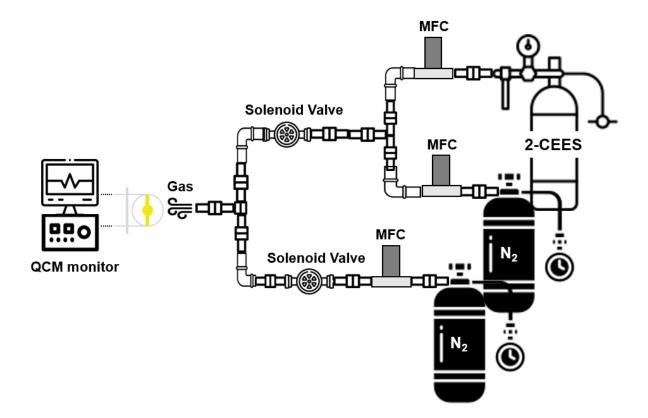
Electronic Supplementary Information


Detection of Sulfur Mustard Simulant by Trisaryl Phosphoric Triamide-Based Resin Using Quartz Crystal Microbalance Sensor

Jaeyoung Heo,^a Jin Hyun Park,^a Sun Gu Song,^a Seongwoo Lee,^b Seongyeop Lim,^c Chang Young Lee,^c Han Yong Bae^a and Changsik Song. *^a

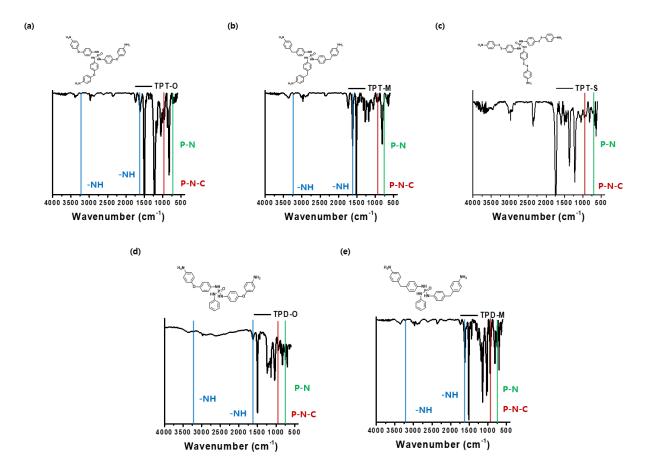
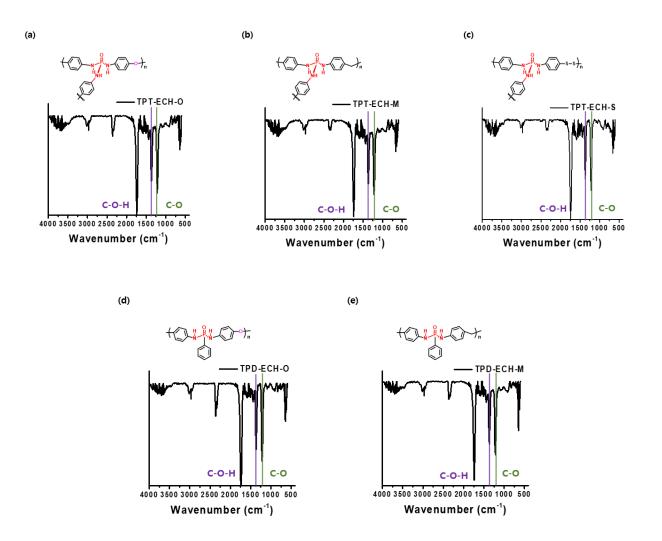

Department of Chemistry, Sungkyunkwan University, 2066, (16419); *E-mail : <u>songcs@skku.edu</u>

Table of contents


\checkmark	Figure S1 QCM device and gas line depiction drawing	 S2
\checkmark	Figure S2 FT-IR signal after the first synthesis process	 S3
\checkmark	Figure S3 FT-IR signal after the epoxy curing reaction	 S4
\checkmark	Figure S4 QCM signal of receptors for 10ppm 2-CEES gas	 S 5
\checkmark	The Langmuir-isotherm analysis for the response of the receptors	 S6
\checkmark	Figure S5. Langmuir linear fitting data of receptors.	 S7
\checkmark	Table S1. ΔF_{max} , K, ΔG° , and R ² values for the receptors.	 S7

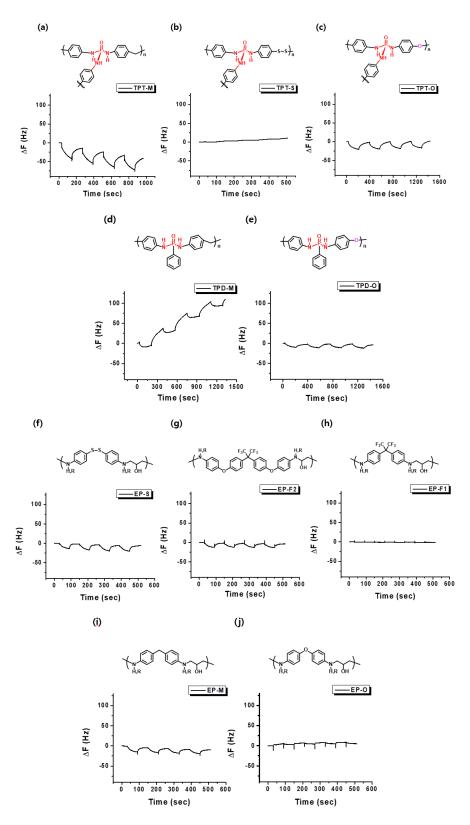

Figure S1. The custom-designed gas line and QCM setup employed for measuring 2-CEES gas in our experiments.

Figure S2. FT-IR spectra after the first synthetic process: (a) TPT-O, (b) TPT-M, (c) TPT-S, (d) TPD-O, and (e) TPD-M.. The absorption peaks were noted at 954 cm⁻¹, 760 cm⁻¹, 1623⁻¹ and 3215cm⁻¹ which were assigned for the bending vibration peaks of P-N-C, P-N, -NH, and the stretching vibration absorption of -NH, respectively.

Figure S3. FT-IR spectra after the epoxy curing reaction: (a) TPT-ECH-O, (b) TPT-ECH-M, (c) TPT-ECH-S, (d) TPD-ECH-O, and (e) TPD-ECH-M. The absorption peaks were noted at 1365 cm⁻¹ and 1221cm⁻¹ which were assigned for the bending vibration peaks of C-O-H and C-O, respectively.

Figure S4. Comparison of QCM signals of TPT-M (a), TPT-S (b), TPT-O (c), TPD-M (d), TPD-O (e), EP-S (f), EP-F2 (g), EP-F1 (h), EP-M, and EP-O (j) for 10 ppm of 2-CEES gas.

The Langmuir-isotherm analysis for the response of the receptors

The adsorption process of 2-CEES on each receptor can be described as follows, assuming non-dissociative adsorption of 2-CEES.

The equilibrium constant for 2-CEES adsorption (K) can be expressed in relation to the surface coverage (θ) and partial pressure of 2-CEES (P) as follows:

$$K = \theta (1 - \theta)P$$

Rearrangement of this equation gives,

$$\theta = KP \ 1 + KP$$

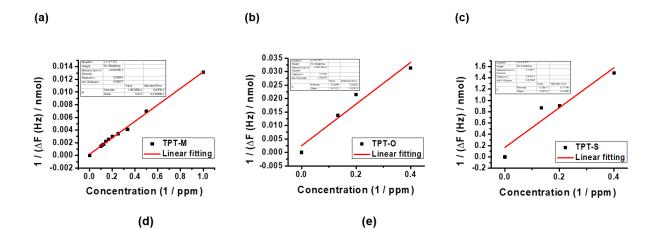
and taking the reciprocal of both side of equation gives,

$$1/\theta = (1 / K)(1/P) + 1$$

The surface coverage (θ) represents the ratio of adsorbed molecules on the surface to the number of molecules in a monolayer covering the surface sites, and it can be expressed in terms of ΔF as follows:

$$\theta = \Delta F / \Delta F_{Max}$$

When ΔF_{Max} represents the frequency change (ΔF) measured during QCM experiments when the receptor surface was fully covered with a monolayer of 2-CEES molecules, combining equations yields the linear relationship between (1/ ΔF) and (1/P) as follows:


$$1 / \Delta F = (1 / \Delta F_{Max} \times K) 1 / P + 1 / \Delta F_{Max}$$

For each receptor case, the reciprocal of the 2-CEES concentration (1/P) was plotted against the inverse of ΔF (1/ ΔF) at each 2-CEES concentration, and each dataset was fitted using the linear least squares regression method. From the slope (1/($\Delta F_{Max} \times K$)) and Y-axis intercept (1/ ΔF_{Max}) of the line fitted to each dataset, the equilibrium constant (K) of 2-CEES adsorption and ΔF_{Max} values were derived.

Additionally, we computed the Gibbs free energy change (ΔG°) of 2-CEES adsorption using the following equation:

$$\Delta G^o = -RT \ln K$$

Where R represents the gas constant (8.314 J/mol·K), T denotes the absolute temperature in Kelvins, and K is the adsorption constant.

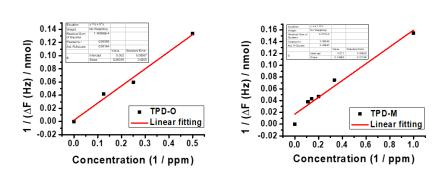


Figure S5. Langmuir linear fitting data of receptors.

	$\triangle F_{max}$	K	∆G°	R ²
ТРТ-М	5.31 * 10 ³	1.42 * 10 ⁻²	2.47 * 10 ³	0.998745
TPT-O	4.03 * 10 ²	3.23 * 10 ⁻³	1.42 * 10 ⁴	0.92974
TPT-S	5.95 * 10 ⁰	4.71 * 10 ⁻²	7.58 * 10 ³	0.87998
TPD-O	5.00 * 10 ²	7.70 * 10 ⁻³	1.21 * 10 ⁴	0.98164
TPD-M	5.88 * 10 ¹	1.19 * 10 ⁻¹	5.25 * 10 ³	0.95653
EP-S	N/A	N/A	N/A	N/A
EP-F2	N/A	N/A	N/A	N/A
EP-F1	N/A	N/A	N/A	N/A
EP-M	N/A	N/A	N/A	N/A
EP-O	N/A	N/A	N/A	N/A

Table S1. Langmuir isotherm fitting data of TPT-M receptor.