Electronic Supplementary Information

Interpretable Machine Learning-Assisted

Screening of Perovskite Oxides

Jie Zhao*a, Xiaoyan Wang*b, Haobo Li^c, Xiaoyong Xu*c

^a College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China

^b School of Computer Science, Nanjing Audit University, Nanjing, Jiangsu 211815, China

^c School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia

Corresponding Authors:

j.zhao1@njtech.edu.cn, xywang@nau.edu.cn, xiaoyong.xu@adelaide.edu.au

Fig. S1 Pairwise Pearson correlation coefficient heatmap of the 34 features screened from the 291 features.

Fig. S2 Confusion matrices of the (a) ABC-23, (b) GBC-23, (c) LRC-23, and (d) RFC-23 models.

Fig. S3 ROC curves of the (a) ABC-23, (b) GBC-23, (c) LRC-23, and (d) RFC-23 models.

Fig. S4 The (a) confusion matrix and (b) ROC curve of the XGBC-ref model.

Fig. S5 Performance of the RFR-144, GBR-144, and ABR-144 regression models.

Fig. S6 Performance of the XGBR-ref model that was trained on the dataset of ref 22.

Table S1 The 23 optimal features and the 11 removed features during feature selection for classification model training.

	BL_AB_ratio, IR_AB_ratio, B2_HOMO, B1_LUMO, EN_B+,				
23 optimal features	EN_AB_avg , $B1_ZR$, $B1_ME$, ME_B -, ME_AB_avg ,				
	ME_AB_ratio, IV_AB_avg, IV_AB_diff, IV_AB_ratio,				
	CR_AB_diff, AR_AB_diff, AV_B+, MN_B+, FIP_AB_ratio,				
	SHC_AB_diff, EC_B+, EC_AB_diff, EC_AB_ratio				
11 removed features	$IR_AB_diff, \Delta EN_{BO}*OF, ME_B^+, ME_AB_diff, B1_IV,$				
	CR_AB_ratio, B1_AR, AR_AB_ratio, AV_AB_avg, AV_AB_diff,				
	AV_AB_ratio				

Model	Hyperparameter	Model	Hyperparameter
ABC-23	'learning_rate': 0.5,	ABR-144	'learning_rate': 0.2
	'n_estimators': 250		'n_estimators': 100
GBC-23	'max_depth': 6,	GBR-144	'max_depth': 5
	'n_estimators': 250		'n_estimators': 150
LRC-23	'C': 100,	RFR-144	'max_depth': 13
	'penalty': '12'		'n_estimators': 200
RFC-23	'max_depth': 13,	XGBR-144	'max_depth': 6
	'n_estimators': 100		'n_estimators': 100
XGBC-23	'max_depth': 13,		
	'n_estimators': 100		

Table S2 Hyperparameters for various machine learning models.

Formula	E _h -DFT	E _h -predicted	Formula	<i>E_h</i> -DFT	E _h -predicted
	(meV atom ⁻¹)	(meV atom ⁻¹)		(meV atom ⁻¹)	(meV atom ⁻¹)
Ba ₂ CaOsO ₆ ¹	0	9	BaPdO ₃	29	1
Ba ₂ CeZrO ₆ ²	24	19	CaFeO ₃ ³	52	0
Ba ₂ CePtO ₆	0	0	EuHfO ₃ ⁴	0	6
Ba ₂ CeHfO ₆	23	18	EuNbO ₃ ⁵	24	6
Ba ₂ DyNbO ₆	0	2	EuVO ₃ ⁶	43	0
Ba ₂ ErNbO ₆ ⁷	0	8	PrCuO ₃ ^{8,9}	25	7
Ba ₂ EuReO ₆ ¹⁰	0	5	SrFeO ₃ ¹¹	0	0
Ba ₂ HoMoO ₆	0	0	YbTaO ₃ ¹²	26	0
Ba ₂ HoNbO ₆ ¹³	0	0	BaTaO ₃ ¹⁴	32	6
Ba ₂ LuMoO ₆ ¹⁵	0	7	KReO ₃ ¹⁶	37	14
Ba ₂ LuNbO ₆ ¹⁷	0	0	NaReO ₃ ¹⁶	42	11
Ba ₂ LuRuO ₆ ¹⁸	0	18	SrNiO ₃ ¹⁹	46	0
Ba ₂ LuSbO ₆ ²⁰	0	1	Ba ₂ BiLaO ₆ ²¹	28	30
Ba ₂ LuTaO ₆ ²²	0	0	Ba ₂ BiDyO ₆ ²¹	3	36
Ba ₂ NbVO ₆ ²³	0	5	Ba ₂ BiCeO ₆ ²¹	48	38
Ba ₂ NbFeO ₆	0	0	Ba ₂ BiSmO ₆ ²¹	8	35
Ba ₂ NbInO ₆	0	3	Ba ₂ BiGdO ₆ ²¹	6	26
Ba ₂ SmMnO ₆	45	26	Ba ₂ BiTbO ₆	11	37
Ba ₂ TaTlO ₆	0	22	Ba_2BiLuO_6	2	32

Table S3 Comparison of the E_h values predicted by the XGBR-144 model and calculated by density functional theory that are not included in the input dataset.

Ba ₂ TmNbO ₆	0	25	Ba ₂ BiYO ₆	3	36
Ba ₂ TmRuO ₆	0	33	Eu ₂ CrSbO ₆	39	7
Ba ₂ TmMoO ₆	0	30	Eu ₂ CrSnO ₆	47	12
Ba ₂ ZrSnO ₆	0	20	Eu ₂ FeWO ₆	29	3
Ba ₂ ZrTiO ₆	5	19	Eu ₂ HfTiO ₆	17	6
Ba ₂ LaFeO ₆	42	0	Eu ₂ HfSnO ₆	22	5
BaSrMo ₂ O ₆	47	1	Eu ₂ HfFeO ₆	44	17
BaSrCoWO ₆ ²⁴	15	0	Eu ₂ LuTaO ₆	22	6
Sr2HfSnO ₆	19	18	Eu ₂ MgWO ₆	0	6
Sr2HfTiO ₆	22	12	Eu ₂ MnWO ₆	0	0
Sr2HfFeO ₆	42	5	Eu ₂ NbFeO ₆	37	1
Sr2HfCrO ₆	33	6	Eu ₂ NiWO ₆	34	3
Sr2HfZrO ₆	44	15	Eu ₂ TaAlO ₆	0	10
Sr ₂ NiRuO ₆ ²⁵	0	2	Eu ₂ TiNbO ₆	8	6
Sr ₂ VWO ₆ ²⁶	13	0	Eu ₂ TmTaO ₆	36	17
Sr ₂ FeCoO ₆ ²⁷	20	0	Eu ₂ VWO ₆	33	0
Sr ₂ FeHfO ₆ ²⁸	42	5	Eu ₂ ZnWO ₆	0	4

References

- C. Thompson, J. Carlo, R. Flacau, T. Aharen, I. Leahy, J. Pollichemi, T. Munsie, T. Medina, G. Luke and J. Munevar, *J. Phys.: Condens. Matter*, 2014, 26, 306003.
- Y. S. Reddy, Y. Markandeya, B. A. Rao and G. Bhikshamaiah, J. Mater. Sci.: Mater. Electron., 2018, 29, 2966-2973.
- P. Woodward, D. Cox, E. Moshopoulou, A. Sleight and S. Morimoto, *Phys. Rev. B*, 2000, 62, 844.
- H. Akamatsu, K. Fujita, H. Hayashi, T. Kawamoto, Y. Kumagai, Y. Zong, K. Iwata, F. Oba, I. Tanaka and K. Tanaka, *Inorg. Chem.*, 2012, **51**, 4560-4567.
- Y. Kususe, S. Yoshida, K. Fujita, H. Akamatsu, M. Fukuzumi, S. Murai and K. Tanaka, J. Solid State Chem., 2016, 239, 192-199.
- 6. M. H. Sage, G. R. Blake, C. Marquina and T. T. M. Palstra, Phys. Rev. B, 2007, 76, 195102.
- 7. R. Mukherjee, B. Ghosh, S. Saha, C. Bharti and T. Sinha, J. Rare Earths, 2014, 32, 334-342.
- M. Ito, H. Takahashi, H. Sakai, H. Sagayama, Y. Yamasaki, Y. Yokoyama, H. Setoyama, H. Wadati, K. Takahashi, Y. Kusano and S. Ishiwata, *Chem. Commun.*, 2019, 55, 8931-8934.
- 9. B. Sateesh and N. J. English, Chem. Phys. Lett., 2020, 743, 137166.
- 10. Y. Sasaki, Y. Doi and Y. Hinatsu, J. Mater. Chem., 2002, 12, 2361-2366.
- G. Xiao, Q. Liu, S. Wang, V. G. Komvokis, M. D. Amiridis, A. Heyden, S. Ma and F. Chen, J. Power Sources, 2012, 202, 63-69.
- 12. X. Z. Wang, Z. X. Liu, H. J. Gao, Y. Jing, C. L. Li and J. Liu, *Appl. Mech. Mater.*, 2013, 423-426, 426-429.
- 13. S. Nair, P. Warriar and J. Koshy, J. Mater. Sci., 2003, 38, 481-483.

- Z. Ali, I. Khan, I. Ahmad, M. S. Khan and S. J. Asadabadi, *Mater. Chem. Phys.*, 2015, 162, 308-315.
- 15. F. C. Coomer and E. J. Cussen, J. Phys.: Condens. Matter, 2013, 25, 082202.
- D. Behera, A. Dixit, K. Kumari, A. Srivastava, R. Sharma, S. K. Mukherjee, R. Khenata, A. Boumaza and S. Bin-Omran, *Eur. Phys. J. Plus*, 2022, **137**, 1345.
- Z. Cui, T. Wang, L. Guo, F. Zhao, J. Qiu, X. Xu and X. Yu, J. Mater. Chem. C, 2022, 10, 6481-6487.
- 18. P. Battle and C. Jones, J. Solid State Chem., 1989, 78, 108-116.
- 19. M. M. Hasan, A. Kabir and M. Kamruzzaman, Results Phys., 2022, 41, 105920.
- 20. S. A. Mir, S. Yousuf, T. M. Bhat, S. Singh, A. Q. Seh, S. A. Khandy, S. A. Sofi, Z. Saleem and D. C. Gupta, *AIP Conf. Proc.*, 2019, **2115**, 030337.
- M. Irshad, Q. tul Ain, M. Zaman, M. Z. Aslam, N. Kousar, M. Asim, M. Rafique, K. Siraj, A. N. Tabish and M. Usman, *RSC Adv.*, 2022, **12**, 7009-7039.
- 22. S. Berri, N. Bouarissa, M. Ibrir and O. Meglali, *Optik*, 2021, **229**, 166272.
- 23. J.-C. Bernier, C. Chauvel and O. Kahn, J. Solid State Chem., 1974, 11, 265-271.
- 24. J. F. Shin, W. Xu, M. Zanella, K. Dawson, S. N. Savvin, J. B. Claridge and M. J. Rosseinsky, *Nat. Energy*, 2017, 2, 16214.
- 25. S. E. A. Yousif and O. Yassin, J. Alloys Compd., 2010, 506, 456-460.
- 26. A. J. Weisenstein, Investigation of multivalent double perovskites as electrodes for high temperature energy conversion, Montana State University, 2012.
- 27. R. Pradheesh, H. S. Nair, V. Sankaranarayanan and K. Sethupathi, *Appl. Phys. Lett.*, 2012, 101, 142401.

 B. Merabet, O. M. Ozkendir, A. S. Hassanien and M. A. Maleque, J. Magn. Magn. Mater., 2021, 518, 167374.