Aqueous Alkaline Phosphate Facilitates the Non-exchangeable Deuteration of Peptides and Proteins

Tingting Zhang, ${ }^{\text {ab }}$ Zhixiong Jin, ${ }^{\text {ac }}$ Heng Zhao, ${ }^{a}$ Can Lai, ${ }^{\text {ab }}$ Zheyi Liu, ${ }^{a}$ Pan Luo, ${ }^{\text {d }}$ Zhe Dong, ${ }^{e}$ and Fangjun Wang ${ }^{*}$ ab

a CAS Key Laboratory of Separation Sciences for Analytical Chemistry, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
b University of Chinese Academy of Sciences, Beijing 100049
c Department of Chemistry, Zhejiang University, Hangzhou 310027, China
d Institute of Advanced Science Facilities, Shenzhen 518000, China
e Shenzhen Grubbs Institute and Department of Chemistry,
Guangdong Provincial Key Laboratory of Catalysis, Southern
University of Science and Technology, Shenzhen, China.
*Dalian Institute of Chemical Physics, Chinese Academy of
Sciences, Dalian 116023, China.
Email: wangfj@dicp.ac.cn

Table of Contents

Part I. Data Analysis 3
Part II. Supplementary Figures 5
Part III. Supporting Information NMR Part 8
Part IIII. Supporting Information HPLC-MS/MS Part 16

Part I. Data Analysis.

Peptide:

The average mass of peptide is calculated by taking the average mass of all the isotopic peaks weighted by their intensities. This means that for an isotopic peak distribution containing n peaks the average mass (M) can be found using Equation 1

Equation 1:

$$
\begin{gathered}
\mathrm{M}_{\text {deuterium }}=\frac{\sum_{i=1}^{n} \mathrm{I}_{\mathrm{i}} \cdot M_{i}}{\sum_{i=1}^{n} \mathrm{I}_{\mathrm{i}}} \\
\mathrm{M}_{\text {un-deuterium }}=\frac{\sum_{i=1}^{n} \mathrm{I}_{\mathrm{i}} \cdot M_{i}}{\sum_{i=1}^{n} \mathrm{I}_{\mathrm{i}}}
\end{gathered}
$$

$$
\frac{\text { Deuterium }}{\text { molecular }}=\left(\mathrm{M}_{\text {deuterium }}-\mathrm{M}_{\text {un-deuterium }}\right) * \text { charge }
$$

Protein:

Deuterium mass $=\left[(\mathrm{m} / \mathrm{z})_{\text {deuterium }}-(\mathrm{m} / \mathrm{z})_{\text {undeuterium }}\right] * z$
where $(\mathrm{m} / \mathrm{z})_{\text {deuterium }}$ is the centroid mass of the fragment ions of interest, whereas $(\mathrm{m} / \mathrm{z})_{\text {undeuterium }}$ is the corresponding reference data for completely unlabeled samples fragment ions.

All biochemical graphs were produced using OriginPro 2019b (OriginLab) or R script.

Figure S 1 Data analysis flowchart

These Mb regions include: N-terminus (Gly 1 to Ser 3), A-helix (Asp 4 to Ala 19), B-helix (Asp 20 to Gly 35), C-helix (His 36 to Lys 42), CD loop (Phe 43 to Lys 50), D-helix (Thr 51 to Ala 57), E-helix (Ser 58 to Lys 77), EF loop (Lys 78 to Glu 85), F-helix (Leu 86 to Ala 94), FG loop (Thr 95 to lle 99), G-helix (Pro 100 to Lys 118), GH loop (His 119 to Phe 123), H-helix (Gly 124 to Gly 150), and C terminus (Phe 151 to Gly 153).

Part II. Supplementary Figures

Gly-G
(RT 8h, 1.8 Deuterium Incorporation)

un-deuterated
Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{7}$ Exact Mass: 416.2019
Gly-Gly-Gly-Gly-Leu-Gly
(RT 8h, 1.57 Deuterium Incorporation)

un-deuterated
Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{7} \mathrm{~S}$
Exact Mass: 434.1584
Gly-Gly-Gly-Gly-Met-Gly
(RT 8h, 1.84 Deuterium Incorporation)

un-deuterated
Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{8}$
Exact Mass: 466.1812
Gly-Gly-Gly-Gly-Tyr-Gly
(RT 8h, 1.61 Deuterium Incorporation)

 Exact Mass: 416.2019 Gly-Gly-Gly-Gly-Ile-Gly
(RT 8h, 1.49 Deuterium Incorporation)

 cal Formula. $\mathrm{C}_{16} \mathrm{H}_{28}$

Figure S3 The investigation of optimal conditions for the deuteration of octreotide, including: A) potassium phosphate concentration, B) reaction time at 50 mM potassium phosphate condition, C) octreotide concentration (50 mM potassium phosphate), and D) the deuteration rates of standard hexapeptides at 2 hours. (Triple parallel experiments)

Figure S4 The deuterium incorporation of hexapeptide at 8 h (100 mM potassium phosphate).

Part III. Supporting Information NMR Part

Figure $\mathbf{S 5}{ }^{1} \mathrm{HNMR}$ stacked spectra demonstrating the selective backbone deuteration of standard hexapeptides.

$13 / 45$

15 / 45

Part IIII. Supporting Information HPLC-MS/MS Part

Figure S6 The HPLC-MS spectra of the standard hexapeptides.

20230609-GGGGYG+H2O-Control9-1\#1632-2048 RT: $7.27-9.13$ AV: 417 NL: 2.00E7
T: FTMS + P NSI Full ms $4000.0000-2000.0000]$

20230609_GGGGIG+H2OControl-11-1.11583-2042 RT: 7.05-9.10 AV: 460 NL: 3.63E7
T: FTMS +p NSI Full ms [400.0000-2000.0000]

20230613_GGGGCG1mg-2mM_+K3PO4-mg-2M+Ar4unStir+RT8H_ScavgerH3PO4_C18_Lyophilazation1_-Sample_1-1 \#1213 RT: 5.40 AV: 1 NL: 7.73E6

$26 / 45$

20230612_GGGGPG+H2O_Control_6-1\#876 RT: 3.90 AV: 1 NL: 2.07E6
T: FTMS +p NSIFull ms [400.0000-2000.0000]

$30 / 45$

20230613_GGGGQG1mg-2mM_+K3PO4-mg-2M+Ar4unStir+RT8H_ScavgerH3PO4_C18_Lyophilazation1__Sample_4-1 \#267 RT: 1.19 AV: 1 NL: 5.31 E4
T: FTMS + p NSI Full ms $40000000-2000.0000]$

20230616 Octrotide10OuM+NH4-3-PO4100mM+AirunStir+RT2H_ScavgerH3PO4_C18_Lyophilazation1__Sample_3-1 \#3166-3756 RT: 14.11-16.74 AV: 591 NL: 2.70E7

. FTMS + p NSI Full ms [400.0000-2000.0000] 510.7269

20230308_20230227_Mb10uM_200mMNH4OAC_Control_1-1 \#20 RT: 0.21 AV: 1 NL: 1.91 E 7 T: FTMS +p NSI sid $=15.00 \mathrm{cv}=15.00$ Full $\mathrm{ms}[400.0000-3500.0000]$

2023030820230227 Mb 10 uM 200mMNH4OAC z8 2196 Control 12 \# 20 RT: 0.23 AV: 1 NL: 4.25 E6 T: FTMS +p NSI sid=15.00 cv=15.00 Full ms2 2196.7000@cid1.00 [200.0000-3500.0000]

20230308_20230227_Mb10uM_200mMNH4OAC_z8_2196_Control_1_3\#20 RT: 0.23 AV: 1 NL: 4.25E6 T: FTMS + p NSI sid= $\overline{15} .00 \mathrm{cv}=\overline{1} 5.00$ Full ms2 219 $6 . \overline{7} 000 @$ cid 1.00 [$2 \overline{00} .0000-3500.0000]$

20230308_20230227_Mb10uM+100mMK3PO4+Ar+RT2H_z8_2201_Sample_1_2\#20 RT: 0.24 AV: 1 NL: 1.06E6 T: FTMS + p NSI sid=15.00 cv=15.00 Full ms2 2201.3999@cid1.00 [200.0000-3500.0000]

20230308_20230227 Mb10uM+100mMK3PO4+Ar+RT2H_z8_2201_Sample_1_3\#20 RT: 0.24 AV: 1 NL: 1.06 E 6 T: FTMS + p NSI sid=15.00 cv=15.00 Full ms2 2201.3999@cid1.00 [200.0000-3500.0000]

