Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2024

Supplementary information for:

### C(sp<sup>3</sup>)-H Cyclizations of 2-(2-Vinyl)phenoxy-tert-anilines

Petra Dunkel,<sup>\*,a</sup> Dóra Bogdán,<sup>a</sup> Ruth Deme,<sup>a</sup> Ádám Zimber,<sup>a</sup> Veronika Ballayová,<sup>a,b</sup> Eszter Csizmadia,<sup>a</sup> Bence Kontra,<sup>a,c</sup> Eszter Kalydi,<sup>a</sup> Attila Bényei,<sup>d</sup> Péter Mátyus,<sup>a,e</sup> Zoltán Mucsi,<sup>\*,c,f,g</sup>

<sup>a</sup>Department of Organic Chemistry, Semmelweis University, Hőgyes Endre utca 7, H-1092 Budapest, Hungary, E-mail: dunkel.petra@semmelweis.hu

<sup>b</sup>Department of Chemical Drugs, Masaryk University, Palackého 1946/1, 612 00 Brno, Czech Republic

<sup>c</sup>Brain Vision Center, Department of Biological Chemistry, Liliom utca 43-45, H-1094 Budapest, Hungary

<sup>d</sup>Institute of Physical Chemistry, University of Debrecen, Egyetem tér 1, H-4010 Debrecen, Hungary

<sup>e</sup>University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary

<sup>f</sup>Department of Chemistry, Femtonics Ltd., Tűzoltó utca 59, H-1094 Budapest, Hungary, E-mail: zmucsi@femtonics.eu

<sup>g</sup>Institute of Chemistry, University of Miskolc, Egyetem út 1, H-3515 Miskolc, Hungary

### **Table of contents**

| MW-assisted isomerization of 14b – optimization studies      | 2  |
|--------------------------------------------------------------|----|
| Chiral HPLC chromatogram of 10b and 10d                      | 4  |
| Copies of the <sup>1</sup> H and <sup>13</sup> C NMR spectra | 5  |
| Crystallographic Data                                        | 38 |
| Cyclizations with LC-MS monitoring                           | 50 |
| Representative reaction monitoring data (LC-MS)              | 53 |
| Cyclization studies with photoirradiation                    | 56 |
| LC-MS monitoring of the photoirradiation experiments         | 58 |
| Cyclization studies on 35                                    | 61 |
| Cyclization studies on 38a,b                                 | 62 |
| Theoretical methods                                          | 63 |

### MW-assisted isomerization – optimization studies

### 1) Solvent screen

5 mg **14b** was dissolved in 0.5 mL solvent in a 10 mL MW vial. The solution was heated in a MW reactor for the indicated time points. At each time point 0.1 mL sample was taken, the solvent was distilled off and the residue was dissolved in 0.5 mL DMSO- $d_6$  for recording the <sup>1</sup>H NMR.

### 2) Concentration screen

5 or 50 mg **14b** was dissolved in 0.5 mL DMSO- $d_6$  in a 10 mL MW vial. The solution was heated in a MW reactor for the indicated time points. At each time point <sup>1</sup>H NMR was recorded.



**Figure S1.** <sup>1</sup>H NMR monitoring of the cyclization in toluene.



Figure S2. <sup>1</sup>H NMR monitoring of the cyclization in *n*-BuOH.



Figure S3. <sup>1</sup>H NMR monitoring of the cyclization in DMSO-d<sub>6</sub> (5 mg/0.5 mL).



**Figure S4.** <sup>1</sup>H NMR monitoring of the cyclization in DMSO-d<sub>6</sub> (50 mg/0.5 mL).

DETECTION: UV 260 nm COLUMN: Chiralcel AD 10 um 25 x 0.46 ELUENT: n-Hexane / Etanol 90 : 10

| Time<br>[Min] | Quantity<br>[% Area] | Height<br>[mV] | Area<br>[mV Min] | Area %<br>[%] |
|---------------|----------------------|----------------|------------------|---------------|
| 7.135         | 50.34                | 119.9          | 24.8             | 50,339        |
| 8.638         | 49.66                | 103.2          | 24.5             | 49.661        |



Figure S5. Chiral HPLC chromatogram of 15b (upper chromatogram) and 15d (lower chromatogram).

### Copies of the <sup>1</sup>H and <sup>13</sup>C NMR spectra



<sup>1</sup>H and <sup>13</sup>C NMR spectrum of **22a** 



<sup>1</sup>H and <sup>13</sup>C NMR spectrum of **22b** 



<sup>1</sup>H and <sup>13</sup>C NMR spectrum of **22c** 



<sup>1</sup>H and <sup>13</sup>C NMR spectrum of **14a** 



<sup>1</sup>H and <sup>13</sup>C NMR spectrum of **14b** 



 $^1\text{H}$  and  $^{13}\text{C}$  NMR spectrum of 14c



 $^1\text{H}$  and  $^{13}\text{C}$  NMR spectrum of 14d



<sup>1</sup>H and <sup>13</sup>C NMR spectrum of **14e** 



<sup>1</sup>H and <sup>13</sup>C NMR spectrum of **14f** 



 $^1\text{H}$  and  $^{13}\text{C}$  NMR spectrum of 14g



 $^1\text{H}$  and  $^{13}\text{C}$  NMR spectrum of 14h



<sup>1</sup>H and <sup>13</sup>C NMR spectrum of **14i** 



 $^1\text{H}$  and  $^{13}\text{C}$  NMR spectrum of 15a



<sup>1</sup>H and <sup>13</sup>C NMR spectrum of **15b** 



<sup>1</sup>H and <sup>13</sup>C NMR spectrum of **15d** 



<sup>1</sup>H and <sup>13</sup>C NMR spectrum of **30a** 







<sup>1</sup>H and <sup>13</sup>C NMR spectrum of **30c** 



 $^1\text{H}$  and  $^{13}\text{C}$  NMR spectrum of 31a



<sup>1</sup>H and <sup>13</sup>C NMR spectrum of **31b** 



 $^1\text{H}$  and  $^{13}\text{C}$  NMR spectrum of 31c



<sup>1</sup>H and <sup>13</sup>C NMR spectrum of **31d** 



<sup>1</sup>H and <sup>13</sup>C NMR spectrum of **31e** 



<sup>1</sup>H and <sup>13</sup>C NMR spectrum of **31f** 



<sup>1</sup>H and <sup>13</sup>C NMR spectrum of **32a** 



<sup>1</sup>H and <sup>13</sup>C NMR spectrum of **32c** 



<sup>1</sup>H and <sup>13</sup>C NMR spectrum of **32d** 



<sup>1</sup>H and <sup>13</sup>C NMR spectrum of **32e** 



<sup>1</sup>H and <sup>13</sup>C NMR spectrum of **32f** 



 $^1\text{H}$  and  $^{13}\text{C}$  NMR spectrum of 23



<sup>1</sup>H and <sup>13</sup>C NMR spectrum of **24** 



 $^1\text{H}$  and  $^{13}\text{C}$  NMR spectrum of 33



<sup>1</sup>H and <sup>13</sup>C NMR spectrum of **34** 

### **Crystallographic Data**

For both structures, data collection: *CAD-4 EXPRESS* (Enraf Nonius, 1992); cell refinement: *CAD-4 EXPRESS* (Enraf Nonius, 1992); data reduction: PROFIT (Streltsov & Zavodnik, 1989); program(s) used to solve structure: *SIR92* (Giacovazzo *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* publication routines (Farrugia, 1999). Crystal data, data collection and structure refinement details are summarized in Table S1. Geometric parameters are summarized in Tables S2 and S3 for **14c** and **15a**, respectively. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F<sup>2</sup> against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F<sup>2</sup>, conventional R-factors R are based on F, with F set to zero for negative F<sup>2</sup>. The threshold expression of F<sup>2</sup> >  $2\sigma(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F<sup>2</sup> are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.



Figure S6 ORTEP view of 14c at 50% probability level with numbering scheme.



Figure S7 ORTEP view of 15a at 50% probability level with numbering scheme.

|  | Table S1 | Experimental | details | of X-ray | diffraction | studies |
|--|----------|--------------|---------|----------|-------------|---------|
|--|----------|--------------|---------|----------|-------------|---------|

|                              | 15a                                              |                                                                                                                                                                                                                  |  |  |  |  |  |
|------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Crystal data                 |                                                  |                                                                                                                                                                                                                  |  |  |  |  |  |
| Chemical formula             | C <sub>21</sub> H <sub>19</sub> N <sub>3</sub> O | C <sub>18</sub> H <sub>15</sub> N <sub>3</sub> O                                                                                                                                                                 |  |  |  |  |  |
| <i>M</i> <sub>r</sub>        | 329.39                                           | 289.33                                                                                                                                                                                                           |  |  |  |  |  |
| Crystal system, space group  | Monoclinic, C2/c                                 | Orthorhombic, P2 <sub>1</sub> 2 <sub>1</sub> 2 <sub>1</sub>                                                                                                                                                      |  |  |  |  |  |
| Temperature (K)              | 293                                              | 293                                                                                                                                                                                                              |  |  |  |  |  |
| a, b, c (Å)                  | 27.317 (5), 8.519 (5), 19.641 (5)                | 8.745 (1), 9.836 (1), 17.535 (1)                                                                                                                                                                                 |  |  |  |  |  |
| α, β, γ (°)                  | 90.000 (5), 127.830 (5), 90.000 (5)              | 90, 90, 90                                                                                                                                                                                                       |  |  |  |  |  |
| V (Å <sup>3</sup> ) 3610 (2) |                                                  | 1508.3 (2)                                                                                                                                                                                                       |  |  |  |  |  |
| Z                            | 8                                                | 4                                                                                                                                                                                                                |  |  |  |  |  |
| Radiation type               | Μο Κα                                            | Μο Κα                                                                                                                                                                                                            |  |  |  |  |  |
| μ (mm <sup>-1</sup> )        | 0.08                                             | 0.08                                                                                                                                                                                                             |  |  |  |  |  |
| Crystal size (mm)            | 0.35 × 0.25 × 0.2                                | 0.66 × 0.3 × 0.25                                                                                                                                                                                                |  |  |  |  |  |
|                              |                                                  |                                                                                                                                                                                                                  |  |  |  |  |  |
|                              | Data collection                                  |                                                                                                                                                                                                                  |  |  |  |  |  |
| Diffractometer               | Enraf Nonius                                     | s CAD4                                                                                                                                                                                                           |  |  |  |  |  |
| Absorption correction        | _                                                | Ψ scan<br>North A.C.T., Phillips D.C. &<br>Mathews F.S. (1968) Acta. Cryst.<br>A24, 351 Number of Ψ scan sets<br>used was 2 Theta correction was<br>applied. Averaged transmission<br>function was used. Fourier |  |  |  |  |  |

|                                                                            |                                                                                                      | smoothing - Window value 5                                                                        |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| T <sub>min</sub> , T <sub>max</sub>                                        | _                                                                                                    | 0.856, 0.946                                                                                      |
| No. of measured, independent<br>and<br>observed [I > 2σ(I)] reflections    | 3725, 3725, 1955                                                                                     | 1767, 1710, 1401                                                                                  |
| R <sub>int</sub>                                                           | n.a.                                                                                                 | 0.024                                                                                             |
| (sin Θ/λ) <sub>max</sub> (Å <sup>-1</sup> )                                | 0.606                                                                                                | 0.616                                                                                             |
|                                                                            |                                                                                                      |                                                                                                   |
|                                                                            | Refinement                                                                                           |                                                                                                   |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                        | 0.073, 0.191, 1.06                                                                                   | 0.056, 0.140, 1.10                                                                                |
| No. of reflections                                                         | 3725                                                                                                 | 1710                                                                                              |
| No. of parameters                                                          | 226                                                                                                  | 200                                                                                               |
| H-atom treatment                                                           | H-atom parameters                                                                                    | s constrained                                                                                     |
|                                                                            | $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0586P)^{2} + 19.9399P]$<br>where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ | $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0585P)^{2} + 0.3772P]$<br>where P = (F_{o}^{2} + 2F_{c}^{2})/3 |
| $\Delta$ > <sub>max</sub> , $\Delta$ > <sub>min</sub> (e Å <sup>-3</sup> ) | 0.27, -0.35                                                                                          | 0.20, -0.21                                                                                       |
| Absolute structure                                                         | _                                                                                                    | Flack H D (1983), Acta Cryst. A39,<br>876-881                                                     |
| Absolute structure parameter                                               | _                                                                                                    | -3 (4)                                                                                            |

Computer programs: CAD-4 EXPRESS (Enraf Nonius, 1992), PROFIT (Streltsov & Zavodnik, 1989), SIR92 (Giacovazzo et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).

## References

CAD-4 Software: Enraf-Nonius (1989). CAD-4 Software (or CAD-4 EXPRESS). Enraf-Nonius, Delft, The Netherlands.

Cambridge Structural Database: Allen, F. R. (2002). Acta Cryst. B58, 380–388.

COLLECT: Nonius [or Hooft, R. W. W.] (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Mercury: Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.

ORTEPIII: Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

PLATON: Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.

publCIF: Westrip, S. P. (2008). publCIF. In preparation.

SHELX Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

SIR92: Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

WinGX: Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

XCAD4: Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.

Document origin: publCIF [Westrip, S. P. (2010). J. Apply. Cryst., 43, 920-925].

 Table S2. X-ray experimental details and geometric parameters for 14c.

## Crystal data

| C <sub>21</sub> H <sub>19</sub> N <sub>3</sub> O | F(000) = 1392                                 |
|--------------------------------------------------|-----------------------------------------------|
| $M_r = 329.39$                                   | $D_{\rm x} = 1.212 {\rm ~Mg} {\rm ~m}^{-3}$   |
| Monoclinic, C2/c                                 | Mo $K\alpha$ radiation, $\lambda = 0.71069$ Å |
| Hall symbol: -C 2yc                              | Cell parameters from 25 reflections           |
| a = 27.317 (5)  Å                                | $\theta = 4.7 - 11.5^{\circ}$                 |
| b = 8.519 (5)  Å                                 | $\mu = 0.08 \text{ mm}^{-1}$                  |
| c = 19.641 (5)  Å                                | <i>T</i> = 293 K                              |
| $\beta = 127.830 \ (5)^{\circ}$                  | Prism, colourless                             |
| $V = 3610 (2) Å^3$                               | $0.35 \times 0.25 \times 0.2$ mm              |
| Z = 8                                            |                                               |

## Data collection

| Enraf Nonius CAD4<br>diffractometer      | $\theta_{max} = 25.5^{\circ},  \theta_{min} = 2.6^{\circ}$ |
|------------------------------------------|------------------------------------------------------------|
| Radiation source: fine-focus sealed tube | $h = -6 \rightarrow 33$                                    |
| Graphite monochromator                   | $k = -4 \rightarrow 10$                                    |
| profiled $\omega/2\theta$ scans          | $l = -23 \rightarrow 18$                                   |
| 3725 measured reflections                | 4 standard reflections every 102 reflections               |
| 3725 independent reflections             | intensity decay: 4%                                        |
| 1955 reflections with $I > 2\sigma(I)$   |                                                            |

## Refinement

| Refinement on F <sup>2</sup>    | Primary atom site location: structure-invariant direct methods                       |
|---------------------------------|--------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Secondary atom site location: difference Fourier map                                 |
| $R[F^2 > 2\sigma(F^2)] = 0.073$ | Hydrogen site location: inferred from<br>neighbouring sites                          |
| $wR(F^2) = 0.191$               | H-atom parameters constrained                                                        |
| <i>S</i> = 1.06                 | $w = 1/[\sigma^2(F_o^2) + (0.0586P)^2 + 19.9399P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| 3725 reflections                | $(\Delta/\sigma)_{\rm max} < 0.001$                                                  |
| 226 parameters                  | $\Delta \Box_{\rm max} = 0.27 \text{ e } \text{\AA}^{-3}$                            |
| 0 restraints                    | $\Delta \Box_{\min} = -0.35 \text{ e } \text{\AA}^{-3}$                              |

## Special details

*Geometry*. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the

estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

*Refinement*. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2\sigma(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$  for (**14c**)

|      | x          | y           | Z           | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|------|------------|-------------|-------------|-------------------------------|
| C1   | 0.4624 (4) | 0.3095 (8)  | -0.5300 (4) | 0.077 (2)                     |
| C2   | 0.4442 (4) | 0.0593 (9)  | -0.4920 (4) | 0.072 (2)                     |
| C3   | 0.4778 (3) | 0.1998 (7)  | -0.4631 (4) | 0.0616 (17)                   |
| C4   | 0.5235 (3) | 0.2395 (7)  | -0.3806 (4) | 0.0620 (17)                   |
| H4   | 0.5403     | 0.3393      | -0.3713     | 0.074*                        |
| C5   | 0.5493 (3) | 0.1421 (7)  | -0.3046 (4) | 0.0570 (16)                   |
| C6   | 0.5509 (4) | -0.0212 (8) | -0.3071 (4) | 0.082 (2)                     |
| H6   | 0.5341     | -0.0714     | -0.3592     | 0.099*                        |
| C7   | 0.5774 (4) | -0.1102 (8) | -0.2329 (5) | 0.100 (3)                     |
| H7   | 0.5779     | -0.2191     | -0.2352     | 0.12*                         |
| C8   | 0.6030 (4) | -0.0338 (8) | -0.1556 (4) | 0.088 (3)                     |
| H8   | 0.6215     | -0.0926     | -0.1055     | 0.106*                        |
| С9   | 0.6018 (3) | 0.1253 (8)  | -0.1513 (4) | 0.0634 (17)                   |
| Н9   | 0.618      | 0.1744      | -0.0991     | 0.076*                        |
| C10  | 0.5765 (3) | 0.2130 (7)  | -0.2245 (4) | 0.0544 (15)                   |
| C11  | 0.6083 (3) | 0.4527 (7)  | -0.1473 (4) | 0.0536 (15)                   |
| C12  | 0.5787 (3) | 0.5188 (7)  | -0.1161 (4) | 0.0694 (18)                   |
| H12  | 0.536      | 0.5101      | -0.1474     | 0.083*                        |
| C13  | 0.6137 (4) | 0.5971 (8)  | -0.0382 (5) | 0.077 (2)                     |
| H13  | 0.5948     | 0.6406      | -0.0162     | 0.093*                        |
| C14  | 0.6751 (4) | 0.6099 (8)  | 0.0056 (4)  | 0.079 (2)                     |
| H14  | 0.6985     | 0.6608      | 0.0587      | 0.094*                        |
| C15  | 0.7048 (3) | 0.5498 (8)  | -0.0259 (4) | 0.076 (2)                     |
| H15  | 0.7473     | 0.563       | 0.0048      | 0.091*                        |
| C16  | 0.6698 (3) | 0.4682 (7)  | -0.1049 (4) | 0.0596 (16)                   |
| C17  | 0.6790 (3) | 0.4867 (7)  | -0.2195 (4) | 0.072 (2)                     |
| H17A | 0.6994     | 0.5881      | -0.2036     | 0.087*                        |
| H17B | 0.6346     | 0.5038      | -0.2579     | 0.087*                        |
| C18  | 0.6980 (4) | 0.3892 (10) | -0.2650 (5) | 0.098 (3)                     |
| H18A | 0.6741     | 0.2927      | -0.2859     | 0.117*                        |

| H18B | 0.6882       | 0.4471      | -0.3145     | 0.117*      |
|------|--------------|-------------|-------------|-------------|
| C19  | 0.7646 (4)   | 0.3502 (11) | -0.2083 (6) | 0.111 (3)   |
| H19A | 0.7889       | 0.4452      | -0.1931     | 0.133*      |
| H19B | 0.7738       | 0.2807      | -0.2383     | 0.133*      |
| C20  | 0.7815 (4)   | 0.2707 (10) | -0.1273 (6) | 0.109 (3)   |
| H20A | 0.7608       | 0.1699      | -0.142      | 0.131*      |
| H20B | 0.8259       | 0.2525      | -0.0879     | 0.131*      |
| C21  | 0.7625 (3)   | 0.3721 (9)  | -0.0840 (4) | 0.083 (2)   |
| H21A | 0.7732       | 0.3196      | -0.0327     | 0.099*      |
| H21B | 0.7849       | 0.4707      | -0.0666     | 0.099*      |
| N1   | 0.4480 (4)   | 0.3873 (8)  | -0.5854 (4) | 0.109 (2)   |
| N2   | 0.4149 (3)   | -0.0502 (8) | -0.5195 (4) | 0.096 (2)   |
| N3   | 0.6969 (2)   | 0.4024 (6)  | -0.1416 (3) | 0.0614 (14) |
| 01   | 0.57169 (19) | 0.3746 (4)  | -0.2261 (2) | 0.0585 (11) |

# Atomic displacement parameters (Å<sup>2</sup>) for (**14c**)

|     | $U^{11}$  | U <sup>22</sup> | U <sup>33</sup> | $U^{12}$   | $U^{13}$  | U <sup>23</sup> |
|-----|-----------|-----------------|-----------------|------------|-----------|-----------------|
| C1  | 0.110 (6) | 0.047 (4)       | 0.056 (4)       | -0.003 (4) | 0.042 (4) | -0.012 (3)      |
| C2  | 0.103 (6) | 0.055 (4)       | 0.073 (5)       | -0.001 (4) | 0.061 (5) | 0.001 (4)       |
| C3  | 0.091 (5) | 0.051 (4)       | 0.056 (4)       | 0.007 (4)  | 0.051 (4) | 0.008 (3)       |
| C4  | 0.092 (5) | 0.049 (4)       | 0.064 (4)       | 0.009 (3)  | 0.057 (4) | 0.009 (3)       |
| C5  | 0.076 (4) | 0.042 (3)       | 0.052 (3)       | 0.004 (3)  | 0.039 (3) | 0.004 (3)       |
| C6  | 0.122 (6) | 0.061 (4)       | 0.067 (4)       | 0.009 (4)  | 0.060 (5) | 0.000 (4)       |
| C7  | 0.149 (8) | 0.052 (4)       | 0.069 (5)       | 0.020 (5)  | 0.051 (5) | 0.020 (4)       |
| C8  | 0.123 (7) | 0.060 (4)       | 0.060 (4)       | 0.001 (4)  | 0.045 (5) | 0.026 (4)       |
| С9  | 0.076 (5) | 0.056 (4)       | 0.053 (4)       | 0.005 (3)  | 0.037 (4) | 0.008 (3)       |
| C10 | 0.061 (4) | 0.047 (3)       | 0.060 (4)       | 0.008 (3)  | 0.039 (3) | 0.009 (3)       |
| C11 | 0.056 (4) | 0.049 (3)       | 0.052 (3)       | 0.008 (3)  | 0.032 (3) | 0.011 (3)       |
| C12 | 0.092 (5) | 0.055 (4)       | 0.084 (5)       | 0.006 (4)  | 0.065 (4) | 0.010 (4)       |
| C13 | 0.120 (7) | 0.065 (5)       | 0.078 (5)       | 0.004 (5)  | 0.076 (5) | 0.005 (4)       |
| C14 | 0.123 (7) | 0.054 (4)       | 0.061 (4)       | -0.012 (5) | 0.058 (5) | -0.006 (3)      |
| C15 | 0.092 (5) | 0.065 (4)       | 0.064 (4)       | -0.004 (4) | 0.044 (4) | 0.011 (4)       |
| C16 | 0.081 (5) | 0.050 (4)       | 0.054 (4)       | 0.011 (3)  | 0.045 (4) | 0.012 (3)       |
| C17 | 0.092 (5) | 0.073 (4)       | 0.073 (4)       | 0.017 (4)  | 0.061 (4) | 0.024 (4)       |
| C18 | 0.118 (7) | 0.118 (7)       | 0.087 (5)       | 0.018 (6)  | 0.078 (6) | 0.005 (5)       |
| C19 | 0.139 (8) | 0.107 (7)       | 0.141 (8)       | 0.032 (6)  | 0.114 (8) | 0.015 (6)       |
| C20 | 0.107 (7) | 0.090 (6)       | 0.151 (8)       | 0.034 (5)  | 0.090 (7) | 0.026 (6)       |
| C21 | 0.075 (5) | 0.090 (5)       | 0.081 (5)       | 0.013 (4)  | 0.047 (4) | 0.022 (4)       |
| N1  | 0.149 (7) | 0.082 (4)       | 0.069 (4)       | -0.003 (5) | 0.054 (4) | 0.020 (4)       |
| N2  | 0.132 (6) | 0.075 (4)       | 0.089 (5)       | -0.022 (4) | 0.071 (5) | -0.007 (4)      |

| N3 | 0.070 (4) | 0.060 (3) | 0.056 (3) | 0.010 (3) | 0.039 (3) | 0.013 (3)   |
|----|-----------|-----------|-----------|-----------|-----------|-------------|
| 01 | 0.070 (3) | 0.050 (2) | 0.048 (2) | 0.004 (2) | 0.032 (2) | 0.0023 (19) |

# Geometric parameters (Å, °) for (**14c**)

| C1—N1     | 1.119 (8) | C13—C14       | 1.342 (10) |
|-----------|-----------|---------------|------------|
| C1—C3     | 1.449 (8) | С13—Н13       | 0.93       |
| C2—N2     | 1.128 (8) | C14—C15       | 1.385 (10) |
| C2—C3     | 1.400 (9) | C14—H14       | 0.93       |
| C3—C4     | 1.347 (8) | C15—C16       | 1.410 (9)  |
| C4—C5     | 1.457 (8) | С15—Н15       | 0.93       |
| C4—H4     | 0.93      | C16—N3        | 1.425 (7)  |
| C5—C6     | 1.394 (8) | C17—N3        | 1.477 (7)  |
| C5—C10    | 1.398 (8) | C17—C18       | 1.525 (9)  |
| C6—C7     | 1.388 (9) | C17—H17A      | 0.97       |
| С6—Н6     | 0.93      | С17—Н17В      | 0.97       |
| С7—С8     | 1.384 (9) | C18—C19       | 1.474 (10) |
| С7—Н7     | 0.93      | C18—H18A      | 0.97       |
| С8—С9     | 1.360 (9) | C18—H18B      | 0.97       |
| С8—Н8     | 0.93      | C19—C20       | 1.517 (10) |
| C9—C10    | 1.373 (8) | С19—Н19А      | 0.97       |
| С9—Н9     | 0.93      | С19—Н19В      | 0.97       |
| C10—O1    | 1.382 (6) | C20—C21       | 1.509 (10) |
| C11—C16   | 1.348 (8) | С20—Н20А      | 0.97       |
| C11—O1    | 1.393 (7) | С20—Н20В      | 0.97       |
| C11—C12   | 1.400 (8) | C21—N3        | 1.440 (8)  |
| C12—C13   | 1.380 (9) | C21—H21A      | 0.97       |
| С12—Н12   | 0.93      | C21—H21B      | 0.97       |
|           |           |               |            |
| N1—C1—C3  | 175.6 (8) | С14—С15—Н15   | 120.4      |
| N2—C2—C3  | 176.3 (9) | С16—С15—Н15   | 120.4      |
| C4—C3—C2  | 126.6 (6) | C11—C16—C15   | 118.4 (6)  |
| C4—C3—C1  | 117.9 (6) | C11—C16—N3    | 119.0 (6)  |
| C2—C3—C1  | 115.5 (6) | C15—C16—N3    | 122.6 (6)  |
| C3—C4—C5  | 126.8 (6) | N3-C17-C18    | 109.1 (5)  |
| С3—С4—Н4  | 116.6     | N3—C17—H17A   | 109.9      |
| С5—С4—Н4  | 116.6     | С18—С17—Н17А  | 109.9      |
| C6—C5—C10 | 117.6 (6) | N3—C17—H17B   | 109.9      |
| C6—C5—C4  | 122.5 (6) | С18—С17—Н17В  | 109.9      |
| C10—C5—C4 | 119.7 (5) | H17A—C17—H17B | 108.3      |
| C7—C6—C5  | 121.0 (6) | C19—C18—C17   | 112.7 (6)  |

| С7—С6—Н6    | 119.5     | C19—C18—H18A  | 109.1     |
|-------------|-----------|---------------|-----------|
| С5—С6—Н6    | 119.5     | C17—C18—H18A  | 109.1     |
| C8—C7—C6    | 118.8 (6) | C19—C18—H18B  | 109.1     |
| С8—С7—Н7    | 120.6     | C17—C18—H18B  | 109.1     |
| С6—С7—Н7    | 120.6     | H18A—C18—H18B | 107.8     |
| C9—C8—C7    | 121.5 (6) | C18—C19—C20   | 109.5 (7) |
| С9—С8—Н8    | 119.3     | С18—С19—Н19А  | 109.8     |
| С7—С8—Н8    | 119.3     | С20—С19—Н19А  | 109.8     |
| C8—C9—C10   | 119.5 (6) | С18—С19—Н19В  | 109.8     |
| С8—С9—Н9    | 120.2     | С20—С19—Н19В  | 109.8     |
| С10—С9—Н9   | 120.2     | H19A—C19—H19B | 108.2     |
| C9—C10—O1   | 123.0 (5) | C21—C20—C19   | 110.3 (6) |
| C9—C10—C5   | 121.5 (5) | С21—С20—Н20А  | 109.6     |
| O1—C10—C5   | 115.3 (5) | С19—С20—Н20А  | 109.6     |
| C16—C11—O1  | 120.5 (5) | С21—С20—Н20В  | 109.6     |
| C16—C11—C12 | 121.8 (6) | С19—С20—Н20В  | 109.6     |
| O1—C11—C12  | 117.7 (6) | H20A—C20—H20B | 108.1     |
| C13—C12—C11 | 119.1 (7) | N3—C21—C20    | 110.7 (6) |
| С13—С12—Н12 | 120.4     | N3—C21—H21A   | 109.5     |
| С11—С12—Н12 | 120.4     | C20—C21—H21A  | 109.5     |
| C14—C13—C12 | 119.5 (7) | N3—C21—H21B   | 109.5     |
| С14—С13—Н13 | 120.2     | С20—С21—Н21В  | 109.5     |
| С12—С13—Н13 | 120.2     | H21A—C21—H21B | 108.1     |
| C13—C14—C15 | 122.0 (6) | C16—N3—C21    | 117.2 (5) |
| C13—C14—H14 | 119       | C16—N3—C17    | 112.9 (5) |
| C15—C14—H14 | 119       | C21—N3—C17    | 111.2 (5) |
| C14—C15—C16 | 119.1 (7) | C10-01-C11    | 117.2 (4) |

 Table S3. X-ray experimental details and geometric parameters for 15a.

## Crystal data

| C <sub>18</sub> H <sub>15</sub> N <sub>3</sub> O | F(000) = 608                                  |
|--------------------------------------------------|-----------------------------------------------|
| $M_r = 289.33$                                   | $D_{\rm x} = 1.274 {\rm ~Mg} {\rm ~m}^{-3}$   |
| Orthorhombic, $P2_12_12_1$                       | Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å |
| Hall symbol: P 2ac 2ab                           | Cell parameters from 25 reflections           |
| a = 8.745 (1)  Å                                 | $\theta = 9.5 - 18.4^{\circ}$                 |
| b = 9.836 (1)  Å                                 | $\mu = 0.08 \text{ mm}^{-1}$                  |
| c = 17.535(1) Å                                  | <i>T</i> = 293 K                              |
| V = 1508.3 (2) Å <sup>3</sup>                    | Prism, colourless                             |
| <i>Z</i> = 4                                     | $0.66 \times 0.3 \times 0.25 \text{ mm}$      |

### Data collection

| Enraf Nonius CAD4<br>diffractometer                                                                                                                                                                                                                                       | 1401 reflections with $I > 2\sigma(I)$                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Radiation source: fine-focus sealed tube                                                                                                                                                                                                                                  | $R_{\rm int} = 0.024$                                      |
| Graphite monochromator                                                                                                                                                                                                                                                    | $\theta_{max} = 26.0^{\circ},  \theta_{min} = 2.6^{\circ}$ |
| profiled $\omega/2\theta$ scans                                                                                                                                                                                                                                           | $h = -1 \rightarrow 10$                                    |
| Absorption correction: $\psi$ scan<br>North A.C.T., Phillips D.C. & Mathews F.S.<br>(1968) Acta. Cryst. A24, 351 Number of $\psi$<br>scan sets used was 2 Theta correction was<br>applied. Averaged transmission function was<br>used. Fourier smoothing - Window value 5 | $k = 0 \rightarrow 12$                                     |
| $T_{\min} = 0.856, T_{\max} = 0.946$                                                                                                                                                                                                                                      | $l = -8 \rightarrow 21$                                    |
| 1767 measured reflections                                                                                                                                                                                                                                                 | 3 standard reflections every 91 reflections                |
| 1710 independent reflections                                                                                                                                                                                                                                              | intensity decay: 6%                                        |

## Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier map                                |
|-------------------------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full                      | Hydrogen site location: inferred from neighbouring sites                            |
| $R[F^2 > 2\sigma(F^2)] = 0.056$                 | H-atom parameters constrained                                                       |
| $wR(F^2) = 0.140$                               | $w = 1/[\sigma^2(F_o^2) + (0.0585P)^2 + 0.3772P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| <i>S</i> = 1.10                                 | $(\Delta/\sigma)_{max} < 0.001$                                                     |
| 1710 reflections                                | $\Delta \Box_{\rm max} = 0.20$ e Å <sup>-3</sup>                                    |
| 200 parameters                                  | $\Delta \Box_{\min} = -0.21 \text{ e } \text{\AA}^{-3}$                             |
| 0 restraints                                    | Absolute structure: Flack H D (1983), Acta<br>Cryst. A39, 876-881                   |
| Primary atom site location: structure-invariant | Absolute structure parameter: -3 (4)                                                |

| direct methods |  |
|----------------|--|
|----------------|--|

## Special details

*Geometry*. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

*Refinement*. Refinement of F<sup>2</sup> against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F<sup>2</sup>, conventional R-factors R are based on F, with F set to zero for negative F<sup>2</sup>. The threshold expression of  $F^2 > 2\sigma(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F<sup>2</sup> are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$  for (**15a**)

|      | x          | У           | Z            | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|------|------------|-------------|--------------|-------------------------------|
| C1   | 0.8214 (5) | 0.2694 (5)  | 0.3534 (2)   | 0.0615 (12)                   |
| C2   | 0.9261 (5) | 0.1662 (4)  | 0.2429 (2)   | 0.0544 (10)                   |
| C3   | 0.7825 (4) | 0.2152 (4)  | 0.2769 (2)   | 0.0458 (9)                    |
| C4   | 0.6751 (4) | 0.0906 (4)  | 0.2888 (2)   | 0.0474 (9)                    |
| H4A  | 0.7191     | 0.0325      | 0.3277       | 0.057*                        |
| H4B  | 0.5774     | 0.123       | 0.3077       | 0.057*                        |
| C5   | 0.6478 (4) | 0.0079 (4)  | 0.2192 (2)   | 0.0438 (9)                    |
| C6   | 0.5401 (4) | 0.0496 (3)  | 0.1659 (2)   | 0.0427 (8)                    |
| C7   | 0.4483 (4) | 0.2624 (4)  | 0.12592 (18) | 0.0413 (8)                    |
| C8   | 0.5766 (4) | 0.3406 (4)  | 0.10805 (18) | 0.0409 (8)                    |
| С9   | 0.7104 (4) | 0.3353 (4)  | 0.23006 (18) | 0.0437 (8)                    |
| Н9А  | 0.6043     | 0.3455      | 0.2451       | 0.052*                        |
| Н9В  | 0.7632     | 0.4187      | 0.2434       | 0.052*                        |
| C10  | 0.8526 (5) | 0.3816 (5)  | 0.1139 (2)   | 0.0585 (11)                   |
| H10A | 0.8637     | 0.352       | 0.062        | 0.088*                        |
| H10B | 0.9416     | 0.3559      | 0.1425       | 0.088*                        |
| H10C | 0.8415     | 0.4787      | 0.1151       | 0.088*                        |
| C11  | 0.7241 (5) | -0.1121 (4) | 0.2053 (3)   | 0.0616 (11)                   |
| H11  | 0.7959     | -0.1426     | 0.2405       | 0.074*                        |
| C12  | 0.6969 (6) | -0.1872 (5) | 0.1413 (3)   | 0.0751 (15)                   |
| H12  | 0.751      | -0.2672     | 0.133        | 0.09*                         |
| C13  | 0.5892 (7) | -0.1447 (5) | 0.0888 (3)   | 0.0717 (15)                   |
| H13  | 0.5704     | -0.1962     | 0.0453       | 0.086*                        |
| C14  | 0.5095 (5) | -0.0252 (4) | 0.1011 (2)   | 0.0566 (11)                   |
| H14  | 0.4364     | 0.0042      | 0.0663       | 0.068*                        |

| C15 | 0.3095 (5) | 0.2800 (4) | 0.0890 (2)   | 0.0532 (10) |
|-----|------------|------------|--------------|-------------|
| H15 | 0.2254     | 0.2275     | 0.1026       | 0.064*      |
| C16 | 0.2970 (5) | 0.3756 (5) | 0.0322 (2)   | 0.0623 (12) |
| H16 | 0.2038     | 0.3894     | 0.0078       | 0.075*      |
| C17 | 0.4226 (6) | 0.4506 (5) | 0.0115 (2)   | 0.0647 (12) |
| H17 | 0.4148     | 0.5126     | -0.0284      | 0.078*      |
| C18 | 0.5611 (5) | 0.4353 (4) | 0.0492 (2)   | 0.0516 (10) |
| H18 | 0.6443     | 0.4886     | 0.0352       | 0.062*      |
| N1  | 0.8454 (6) | 0.3102 (5) | 0.4121 (2)   | 0.0930 (15) |
| N2  | 1.0350 (5) | 0.1192 (4) | 0.2179 (3)   | 0.0802 (13) |
| N3  | 0.7169 (3) | 0.3180 (3) | 0.14753 (15) | 0.0408 (7)  |
| 01  | 0.4574 (3) | 0.1658 (2) | 0.18347 (12) | 0.0428 (6)  |

# Atomic displacement parameters $(Å^2)$ for (15a)

|     | $U^{11}$    | U <sup>22</sup> | U <sup>33</sup> | $U^{12}$     | U <sup>13</sup> | U <sup>23</sup> |
|-----|-------------|-----------------|-----------------|--------------|-----------------|-----------------|
| C1  | 0.064 (3)   | 0.067 (3)       | 0.054 (2)       | -0.007 (2)   | -0.015 (2)      | 0.009 (2)       |
| C2  | 0.045 (2)   | 0.047 (2)       | 0.071 (3)       | 0.0020 (19)  | -0.003 (2)      | 0.007 (2)       |
| C3  | 0.0375 (19) | 0.052 (2)       | 0.0484 (19)     | -0.0014 (18) | -0.0053 (17)    | 0.0013 (17)     |
| C4  | 0.046 (2)   | 0.048 (2)       | 0.0484 (19)     | -0.0026 (18) | 0.0002 (17)     | 0.0105 (17)     |
| C5  | 0.0411 (19) | 0.0399 (18)     | 0.051 (2)       | -0.0041 (16) | 0.0071 (17)     | 0.0123 (16)     |
| C6  | 0.0428 (19) | 0.0378 (17)     | 0.0476 (19)     | -0.0082 (17) | 0.0121 (17)     | 0.0017 (15)     |
| C7  | 0.0440 (19) | 0.0430 (19)     | 0.0370 (16)     | 0.0058 (17)  | -0.0023 (16)    | 0.0004 (15)     |
| C8  | 0.044 (2)   | 0.0435 (18)     | 0.0352 (17)     | 0.0060 (17)  | -0.0013 (16)    | -0.0006 (16)    |
| С9  | 0.043 (2)   | 0.0408 (17)     | 0.0470 (19)     | 0.0007 (17)  | -0.0030 (17)    | -0.0039 (16)    |
| C10 | 0.049 (2)   | 0.063 (2)       | 0.064 (3)       | -0.008 (2)   | 0.006 (2)       | 0.007 (2)       |
| C11 | 0.059 (3)   | 0.044 (2)       | 0.082 (3)       | 0.001 (2)    | 0.007 (2)       | 0.010 (2)       |
| C12 | 0.082 (4)   | 0.045 (2)       | 0.099 (4)       | 0.009 (3)    | 0.026 (3)       | -0.003 (3)      |
| C13 | 0.098 (4)   | 0.050 (2)       | 0.066 (3)       | -0.016 (3)   | 0.021 (3)       | -0.014 (2)      |
| C14 | 0.069 (3)   | 0.050 (2)       | 0.050 (2)       | -0.014 (2)   | 0.004 (2)       | 0.0024 (19)     |
| C15 | 0.045 (2)   | 0.060 (2)       | 0.054 (2)       | 0.004 (2)    | -0.0075 (18)    | -0.007 (2)      |
| C16 | 0.057 (3)   | 0.074 (3)       | 0.056 (2)       | 0.013 (3)    | -0.018 (2)      | -0.003 (2)      |
| C17 | 0.083 (3)   | 0.066 (3)       | 0.045 (2)       | 0.017 (3)    | -0.010 (2)      | 0.009 (2)       |
| C18 | 0.059 (2)   | 0.049 (2)       | 0.047 (2)       | 0.002 (2)    | 0.001 (2)       | 0.0090 (18)     |
| N1  | 0.115 (4)   | 0.104 (3)       | 0.060 (2)       | -0.015 (3)   | -0.032 (3)      | -0.003 (3)      |
| N2  | 0.048 (2)   | 0.070 (2)       | 0.122 (3)       | 0.009 (2)    | 0.012 (2)       | 0.009 (3)       |
| N3  | 0.0379 (16) | 0.0442 (16)     | 0.0401 (15)     | -0.0027 (14) | 0.0028 (13)     | 0.0026 (13)     |
| 01  | 0.0392 (12) | 0.0483 (13)     | 0.0409 (12)     | 0.0032 (12)  | 0.0040 (11)     | 0.0032 (11)     |

| C1—N1     | 1.124 (5) | C7—O1       | 1.388 (4) |
|-----------|-----------|-------------|-----------|
| C1—C3     | 1.483 (6) | С7—С8       | 1.396 (5) |
| C2—N2     | 1.146 (5) | C8—C18      | 1.397 (5) |
| C2—C3     | 1.471 (6) | C8—N3       | 1.426 (4) |
| C3—C4     | 1.558 (5) | C9—N3       | 1.458 (4) |
| С3—С9     | 1.571 (5) | C10—N3      | 1.466 (5) |
| C4—C5     | 1.486 (5) | C11—C12     | 1.365 (7) |
| C5—C11    | 1.377 (5) | C12—C13     | 1.381 (7) |
| C5—C6     | 1.389 (5) | C13—C14     | 1.383 (6) |
| C6—C14    | 1.379 (5) | C15—C16     | 1.375 (6) |
| C6—O1     | 1.387 (4) | C16—C17     | 1.372 (7) |
| C7—C15    | 1.387 (5) | C17—C18     | 1.388 (6) |
|           |           |             |           |
| N1—C1—C3  | 177.5 (5) | O1—C7—C8    | 119.6 (3) |
| N2—C2—C3  | 175.3 (4) | C7—C8—C18   | 117.1 (3) |
| C2—C3—C1  | 106.8 (3) | C7—C8—N3    | 119.8 (3) |
| C2—C3—C4  | 108.1 (3) | C18—C8—N3   | 123.1 (3) |
| C1—C3—C4  | 107.4 (3) | N3—C9—C3    | 114.6 (3) |
| С2—С3—С9  | 112.2 (3) | C12—C11—C5  | 121.6 (4) |
| C1—C3—C9  | 107.1 (3) | C11—C12—C13 | 120.2 (4) |
| C4—C3—C9  | 114.8 (3) | C12—C13—C14 | 119.7 (4) |
| C5—C4—C3  | 114.7 (3) | C6—C14—C13  | 119.0 (4) |
| C11—C5—C6 | 117.6 (4) | C16—C15—C7  | 119.6 (4) |
| C11—C5—C4 | 122.4 (4) | C17—C16—C15 | 119.7 (4) |
| C6—C5—C4  | 120.0 (3) | C16—C17—C18 | 120.9 (4) |
| C14—C6—O1 | 121.5 (4) | C17—C18—C8  | 120.6 (4) |
| C14—C6—C5 | 121.8 (4) | C8—N3—C9    | 115.5 (3) |
| O1—C6—C5  | 116.6 (3) | C8—N3—C10   | 115.8 (3) |
| C15—C7—O1 | 118.4 (3) | C9—N3—C10   | 112.4 (3) |
| C15—C7—C8 | 122.0 (3) | C6—O1—C7    | 115.6 (2) |

# Geometric parameters (Å, °) for (**15a**)

Document origin: publCIF [Westrip, S. P. (2010). J. Apply. Cryst., 43, 920-925].

### **Cyclizations with LC-MS monitoring**

1) 10 mg vinyl compound was dissolved in 1 mL DMSO and heated at the indicated temperature with conventional heating (16 h) or with microwave irradiation (15 or 30 min)

2) 10 mg vinyl compound was dissolved in 1 mL MeCN or 1 mL DMSO, 0.1 eq of the indicated catalyst was added and the mixture was heated at the indicated temperature with conventional heating (MeCN, 16 h) or with microwave irradiation (DMSO)

| Entry | Vinyl<br>compound | Solvent | Temp.             | Heating method | Reaction<br>time | Catalyst | Result                                          |
|-------|-------------------|---------|-------------------|----------------|------------------|----------|-------------------------------------------------|
| 1     | •                 | DMSO    | 50 <sup>°</sup> C | conv.          | 16 h             | -        | 20% conversion<br>5% aldehyde                   |
| 2     | -                 | DMSO    | 75°C              | conv.          | 16 h             | -        | 40% conversion<br>15% aldehyde<br>10% oxazonine |
| 3     | -                 | DMSO    | 100°C             | conv.          | 16 h             | -        | 50% conversion<br>20% aldehyde<br>20% oxazonine |
| 4     |                   | DMSO    | 125°C             | conv.          | 16 h             | -        | 70% conversion<br>7% aldehyde<br>20% oxazonine  |
| 5     | 14a               | DMSO    | 125°C             | MW             | 15 min           | -        | 30% conversion<br>7% aldehyde<br>20% oxazonine  |
| 6     |                   | DMSO    | 125°C             | MW             | 30 min           | -        | 60% conversion<br>10% aldehyde<br>25% oxazonine |
| 7     |                   | DMSO    | 150°C             | MW             | 15 min           | -        | 75% conversion<br>10% aldehyde<br>58% oxazonine |
| 8     |                   | DMSO    | 150°C             | MW             | 30 min           | -        | 85% conversion<br>12% aldehyde<br>54% oxazonine |
| 9     | -                 | DMSO    | 175°C             | MW             | 15 min           | -        | full conversion<br>98% oxazonine                |
| 10    |                   | DMSO    | 175°C             | MW             | 30 min           | -        | full conversion<br>85% oxazonine                |
| 11    |                   | DMSO    | 50°C              | MW             | 15 min           | -        | 20% conversion<br>15% oxazonine                 |
| 12    |                   | DMSO    | 50°C              | MW             | 30 min           | -        | 35% conversion<br>20% oxazonine                 |
| 13    |                   | DMSO    | 75°C              | MW             | 15 min           | -        | 60% conversion<br>20% oxazonine<br>15% dimer    |
| 14    | 14b*              | DMSO    | 75°C              | MW             | 30 min           | -        | 65% conversion<br>20% oxazonine<br>20% dimer    |
| 15    | -                 | DMSO    | 100°C             | MW             | 15 min           | -        | full conversion<br>22% oxazonine<br>32% dimer   |
| 16    |                   | DMSO    | 100°C             | MW             | 30 min           | -        | full conversion complex mixture                 |
| 17    | 14c*              | DMSO    | 50°C              | MW             | 15 min           | -        | no conversion                                   |
| 18    | 1.40              | DMSO    | 50°C              | MW             | 30 min           | -        | decomposition                                   |

**Table S4**. Reaction conditions tested for the cyclization of vinyl derivatives.

| 19  |      | DMSO   | 75°C   | MW         | 15 min   | -                                    | decomposition     |
|-----|------|--------|--------|------------|----------|--------------------------------------|-------------------|
| 20  |      | DMSO   | 75°C   | MW         | 30 min   | -                                    | complex mixture   |
| 21  |      | DMSO   | 100°C  | MW         | 15 min   | -                                    | complex mixture   |
| 22  | -    | DMSO   | 100°C  | MW         | 30 min   | -                                    | complex mixture   |
|     |      |        |        |            |          |                                      | 60% conversion    |
| 23  |      | DMSO   | 125°C  | MW         | 15 min   | -                                    | 25% aldehyde      |
|     |      |        |        |            |          |                                      | 10% oxazonine     |
|     | -    |        |        |            |          |                                      | 50% conversion    |
| 24  |      | DMSO   | 125°C  | MW         | 30 min   | -                                    | 20% aldehyde      |
|     |      |        |        |            |          |                                      | ,<br>8% oxazonine |
|     | -    |        |        |            |          |                                      | 35% conversion    |
| 25  |      | DMSO   | 150°C  | MW         | 15 min   | -                                    | 7% aldehvde       |
|     | 14d  |        |        |            |          |                                      | 15% oxazonine     |
|     |      |        |        |            |          |                                      | 70% conversion    |
| 26  |      | DMSO   | 150°C  | MW         | 30 min   | _                                    | 20% aldehyde      |
| 20  |      | DIVISO | 150 0  |            | 30 1111  |                                      | 40% oxazonine     |
|     | -    |        |        |            |          |                                      | 60% conversion    |
| 27  |      | DMSO   | 175°C  | N/N/       | 15 min   | _                                    | 15% aldehyde      |
| 21  |      | DIVISO | 1/5 0  | 10100      | 13 11111 |                                      | 30% oxazonine     |
|     | -    |        |        |            |          |                                      | 80% conversion    |
| 28  |      | DMSO   | 175°C  | MW         | 30 min   | -                                    | 35% ovazonine     |
| 20  |      |        | 50°C   | N // \ \ / | 15 min   |                                      | docomposition     |
| 29  | -    | DIVISO | 50 C   |            | 15 min   | -                                    | decomposition     |
| 30  | -    | DIVISO |        |            | 30 mm    | -                                    |                   |
| 31  | 14e* | DIVISO | 750    |            | 15 min   | -                                    |                   |
| 32  | -    | DIVISO | 75°C   |            | 30 min   | -                                    | complex mixture   |
| 33  | -    | DIVISO | 100°C  |            | 15 min   | -                                    | complex mixture   |
| 34  |      | DIVISO | 100°C  | IVI W      | 30 min   | -                                    | complex mixture   |
| 35  |      | DMSO   | 50°C   | MW         | 15 min   | -                                    | 30% conversion    |
|     | -    |        |        |            |          |                                      | 9% oxazonine      |
| 36  |      | DMSO   | 50°C   | MW         | 30 min   | -                                    | 30% conversion    |
|     | -    |        |        |            |          |                                      | 9% oxazonine      |
| 37  | -    | DMSO   | 75°C   | MW         | 15 min   | -                                    | 20% conversion    |
| 38  | -    | DMSO   | 75°C   | MW         | 30 min   | -                                    | no conversion     |
| 39  | -    | DMSO   | 100°C  | MW         | 15 min   | -                                    | no conversion     |
| 40  |      | DMSO   | 100°C  | MW         | 30 min   | -                                    | 35% conversion    |
|     | -    |        | 100 0  |            |          |                                      | 5% oxazonine      |
| 41  | _    | ACN    | 80°C   | conv.      | 16 h     | Yb(OTf) <sub>3</sub>                 | <5% conversion    |
| 42  |      | ΔΟΝ    | 80°C   | conv       | 16 h     | Gd(OTf)                              | 15% conversion    |
|     | _    |        | 00.0   |            | 10 11    | 00(011)3                             | 10% aldehyde      |
| 43  | _    | ACN    | 80°C   | conv.      | 16 h     | FeCl <sub>3</sub> ×6H <sub>2</sub> O | <5% conversion    |
| 11  | 1/JF |        | 80°C   | conv       | 16 h     | Mg(CIO.)                             | 5% conversion     |
|     | 141  | ACN    | - 80 C |            | 1011     |                                      | 5% aldehyde       |
| 45  |      | ACN    | 80°C   | conv.      | 16 h     | AICI <sub>3</sub>                    | no conversion     |
| 16  |      | DMCO   | 125%   | N // N /   | 1E min   |                                      | 30% conversion    |
| 40  |      | DIVISO | 125 C  |            | 13 11111 |                                      | 15% oxazonine     |
| 47  |      | DMCO   | 125%   | N // N /   | 20 min   |                                      | 30% conversion    |
| 47  |      | DIVISO | 125 C  | IVI VV     | 30 min   |                                      | 15% oxazonine     |
| 48  |      | DMSO   | 150°C  | MW         | 15 min   |                                      | 20% conversion    |
| 49  | -    | DMSO   | 150°C  | MW         | 30 min   |                                      | no conversion     |
| 50  | 1    | DMSO   | 175°C  | MW         | 15 min   |                                      | no conversion     |
| - 4 | 1    | DAGO   | 47500  |            | 20 ·     |                                      | 35% conversion    |
| 51  |      | DMSO   | 1/5°C  | IVIW       | 30 min   |                                      | 15% oxazonine     |
|     | 1    |        |        |            |          | 0.1/075                              | 10% conversion    |
| 52  |      | ACN    | 100°C  | MW         | 1h       | Gd(OTf) <sub>3</sub>                 | 3% aldehvde       |
| 53  | 1    | ACN    | 100°C  | MW         | 2 h      | Gd(OTf) <sub>2</sub>                 | 15% conversion    |
|     | 1    |        |        |            |          |                                      |                   |

|            |      |               |            |          |                  |                                      | 5% aldehyde        |
|------------|------|---------------|------------|----------|------------------|--------------------------------------|--------------------|
| <b>F</b> 4 | -    | A CN1         | 100%0      | N 43 N 4 | 4 6              |                                      | 20% conversion     |
| 54         |      | ACN           | 100°C      |          | 4 N              | Ga(OTT) <sub>3</sub>                 | 10% aldehyde       |
|            | -    |               | 100%6      |          |                  |                                      | 15% conversion     |
| 55         |      | ACN           | 100°C      | IVIVV    | 8 ท              | Gd(OIT) <sub>3</sub>                 | 10% aldehyde       |
|            |      |               |            |          |                  |                                      | 30% conversion     |
| 56         |      | DMSO          | 125°C      | MW       | 15 min           |                                      | decomposition      |
|            | -    |               |            |          |                  |                                      | 30% conversion     |
| 57         |      | DMSO          | 125°C      | MW       | 30 min           |                                      | decomposition      |
|            | -    |               |            | MW       | 15 min<br>30 min |                                      | 40% conversion     |
| 58         |      | DMSO          | 150°C      |          |                  |                                      | decomposition      |
|            | -    |               |            |          |                  |                                      | 50% conversion     |
| 59         |      | DMSO          | 150°C      | MW       |                  |                                      | decomposition      |
| 60         | 14g  | DMSO          | 175°C      | MW       | 15 min           |                                      | decomposition      |
| 61         | 8    | DMSO          | 175°C      | MW       | 30 min           |                                      | decomposition      |
|            | -    |               |            |          |                  |                                      | full conversion    |
| 62         |      | ACN           | 80°C       | conv.    | 16 h             | Yb(OTf)₃                             | peak 817, 819, 614 |
|            | -    |               |            |          |                  |                                      | full conversion    |
| 63         |      | ACN           | 80°C       | conv.    | 16 h             | Gd(OTf)₃                             | peak 817, 819, 614 |
| 64         | -    | ACN           | 80°C       | conv.    | 16 h             | FeCl <sub>2</sub> ×6H <sub>2</sub> O | <5% conversion     |
|            | -    |               |            |          |                  |                                      | full conversion    |
| 65         |      | ACN           | 80°C       | conv.    | 16 h             | Mg(ClO <sub>4</sub> ) <sub>2</sub>   | neak 817 819 614   |
|            |      |               |            |          |                  |                                      | full conversion    |
| 66         |      | ACN           | 80°C       | conv.    | 16 h             | Yb(OTf)₃                             | 55% dimer          |
|            | -    |               |            |          |                  |                                      | full conversion    |
| 67         |      | ACN           | 80°C       | conv.    | 16 h             | Gd(OTf)₃                             | 70% dimer          |
| 68         | -    | ACN           | 80°C       | conv     | 16 h             | FeCl <sub>a</sub> x6H <sub>a</sub> O | <5% conversion     |
|            | -    |               | 00 0       |          | 2011             |                                      | full conversion    |
| 69         |      | ACN           | 80°C       | conv.    | 16 h             | Mg(ClO <sub>4</sub> ) <sub>2</sub>   | 40% dimer          |
|            | 14h  |               |            |          |                  |                                      | 60% conversion     |
| 70         | 1411 | ACN           | 80°C       | conv.    | 16 h             | AICl <sub>3</sub>                    | 55% dimer          |
| 71         | -    | DMSO          | 125°C      | MW       | 15 min           | _                                    | 30% conversion     |
| 72         | -    | DMSO          | 125°C      | MW       | 30 min           | _                                    | 25% conversion     |
| 73         | -    | DMSO          | 150°C      | MW       | 15 min           | _                                    | 30% conversion     |
| 74         | -    | DMSO          | 150°C      | MW       | 30 min           | _                                    | 30% conversion     |
| 75         | -    | DMSO          | 175°C      |          | 15 min           | _                                    | decomposition      |
| 75         | -    | DMSO          | 175°C      |          | 20 min           |                                      | decomposition      |
| 70         |      | DMSO          | 125°C      |          | 15 min           |                                      | 20% conversion     |
| 79         | -    | DMSO          | 125°C      |          | 30 min           |                                      | 20% conversion     |
| 70         | -    | DMSO          | 150°C      | MW<br>MW | 15 min<br>30 min | -                                    | 10% conversion     |
| 79         |      |               |            |          |                  |                                      | 5% oxazonine       |
|            | -    |               |            |          |                  |                                      | 5% conversion      |
| 80         |      | DMSO          |            |          |                  |                                      | 5% oxazonine       |
|            | -    |               | DMSO 175°C | MW       | 15 min           | -                                    | 15% conversion     |
| 81         | 14i  | DMSO          |            |          |                  |                                      | 5% oxazonine       |
|            |      | 4i DMSO 175°C |            | MW       | 30 min           | -                                    | 30% conversion     |
| 82         |      |               | 175°C      |          |                  |                                      | 5% oxazonine       |
| 02         |      |               | 1/5 C      |          |                  |                                      | decomposition      |
| 82         | -    | ACN           | 80°C       | CODV     | 16 h             | Yh(OTf).                             | 30% conversion     |
| - 05       | -    |               | 00 0       |          | 1011             | 15(011)3                             | 70% conversion     |
| 84         |      | ACN           | 80°C       | conv     | 16 h             | Gd(OTf)                              | 50% M 687          |
|            |      |               | conv.      | 1011     | 00(011)3         | 20% M 884                            |                    |
| 85         | -    | ACN           | 80°C       | CODV     | 16 h             | FeClax6HaO                           | complex mixture    |
| 86         | -    |               | 80°C       | conv.    | 16 h             | Mg(CIO.)                             | <5% conversion     |
| 00         |      | ACIN          | 000        | conv.    | 1011             | 106(0104)2                           |                    |

\*: due to high decomposition rate, no higher temperatures were tested

#### Representative reaction monitoring data (LC-MS)

### **Compound 14d**



m/z

### Compound 14h





m/z

## Conventional heating in MeCN with AlCl<sub>3</sub>

mAU



### Cyclization studies with photoirradiation



### I) Measurement of UV/VIS Spectra and the Molar Extinction Coefficients (ε)

Spectroscopic characterization has been performed on a Shimadzu UV-1900i spectrophotometer (quartz cell, Hellma, path length: 1.0 cm).

UV–VIS spectra were measured for a 0.05 mM solution of the compounds in DMSO or acetonitrile. A blank solution of the solvents were used to subtract baseline absorption. The spectra were recorded between 260 and 800 nm.  $\varepsilon$  values were calculated using the Beer–Lambert law:  $\varepsilon = A(cl)^{-1}$ , where A is the absorbance value measured at each wavelength, c is the concentration of the sample, and I is the cuvette length.



Figure S8. UV-VIS spectra in DMSO of compounds 1r, 1b and 1c.



Figure S9. UV-VIS spectra in MeCN of compounds 1r, 1b and 1c.

|    | MeCN   | DMSO   | Irradiated at: |
|----|--------|--------|----------------|
| 1r | 420 nm | 432 nm | 395 nm         |
| 1b | 460 nm | 468 nm | 500 nm         |
| 1c | 410 nm | 416 nm | 395 nm         |
|    |        |        |                |

Absorption maxima and irradiation wavelengths.

II) Photoirradiation experiments in PhotoCube

| Irradiation<br>power | Irradiation<br>time | 1r                                             | 1r    | 1b      | 1b      | 1c    | 1c   |
|----------------------|---------------------|------------------------------------------------|-------|---------|---------|-------|------|
|                      |                     | DMSO                                           | MeCN  | DMSO    | MeCN    | DMSO  | MeCN |
|                      |                     | Ratio of vinyl derivative and cyclized product |       |         |         |       |      |
| 10%                  | 30 min              | 99:0                                           | 100:0 | 80:19*  | 90:9    | 93:5  | 98:1 |
| 10%                  | 1 h                 | 98:0                                           | 100:0 | 80:19** | 90:10** | 93:5  | 98:1 |
| 50%                  | 30 min              | 98:1                                           | 99:1  | 72:27   | 86:13   | 90:8  | 98:2 |
| 50%                  | 1 h                 | 96:2                                           | 98:2  | 70:29   | 85:15   | 89:9  | 97:3 |
| 100%                 | 30 min              | 94:5                                           | 94:6  | 62:37   | 78:21   | 86:12 | 96:4 |
| 100%                 | 1 h                 | 91:8                                           | 91:9  | 53:45   | 72:28   | 84:14 | 94:6 |

\*in a control experiment, the reaction proceeded at rt, under ambient light

\*\*in a control experiment, the reaction proceeded at rt, under dark conditions

### LC-MS monitoring of the photoirradiation experiments

1r (ACN)



1r (DMSO)



### 1b (ACN)



1b (DMSO)



### 1c (ACN)



1c (DMSO)



### **Cyclization studies on 35**

| Entry | Solvent | Temperature | Time   | Catalyst                           |
|-------|---------|-------------|--------|------------------------------------|
| 1     | MeCN    | 80°C        | 16 h   | Gd(OTf)₃                           |
| 2     | MeCN    | 80°C        | 16 h   | Yb(OTf)₃                           |
| 3     | MeCN    | 80°C        | 16 h   | Mg(ClO <sub>4</sub> ) <sub>2</sub> |
| 4     | DMSO    | 100°C (MW)  | 30 min | -                                  |
| 5     | DMSO    | 75°C (MW)   | 30 min | -                                  |
| 6     | DMSO    | 50°C (MW)   | 30 min | -                                  |
| 7     | MeCN    | 80°C (MW)   | 1 h    | -                                  |
| 8     | MeCN    | 80°C (MW)   | 1 h    | Gd(OTf) <sub>3</sub>               |
| 9     | MeCN    | 80°C (MW)   | 1 h    | Gd(OTf)₃                           |

**Table S5.** Reaction conditions tested for the cyclization of vinyl derivative **35**.

For entries 1-7 mainly decomposition was observed. For entry 8, the formation of 3 novel products was detected. Entry 9 was a scale-up experiment, using the same conditions as for entry 8.



### LC-MS results obtained for entry 9:

### Cyclization studies on 38a,b<sup>1</sup>

| Entry | Solvent | Temperature | Time   | Catalyst                       |
|-------|---------|-------------|--------|--------------------------------|
| 1     | DMSO    | 50°C        | 1 h    | -                              |
| 2     | DMSO    | 50°C        | 5 h    | -                              |
| 3     | DMSO    | 75°C        | 30 min | -                              |
| 4     | DMSO    | 75°C        | 1 h    | -                              |
| 5     | DMSO    | 100°C       | 15 min | -                              |
| 6     | DMSO    | 100°C       | 30 min | -                              |
| 7     | DMSO    | 125°C       | 30 min | -                              |
| 8     | DMSO    | 150°C       | 1 h    | -                              |
| 9     | neat    | 75°C        | 30 min | -                              |
| 10    | neat    | 75°C        | 1 h    | -                              |
| 11    | neta    | 100°C       | 30 min | -                              |
| 12    | neat    | 120°C       | 30 min | -                              |
| 13    | neat    | 150°C       | 30 min | -                              |
| 14    | neat    | 200°C       | 2 min  | -                              |
| 15    | neat    | 120°C       | 2 h    | Al <sub>2</sub> O <sub>3</sub> |
| 16    | MeCN    | 60°C        | 2 h    | Gd(OTf)₃                       |

**Table S6.** Reaction conditions tested for the cyclization of vinyl derivatives **38a,b**.

Under all the conditions tested only decomposition was observed and the corresponding cyclized products could not be isolated.

<sup>&</sup>lt;sup>1</sup>P. Bottino, Studies on extensions of tert-amino effect: Ring-fusion to bridged biaryls and steroids, PhD Thesis, 2012, Universitá degli Studi di Catania, http://archivia.unict.it/handle/10761/1349 (accessed Dec 2023).

### **Theoretical methods**

Theoretical calculations were carried out by Gaussian16 software [1], using the standard convergence criteria given as default. Optimization and vibrational frequencies were carried out by the B3LYP method [2,3] using the 6-31G(d,p) basis set and the IEFPCM method for implicit solvent model. Thermodynamic functions were computed at 298.15 K.



**Figure S10**. Calculated enthalpies for the two possible reaction pathways branching from the common **25** intermediate.

## References

1. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V Ortiz, J. Cioslowski and D. J. Fox, Gaussian Inc Wallingford CT, 2016.

2. Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215–241.

3. A. D. Becke, J. Chem. Phys., 1993, 98, 5648–5652.

4. J. Tomasi, B. Mennucci and R. Cammi, Chem. Rev., 2005, 105, 2999–3094.