Supporting Information

Development of an ion gel-based CO₂ separation membrane composed of Pebax 1657 and a CO₂-philic ionic liquid

Jo Muroga,^{a,b} Eiji Kamio,^{a,b,*} Atsushi Matsuoka,^{a,b} Keizo Nakagawa,^{a,c} Tomohisa Yoshioka,^{a,c} and Hideto Matsuyama,^{a,b,*}

^a Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan

^b Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan

^c Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan

*To whom all correspondence should be addressed. E-mail: e-kamio@people.kobe-u.ac.jp (E.K.), matuyama@kobe-u.ac.jp (H.M.)

Table of Contents

Figure S1 FTIR spectra of the Pebax 1657 membrane without [Emim][C(CN) ₃] and	n 2
the Pebax ion gel membrane with different [Emim][C(CN) ₃] contents.	p. 2

Figure S2 Schematic illustration of the speculated gel network structure and toughening mechanism. p. 3

Figure S3 Comparison of the CO_2 and N_2 permeabilities and the CO_2/N_2 permselectivity of the Pebax ion gel membrane and pure Pebax 1657 membrane p.4 without an ionic liquid.

Figure S1 FTIR spectra of the Pebax 1657 membrane without $[Emim][C(CN)_3]$ and the Pebax ion gel membrane with different $[Emim][C(CN)_3]$ contents

Figure S2 Schematic illustration of the speculated gel network structure and toughening mechanism

Figure S3 Comparison of the CO_2 and N_2 permeabilities and the CO_2/N_2 permselectivity of the Pebax ion gel membrane and pure Pebax 1657 membrane without an ionic liquid.