Supporting Information

Bio-inspired interfacial chemistry for the fabrication of a robust and functional graphene oxide composite film

Yoo-Bin Kwon,^a Seongwon Cho,^b Dal-Hee Min,^a* and Young-Kwan Kim^b*

^aDepartment of Chemistry, Seoul National University, Seoul 08826, Republic of Korea

^bDepartment of Chemistry, Dongguk University, 30 Pildong-ro, Jung-gu, Seoul, 04620, Republic of

Korea

* To whom correspondence should be addressed.

Prof. Dal-Hee Min, E-mail: dalheemin@snu.ac.kr

Prof. Young-Kwan Kim, E-mail: kimyk@dongguk.edu

Supporting figures

Fig. S1 (a) SEM image and (b) lateral size distribution of GO.

Fig. S2 N 1s XPS spectra of (a) GO, (b) PEI-GO, (c) PG@PEI-GO (wet), and (d) PG@PEI-GO (dry) films and (e) composition of N-C and N=C in those films.

Fig. S3 (a) Cross-sectional SEM images, (b) XRD pattern, (c) C 1s XPS spectra of PG@GO (wet) film, and (d) composition C-C/C=C, C-O, C=O, and O-C=O bonds in PG@GO (wet) film. PG@GO films were fabricated by wet method as a control group. The cross-sectional SEM image of PG@GO (wet) film showed that they were successfully assembled into the nacre-liked films. The XRD and XPS analysis was further performed on PG@GO (wet) films to elucidate their assembled and chemical structures. In their XRD pattern, the (001) diffraction peak of PG@GO (wet) films shifted from $2\theta = 10.36^{\circ}$ to 10.08° corresponding to d-spacing of 8.53 Å to 8.76 Å. The shift of (001) diffraction peak was due to the intercalated PG in the interlayer of GO films, leading to the enlarged d-spacing between GO sheets. Then, a new band was observed at $2\theta = 26^{\circ}$ corresponding to d-spacing of 3.42 Å, which originated from the reduced interlayer distance of GO sheets due to the deoxygenation of GO by intrinsic reducing property of PG. In C 1s XPS analysis, PG@GO (wet) films showed typical peaks at 283.7 eV from C-C and C=C bonds (60.8%), 285.8 eV from C-O bonds (28.6%), 287.2 eV from C=O bonds (7.6%), and 288.2 eV from O-C=O bonds (3%). As a result of PG introduction, the composition of oxygen containing bonds decreased, implying the GO was reduced by PG, and it was well-matched with the results of XRD analysis.

Fig. S4 SEM image of tensile-fractured films of PG@GO (wet) film.

Fig. S5 (a) UV-vis spectrum and (b) diameter histogram of AgNPs. The AgNPs exhibited a typical localized surface plasmon resonance (LSPR) band at around 390 nm and have spherical shape with an average diameter of 11.8 ± 2.6 nm.

Fig. S6 (a) zeta-potential values and (b) UV-vis spectra of GO, PEI-GO, AgNP, PG@PEI-GO, and AgNP/PG@PEI-GO. The absorbance of PEI-GO in UV region increased after reaction with PG, indicating the increase of aromatic structure through formation of a polyphenol-like structures on its surface through Schiff-base reaction. The synthesized AgNPs has a typical localized surface plasmon resonance (LSPR) band at 390 nm. After incubation of PG@PEI-GO with AgNPs, the resulting AgNP/PG@PEI-GO showed analogous UV-Vis spectrum to PG@PEI-GO except a broad absorption band at around 425 nm which was derived from the slight aggregation and dielectric constant change of AgNPs on the surface of PG@PEI-GO. This result clearly indicated that AgNPs were successfully immobilized on the surface of PG@PEI-GO.

Fig. S7 SEM images of AgNP/PG@PEI-GO (wet) film after 5 cycles of catalytic reaction with different magnifications.

Fig. S8 UV-vis spectra of the catalytic reaction solution using (a) 0.5 and (b) 2 M NaBH₄ solutions with AgNP/PG@PEI-GO (wet) film as a function of reaction time. Kinetic analysis of the catalytic reaction using (c) 0.5 and (d) 2 M NaBH₄ solutions. (e) Rate constant of catalytic reaction as a function of NaBH₄ concentrations.

Fig. S9 UV-vis spectra of the catalytic reaction solution with (a) PG@PEI-GO (wet) film and (b) AgNP colloidal solution as a function of reaction time. (c) Kinetic analysis of the catalytic reaction using AgNP colloidal solution.

No.	Catalytic materials	Structures	k_{cat} (min ⁻¹)	References
1	AuNP/GO/CNT	film	0.0402	1
2	AuNP/activated carbon	membrane	0.0296	2
3	AuNP/CNT	membrane	0.277	3
4	AuNC/CNT	membrane	0.2	4
5	PdNP/PAA/PVA/CNT	film	0.43	5
6	AgNP/nanocellulose	membrane	0.195	6
7	AgNP/PVA/RGO	film	0.048	7
8	PtNP/CNF-PEI	aerogel	0.12	8
9	AuNP/CNT	fiber	0.105	9
10	AgNP/g-C ₃ N ₄ /PE	fabric	0.462	10
11	AgNP/GO/P4VP/PAA	hydrogel	0.977	11
12	AgNP/PG@PEI-GO	film	0.11286 (1 M NaBH4) 0.20487 (2 M NaBH4)	This work

Table S1. Comparison of the rate constant with other reported catalysts using noble metal catalysts supported on structural materials.

References

- F. Yang, C. Wang, L. Wang, C. Liu, A. Feng, X. Liu, C. Chi, X. Jia, L. Zhang and Y. Li, *RSC Adv.*, 2015, 5, 37710–37715.
- (2) S. Bolisetty and R. Mezzenga, Nat. Nanotechnol., 2016, 11, 365–371.
- (3) Q. Zhang, X. Fan, H. Wang, S. Chen and X. Quan, *RSC Adv.*, 2016, 6, 41114–41121.
- Y. Liu, Y. Zheng, B. Du, R. R. Nasaruddin, T. Chen and J. Xie, *Ind. Eng. Chem. Res.*, 2017, 56, 2999–3007.
- (5) R. Wang, Q. Liu, T. Jiao, J. Li, Y. Rao, J. Su, Z. Bai and Q. Peng, ACS Omega, 2019, 4, 8480– 8486.
- (6) T. K. Das, S. Remanan, S. Ghosh and N. C. Das, J. Environ. Chem. Eng., 2021, 9, 104596
- K. Sharma, S. Majhi, M. Ali, R. Singh, C. Shekhar Pati Tripathi and D. Guin, *ChemistrySelect*, 2021, 6, 6071–6076.
- (8) H. Yu, S. Oh, Y. Han, S. Lee, H. S. Jeong and H. J. Hong, Chemosphere, 2021, 285, 131448
- (9) Y. K. Kim, Y. J. Kim, J. Park, S. W. Han and S. M. Kim, *Carbon*, 2021, **173**, 376–383.
- (10) A. Amedlous, M. Majdoub, Z. Anfar and E. Amaterz, Catalysts, 2021, 11, 1533
- L. Zhang, L. Sun, T. Su, T. Chen, L. Hu, F. He and H. Xu, Colloids Surfaces A Physicochem. Eng. Asp., 2022, 640, 128410