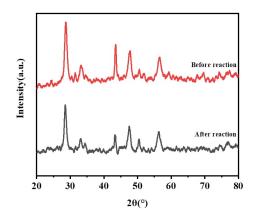
Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Effect of Mn content in $CuO/MnCeO_x$ catalysts on CO_2 hydrogenation for methanol synthesis

Mengdong Nie ^a, Tuo Guo ^b, Fangyuan Qiang ^a, Man Wu ^a, Yongzhuo Liu ^a, Qingjie Guo* ^{a, b}, and Yurong He *, ^b


a College of Chemical Engineering, Qingdao University of Science & Technology,

Qingdao 266042, China

b State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China

*Corresponding Author:

*E-mail: qjguo@qust.edu.cn (Q. Guo); hyr@nxu.edu.cn (Y. He)

Fig. S1 Comparison of XRD patterns of CuO/Mn_{0.2}CeO_x catalysts before and after the reaction

The XRD patterns of the $\text{CuO/Mn}_{0.2}\text{CeO}_x$ catalyst before and after the reaction (Fig. S1) were compared and we found that the structure of the catalyst remained the same before and after the reaction, and no new diffraction peaks were found, which indicates that our prepared $\text{CuO/Mn}_{0.2}\text{CeO}_x$ catalyst has a certain structural stability.

Table S1 Comparison of catalytic performance of different copper-based catalysts

					C (0/)	$\mathrm{STY}_{\mathrm{CH3OH}}$		
Catalyst	P/	T/	GHSV	X_{CO2}		Y_{CH3OH}	(Def
	bar	°C	$(ml/g \cdot h^{-1})$	(%)	S _{CH3OH} (%)	(%)	$mg_{\text{MeOH}}g_{\text{cat}} - 1h^{-1}$	Ref
)	
Cu/CeO ₂	30	280	NA	10.0	73.0	7.30	NA	[1]
Cu/ZrO ₂	30	280	NA	12.4	30.5	3.78	NA	[1]
$Cu/Ce_{0.4}Zr_{0.6}O_2$	30	280	NA	13.2	71.8	9.48	NA	[2]
Cu/AlCeO-7	40	240	6000	14.8	73.0	10.80	231.5	[3]
1Cu2Ni/CeO ₂ - NR	20	260	6000	15.9	71.6	11.38	244.0	[4]
4.7Cu-TiO ₂	30	200	4800	9.4	96.1	9.03	154.9	[5]
CuO/Mn _{0.2} CeO _x	15	260	6000	14.2	82.3	11.68	250.0	This
								work

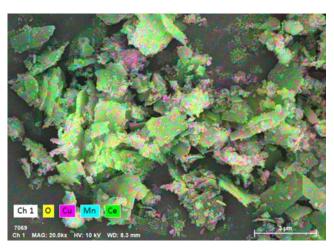
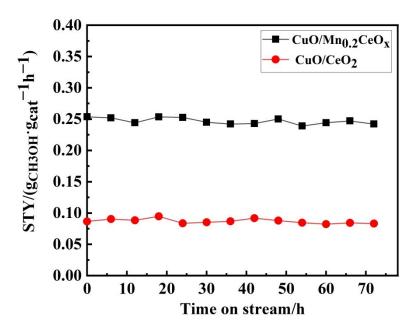



Fig. S2 Mappings of the $CuO/Mn_{0.2}CeO_x$

 $\label{eq:comparison} \textbf{Table S2} \ \ \text{Comparison of the catalytic performance of CuO/Mn}_{0.2}\text{CeO}_x \ \ \text{catalysts at}$ $\ \ \text{different pressures (T=260°C, GHSV=6000 mL/g\cdot h^{-1})}$

P/bar				STY_{CH3OH}	
	Con	Con _{CO(%)}	S _{CH3OH} (%)	(
	Con _{CO2(%)}			g _{MeOH} g _{cat-1} h ⁻¹	
)	
10	14.052	18.963	80.725	0.243	
15	14.184	17.766	82.261	0.250	

 $\label{eq:Fig.S3} \mbox{ Catalytic stability test of CuO/CeO}_2 \mbox{ and CuO/Mn}_{0.2} \mbox{CeO}_x \mbox{ catalysts (T=260°C,} \\ P=15 \mbox{ bar, GHSV=6000 mL/g} \cdot h^{-1}).$

Reference:

- [1] W. Wang, Z. Qu, L. Song and Q. Fu, J. Energy. Chem., 2020, 40, 22-30.
- [2] W. Wang, Z. Qu, L. Song and Q. Fu, Mol. Catal., 2020, 493, 111105.
- [3] S. Li, Y. Wang, B. Yang and L. Guo, Appl. Catal. A-Gen., 2019, 571, 51-60.
- [4] Q. Tan, Z. Shi and D. Wu, Int. J. Energ. Res., 2019, 43, 5392-5404.
- [5] S.K. Sharma, A. Banerjee, B. Paul, M.K. Poddar, T. Sasaki, C. Samanta and R. Bal, J. CO₂ Util., 2021, 50, 101576.