Aqueous Alkaline Phosphate Facilitates the Non-exchangeable Deuteration of Peptides and Proteins

Tingting Zhang,^{ab} Zhixiong Jin,^{ac} Heng Zhao, ^a Can Lai,^{ab} Zheyi Liu,^a Pan Luo,^d Zhe Dong,^e and Fangjun Wang ^{*ab}

a CAS Key Laboratory of Separation Sciences for Analytical Chemistry, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

b University of Chinese Academy of Sciences, Beijing 100049

c Department of Chemistry, Zhejiang University, Hangzhou 310027, China

d Institute of Advanced Science Facilities, Shenzhen 518000, China **e** Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, China.

*Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Email: wangfj@dicp.ac.cn

Table of Contents

Part I. Data Analysis	3
Part II. Supplementary Figures	5
Part III. Supporting Information NMR Part	8
Part IIII. Supporting Information HPLC-MS/MS Part 1	6

Part I. Data Analysis.

Peptide:

The average mass of peptide is calculated by taking the average mass of all the isotopic peaks weighted by their intensities. This means that for an isotopic peak distribution containing n peaks the average mass (M) can be found using Equation 1

Equation 1:

$$M_{deuterium} = \frac{\sum_{i=1}^{n} I_{i} \cdot M_{i}}{\sum_{i=1}^{n} I_{i}}$$
$$M_{un-deuterium} = \frac{\sum_{i=1}^{n} I_{i} \cdot M_{i}}{\sum_{i=1}^{n} I_{i}}$$

$$\frac{\text{Deuterium}}{\text{molecular}} = (M_{deuterium} - M_{un-deuterium}) * charge$$

Protein:

Deuterium mass = $[(m/_Z)_{deuterium} - (m/_Z)_{undeuterium}] * z$ where $(m/_Z)_{deuterium}$ is the centroid mass of the fragment ions of interest, whereas $(m/_Z)_{undeuterium}$ is the corresponding reference data for completely unlabeled samples fragment ions.

All biochemical graphs were produced using OriginPro 2019b (OriginLab) or R script.

Figure S 1 Data analysis flowchart

These Mb regions include: N-terminus (Gly 1 to Ser 3), A-helix (Asp 4 to Ala 19), B-helix (Asp 20 to Gly 35), C-helix (His 36 to Lys 42), CD loop (Phe 43 to Lys 50), D-helix (Thr 51 to Ala 57), E-helix (Ser 58 to Lys 77), EF loop (Lys 78 to Glu 85), F-helix (Leu 86 to Ala 94), FG loop (Thr 95 to Ile 99), G-helix (Pro 100 to Lys 118), GH loop (His 119 to Phe 123), H-helix (Gly 124 to Gly 150), and C terminus (Phe 151 to Gly 153).

Figure S2 Hexa-peptides deuteration (backbone deuteration)

Figure S3 The investigation of optimal conditions for the deuteration of octreotide, including: A) potassium phosphate concentration, B) reaction time at 50 mM potassium phosphate condition, C) octreotide concentration (50 mM potassium phosphate), and D) the deuteration rates of standard hexapeptides at 2 hours. (Triple parallel experiments)

Figure S4 The deuterium incorporation of hexapeptide at 8 h (100 mM potassium phosphate).

Part III. Supporting Information NMR Part

Figure S5 ¹HNMR stacked spectra demonstrating the selective backbone deuteration of standard hexapeptides.

13 / 45

14 / 45

15 / 45

Part IIII. Supporting Information HPLC-MS/MS Part

Figure S6 The HPLC-MS spectra of the standard hexapeptides.

27 / 45

29 / 45

36 / 45

20230308_20230227_Mb10uM_200mMNH4OAC_Control_1-1 #20 RT: 0.21 AV: 1 NL: 1.91E7

20230308_20230227_Mb10uM_200mMNH4OAC_z8_2196_Control_1_1#20_RT: 0.23_AV: 1_NL: 4.22E6 T: FTMS + p NSI sid=15.00_cv=15.00_Full ms2_2196.7000@cid1.00_[200.0000-3500.0000]

20230308_20230227_Mb10uM_200mMNH4OAC_z8_2196_Control_1_3 #20 RT: 0.23 AV: 1 NL: 4.25E6 T: FTMS + p NSI sid=15.00 cv=15.00 Full ms2 2196.7000@cid1.00 [200.0000-3500.0000]

20230308_20230227_Mb10uM+100mMK3PO4+Ar+RT2H_Sample_1_1 #20 RT: 0.21 AV: 1 NL: 3.52E6 T: FTMS + p NSI sid=15.00 cv=15.00 Full ms [400.0000-3500.0000]

20230308_20230227_Mb10uM+100mMK3PO4+Ar+RT2H_z8_2201_Sample_1_1#20 RT: 0.24 AV: 1 NL: 1.07E6 T: FTMS + p NSI sid=15.00 cv=15.00 Full ms2 2201.3999@cid1.00 [200.0000-3500.0000]

20230308_20230227_Mb10uM+100mMK3PO4+Ar+RT2H_z8_2201_Sample_1_2#20 RT: 0.24 AV: 1 NL: 1.06E6 T: FTMS + p NSI sid=15.00 cv=15.00 Full ms2 2201.3999@cid1.00 [200.0000-3500.0000]

20230308_20230227_Mb10uM+100mMK3PO4+Ar+RT2H_z8_2201_Sample_1_3#20 RT: 0.24 AV: 1 NL: 1.06E6 T: FTMS + p NSI sid=15.00 cv=15.00 Full ms2 2201.3999@cid1.00 [200.0000-3500.0000]