans., 2022, 51,1502–1512.
- S. Zhang, M. Zheng, Z. Lin, R. Zang, Q. Huang, H. Xue, J. Cao, and H. Pang, RSC Adv., 2016,6, 39918–39925.
- J. Wang, L. Wu, L. Shen, Q. Zhou, Y. Chen, J. Wu, Y. Wen, J. Zheng, J Colloid Interface Sci. 2023,15(640), 415–422.
- M. Ren, X. Lu, Y. Chai, X. Zhou, J. Ren, Q. Zheng, D. Lin, J Colloid Interface Sci., 2019, 552(15) 91–100.

- 7. B. Li, M. Xie, G. Yia and C. Zhang, RSC Adv., 2020,10, 2823–2829.
- M. Yu, R. Li, Y. Tong, Y. Li, C. Li, J. D. Hong and G. Shi, J. Mater. Chem. A, 2015, 3, 9609–9615.
- 9. A. A. Arie, H Kristianto, E. C. Cengiz and R. D. Cakan, Ionics, 26, pages201-212 (2020).
- 10. J. M. Chabu, Y. Li, and Y. N. Liu, ChemNanoMat, 2018, 5(5), 612-618.
- 11. C.-H. Hsu, C.-H. Chung, T.-H. Hsieh, H.-P. Lin, Int. J. Mol. Sci. 2022, 23(1), 39.
- 12. S. Wang, K. Zou, Y. Qian, Y. Deng, L. Zhang, G. Chen, Carbon, 2019, 144, 745–755.
- M.-Q. Zhao, X.-F. Liu, Q. Zhang, G.-L. Tian, J.-Q. Huang, W. Zhu, and F. Wei, ACS Nano., 2012, 6, 10759–10769.
- 14. Z. Zhao, W. Yin, H. Li, Y. Jiao, D. Lei, Y. Li, J. Guo, W. Bai, M. Xiang, Microporous and Mesoporous Materials, 337, 2022, 111946.
- S. Dörfler, P. Strubel, T. Jaumann, E. Troschke, F. Hippauf, C. Kensy, A. Schökel, H.
  Althues, L. Giebeler, S. Oswald, S. Kaskel, Nano Energy, 2018, 54,116–128.
- Y.-C. Ko, C.-H. Hsu, C.-AnLo, C.-M. Wu, H.-L. Yu, C.-H. Hsu, H.-P. Lin, C.-Y. Mou, H.-L. Wu, ACS Sustainable Chem. Eng. 2022, 10, 14, 4462–4472.