Supplementary material for:

Direct Conversion of Methane to Value-added Hydrocarbons Using Hybrid Catalysts of Ni/Al₂O₃ and K-Co/Al₂O₃

Thitiwut Sukprom¹, Pooripong Somchuea¹, Sarannuch Sringam^{1,2}, Thongthai Witoon^{1,2}, Metta Chareonpanich^{1,2}, Pawin Iamprasertkun³, Kajornsak Faungnawakij⁴, Günther Rupprechter⁵, Anusorn Seubsai^{1,2*}

¹ Department of Chemical Engineering, Faculty of Engineering,

Kasetsart University, Bangkok 10900, Thailand

² Center of Excellence on Petrochemical and Materials Technology, Kasetsart University, Bangkok 10900, Thailand

³ School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, Thailand

⁴ Nanomaterials for Energy and Catalysis Laboratory, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand

⁵ Institute of Materials Chemistry, Technische Universität Wien, Getreidemarkt 9/BC, Vienna, 1060, Austria

*Corresponding author: <u>fengasn@ku.ac.th</u>

Methodology for making standard calibration curves

- Premixed standard gases—containing CH4, C2H4, C2H6, C3H6, C3H6, C3H8, n-C4H10, iso-C4H10, CO, and CO2—in a gas cylinder at 15 bars and ultra-high purity H2 (99.999% purity) in a gas cylinder at 165 bars were purchased from Air LIQUID (Thailand) (see Table S1).
- 2) The premixed standard gases and H₂ were transferred to a gas sampling bag.
- 3) Five different volumes of the premixed standard gases and H₂ were injected into the gas chromatography (GC) using a gas syringe. The amount of the premixed gases and H₂ are shown in Table S1. The GC conditions are described in section "2.2 Catalytic activity test" of the main article.
- 4) Each GC peak from the flame ionization detector (FID) and thermal conductivity detector (TCD) signals was identified by comparing it with the known peaks from the "System Gas Chromatography (GC) Data Sheet" by Shimadzu or similar. Examples of GC chromatograms (both TCD and FID signals) of the standard gases and the effluents from the reaction are shown in Fig. S1–S4.
- 5) The GC peaks of each product were plotted with the moles that were obtained from the conversion of that gas volumes. Then, a calibration curve was made from the five spots on the plot, starting from the origin. The calibration curve of each standard gas is shown in Fig. S5–S14.

Standard gas	Concentration (% v/v)	Volume for GC injection
CH ₄	5.00	
СО	5.01	0, 0.4, 0.5, 0.8, 1.0 mL
CO ₂	4.99	
C ₂ H ₄	4.97	
C ₂ H ₆	5.03	
C3H6	5.03	$\begin{bmatrix} 0 & 0 & 2 & 0 & 4 & 0 & 6 & 0 & 8 & mL \end{bmatrix}$
C3H8	5.00	0, 0.2, 0.1, 0.0, 0.0 III
n-C4H10	5.02	
iso-C4H10	5.02	
H ₂	99.999	0, 50, 100, 150, 200 μL

Table S1. Information on standard gases for making calibration curves

Fig. S1. GC peaks of standard gases. TCD signal with peaks of O₂, N₂, CO, CH₄, and CO₂.

Fig. S2. GC peaks of standard gases. FID signal with peaks of He, C₂H₄, C₂H₆, C₃H₆, C₃H₈, n-C₄H₁₀, and iso-C₄H₁₀.

Fig. S3. Peaks of product gases with TCD signal, including H₂, O₂, N₂, CO, CH₄, and CO₂. Reaction conditions of hybrid catalyst of $5Ni/Al_2O_3$ and $4.6K-20Co/Al_2O_3$ at atmospheric pressure, total flow rate = 40 mL/min, reactor temperature = 490 °C, CH₄:O₂ = 2, and Ni:K-Co = 1.

Fig. S4. Peaks of product gases with FID signal, including He, C₂H₄, C₂H₆, C₃H₆, C₃H₈, n-C₄H₁₀, and iso-C₄H₁₀. Reaction conditions of hybrid catalyst of 5Ni/Al₂O₃ and 4.6K-20Co/Al₂O₃ at atmospheric pressure, total flow rate = 40 mL/min, reactor temperature = 490 °C, CH₄:O₂ = 2, and Ni:K-Co = 1.

Fig. S5. Calibration curve of carbon monoxide (CO).

Fig. S6. Calibration curve of carbon dioxide (CO₂).

Fig. S7. Calibration curve of methane (CH4).

Fig. S8. Calibration curve of ethylene (C₂H₄).

Fig. S9. Calibration curve of ethane (C₂H₆).

Fig. S10.1 Calibration curve of propene (C₃H₆).

Fig. S11. Calibration curve of propane (C₃H₈).

Fig. S12. Calibration curve of n-butane (n-C₄H₁₀).

Fig. S13. Calibration curve of iso-butane (C₄H₁₀).

Fig. S14. Calibration curve of hydrogen (H₂).

Time	Blank CH ₄				C	ases out (moles)						Gase	s out: Prod	uct in term	s of CH4 co	nsumed (m	oles)		CH _{4, In}	^a Sum of	1
(h)	Or CH4, In	CO	CH ₄	CO ₂	C_2H_4	C_2H_6	C_3H_6	C_3H_8	n-C4H10	iso-C ₄ H ₁₀	СО	CH ₄	CO ₂	$2^{*}C_{2}H_{4}$	2*C2H6	3*C3H6	3*C3H8	4*n-C ₄ H ₁₀	4*iso-C4H10	(x10 ⁻⁵)	Carbon _{Out} (x10 ⁻⁵)	D CH4
(11)	(x10 ⁻⁵) (moles)	(x10 ⁻⁷)	(x10 ⁻⁵)	(x10 ⁻⁶)	(x10 ⁻⁷)	(x10 ⁻⁷)	(x10 ⁻⁹)	(x10 ⁻⁹)	(x10 ⁻¹⁰)	(x10 ⁻¹¹)	(x10 ⁻⁷)	(x10 ⁻⁵)	(x10 ⁻⁶)	(x10 ⁻⁷)	(x10 ⁻⁶)	(x10 ⁻⁸)	(x10 ⁻⁸)	(x10 ⁻⁹)	(x10 ⁻¹⁰)	(moles)	(moles)	error (%)
1	4.80	5.45	3.54	9.99	3.70	5.48	3.73	7.09	4.61	0.97	5.45	3.54	9.99	7.39	1.10	1.12	2.13	1.84	3.90	4.80	4.78	0.32
2	4.80	6.76	3.58	9.74	3.63	5.29	3.88	6.78	0.00	0.00	6.76	3.58	9.74	7.26	1.06	1.16	2.04	0.00	0.00	4.80	4.80	-0.14
3	4.80	7.43	3.59	9.48	3.67	5.25	4.44	7.27	5.85	1.06	7.43	3.59	9.48	7.33	1.05	1.33	2.18	2.34	4.24	4.80	4.80	0.03
4	4.80	7.95	3.56	9.49	3.80	5.25	4.43	7.06	0.00	0.00	7.95	3.56	9.49	7.60	1.05	1.33	2.12	0.00	0.00	4.80	4.77	0.56
5	4.80	8.44	3.56	9.39	3.84	5.23	4.98	7.48	6.71	1.06	8.44	3.56	9.39	7.68	1.05	1.49	2.24	2.68	4.25	4.80	4.77	0.64
6	4.80	8.73	3.57	9.33	3.91	5.20	5.09	7.49	6.80	1.09	8.73	3.57	9.33	7.83	1.04	1.53	2.25	2.72	4.35	4.80	4.77	0.52
7	4.80	8.97	3.56	9.17	3.88	5.13	5.13	7.46	0.00	0.00	8.97	3.56	9.17	7.77	1.03	1.54	2.24	0.00	0.00	4.80	4.75	0.94
8	4.80	9.18	3.57	9.11	3.91	5.10	7.59	7.51	7.07	1.32	9.18	3.57	9.11	7.83	1.02	2.28	2.25	2.83	5.29	4.80	4.76	0.83
9	4.80	9.32	3.57	9.01	3.90	5.03	5.23	7.37	7.41	1.46	9.32	3.57	9.01	7.80	1.01	1.57	2.21	2.97	5.84	4.80	4.75	1.04
10	4.80	9.56	3.56	8.88	3.86	4.95	5.27	7.39	7.13	1.31	9.56	3.56	8.88	7.73	0.99	1.58	2.22	2.85	5.23	4.80	4.73	1.45
11	4.80	9.73	3.57	8.82	3.84	4.88	5.24	7.30	0.00	0.00	9.73	3.57	8.82	7.67	0.98	1.57	2.19	0.00	0.00	4.80	4.73	1.36
12	4.80	9.94	3.58	8.79	3.84	4.84	5.24	7.25	7.36	1.27	9.94	3.58	8.79	7.68	0.97	1.57	2.17	2.95	5.07	4.80	4.74	1.27
13	4.80	10.14	3.58	8.69	3.83	4.79	5.31	7.25	7.84	1.55	10.14	3.58	8.69	7.66	0.96	1.59	2.17	3.14	6.19	4.80	4.72	1.54
14	4.80	10.33	3.58	8.76	3.85	4.77	5.53	7.31	2.59	1.61	10.33	3.58	8.76	7.71	0.95	1.66	2.19	1.03	6.46	4.80	4.73	1.33
15	4.80	10.45	3.62	8.62	3.71	4.63	5.16	7.06	0.00	0.00	10.45	3.62	8.62	7.42	0.93	1.55	2.12	0.00	0.00	4.80	4.75	0.94
16	4.80	10.55	3.61	8.51	3.61	4.52	5.06	6.90	7.02	1.16	10.55	3.61	8.51	7.21	0.90	1.52	2.07	2.81	4.64	4.80	4.74	1.26
17	4.80	10.62	3.61	8.50	3.59	4.49	5.05	6.83	0.00	0.00	10.62	3.61	8.50	7.18	0.90	1.52	2.05	0.00	0.00	4.80	4.73	1.34
18	4.80	10.75	3.59	8.42	3.52	4.41	4.93	6.72	7.07	1.03	10.75	3.59	8.42	7.04	0.88	1.48	2.01	2.83	4.13	4.80	4.70	2.00
19	4.80	10.86	3.62	8.35	3.52	4.38	4.98	6.76	7.02	1.22	10.86	3.62	8.35	7.04	0.88	1.49	2.03	2.81	4.86	4.80	4.72	1.59
20	4.80	10.97	3.59	8.29	3.50	4.34	4.96	6.67	7.10	1.29	10.97	3.59	8.29	6.99	0.87	1.49	2.00	2.84	5.15	4.80	4.69	2.22
21	4.80	11.08	3.57	8.22	3.49	4.31	4.91	6.61	7.14	1.24	11.08	3.57	8.22	6.98	0.86	1.47	1.98	2.86	4.95	4.80	4.66	2.85
22	4.80	11.12	3.55	8.04	3.44	4.23	4.83	6.46	7.22	1.20	11.12	3.55	8.04	6.88	0.85	1.45	1.94	2.89	4.78	4.80	4.63	3.56
23	4.80	11.23	3.55	8.19	3.61	4.35	5.18	6.72	7.98	1.43	11.23	3.55	8.19	7.23	0.87	1.55	2.02	3.19	5.72	4.80	4.64	3.27
24	4.80	11.53	3.58	8.46	3.87	4.53	5.65	7.03	8.92	1.45	11.53	3.58	8.46	7.74	0.91	1.69	2.11	3.57	5.79	4.80	4.71	1.77

Table S2 An example of the carbon balance for of hybrid catalyst of 5Ni/Al₂O₃ and 4.6K-20Co/Al₂O₃ that is shown in Fig. 13.

^aSum of carbon_{out} = $2(n_{C_2H_4} + n_{C_2H_6}) + 3(n_{C_3H_6} + n_{C_3H_8}) + 4(n_{C_4H_{10}}) + n_{CO} + n_{CO_2} + n_{CH_4,out}$ ^bCH₄ balance error (%) = $[n_{CH_4,in} - (Sum of carbon_{out})] \times 100/n_{CH_4,in}$; w

; where n = number of moles

Catalyst	Crystalline phase	2θ (degree)	ICDD		
			No.		
5Ni/Al ₂ O ₃	NiO	37.18, 43.18, 62.84,	00-047-		
		75.56	1049		
		19.42, 32.73, 37.18,	01-077-		
	γ-Al ₂ O ₃	39.37, 45.57, 60.60,	0396		
		66.85	0370		
20Co/Al ₂ O ₃		18.98, 31.25, 36.86,			
	Guite ($C_{03}O_4$)	38.51, 44.80, 55.62,	00-043-		
	Suite (80504)	59.41, 65.30, 77.50,	1003		
		78.40			
		19.42, 32.73, 37.18,	01-077-		
	γ-Al ₂ O ₃	39.37, 45.57, 60.60,	0396		
		66.85	0270		
4.6K-		18.97, 31.25, 36.84,			
$20Co/Al_2O_3$	Guite ($C_{03}O_4$)	38.57, 44.80, 55.65,	00-043-		
	Suite (80304)	59.35, 65.29, 77.51,	1003		
		78.55			
		23.51, 23.76, 29.39,	01-071-		
	Niter (KNO ₃)	32.30, 33.78, 41.13,	1558		
		41.72, 46.47, 64.76	1000		
		19.42, 32.73, 37.18,	01-077-		
	γ-Al ₂ O ₃	39.37, 45.57, 60.60,	0396		
		66.85	0370		
Spent 5Ni/Al ₂ O ₃	NiO	37.14, 43.18, 62.80,	00-047-		
	1010	75.36	1049		
		19.42, 32.73, 37.18,	01-077-		
	γ-Al ₂ O ₃	39.37, 45.57, 60.60,	0396		
		66.85	0370		
Spent 4.6K-		18.96, 31.22, 36.80,			
$20Co/Al_2O_3$	Guite ($C_{02}O_4$)	38.52, 44.80, 55.60,	00-043-		
	Suite (80304)	59.31, 65.20, 77.37,	1003		
		77.98			
		23.51, 23.76, 29.39,	01-071-		
	Niter (KNO ₃)	32.30, 33.78, 41.13,	1558		
		41.72, 46.47, 64.76	1550		
		19.42, 32.73, 37.18,	01-077-		
	γ-Al ₂ O ₃	39.37, 45.57, 60.60,	0396		
		66.85	0390		

Table S3 Crystalline XRD values (2 θ) observed in different catalysts.

Table S4 EDX analysis of each prepared catalyst.

	Reaction	C_{2^+}	C_{2^+}	CH4	
Catalyst	temperature	yield	selectivity	conversion	Ref.
	(°C)	(%)	(%)	(%)	
Ni/Al ₂ O ₃ and K-Co/Al ₂ O ₃	490	4.30	15.80	27.19	This
(Hybrid catalyst)	800	0.1	74.2	12.2	work
$\frac{1}{102} \times \frac{1}{5102}$	800	9.1	74.5	12.3	[1]
$\frac{1}{1000}$	800	25.9	04.9	30.8 22.0	[1]
MII/INa2 W 04/SIO2	850	20.4	80.0 52.0	33.0	[2]
$Na_2 \le O_4/SiO_2$	830	22.9	32.0 (2.0	44.0	[2]
$\frac{1}{1}$	775	/.0	03.0	11.0	[3]
$\sqrt{Na} WO4/SiO2$	775	1.2	12.0	10.0	[3]
$Cr/Na_2 WO_4/S1O_2$	115	2.4	24.0	10.0	[3]
$\frac{Mn}{Na_2} \frac{WO_4}{S_1O_2}$	115	16.0	80.0	20.0	[3]
$Fe/Na_2 WO_4/S1O_2$	115	9.0	60.0	15.0	[3]
$CO/Na_2WO_4/S_1O_2$	775	11.0	68.0	16.0	[3]
$Zn/Na_2WO_4/S_1O_2$	775	6.0	63.0	9.0	[3]
$Mn-Na_2WO_4/S_1O_2$	850	17.0	75.0	22.0	[4]
$Na_2WO_4/Mn/S_1O_2$	850	17.2	54.0	32.0	[5]
$W-Mn/S_1O_2$	820	20.7	68.4	30.3	[6]
W-L1/S1O2	800	6.0	52.0	10.0	[7]
Mn-Li/SiO ₂	800	6.0	40.0	15.0	[7]
Mn-W/SiO ₂	800	6.0	40.0	15.0	[7]
Mn-0.1Li-W/SiO ₂	800	11.0	58.0	18.0	[7]
Mn-0.25Li-W/SiO ₂	800	15.0	78.0	18.0	[7]
W-Li-W/SiO ₂	800	15.0	79.0	19.0	[7]
Na ₂ WO ₄ /Mn/SiO ₂	800	11.2	27.4	41.0	[8]
La/Na2WO4/Mn/SiO2	800	10.6	25.4	41.7	[8]
Na-W-Mn/SiO ₂	850	29.0	69.0	42.0	[9]
Na ₂ WO ₄ /SiO ₂	800	15.0	74.0	20.0	[10]
W/SiO ₂	800	6.0	54.0	11.0	[10]
Mn/SiO ₂	800	9.0	43.0	19.0	[10]
W-Na-Mn/SiO ₂	775	18.3	39.6	46.1	[11]
Mo-Na-Mn/SiO ₂	775	12.5	37.2	33.6	[11]
Nb-Na-Mn/SiO ₂	775	13.0	33.2	39.3	[11]
V-Na-Mn/SiO ₂	775	2.7	8.0	33.5	[11]
Cr-Na-Mn/SiO ₂	775	4.6	11.5	40.1	[11]
Ce-Mn/Na ₂ WO ₄ /SiO ₂	840	21.1	62.4	33.9	[12]
Na-W-Mn/SiO ₂	800	19.1	63.2	30.2	[13]
Mn-Na ₂ WO ₄ /SiO ₂	825	19.1	72.2	26.5	[14]
Mn/SiO ₂	800	0.6	14.4	5.7	[15]
Na2WO4/SiO2	800	2.9	69.0	4.8	[15]
Mn-Na2WO4/SiO2	800	18.5	73.3	28.5	[15]
NaCl-Mn-Na2WO4/SiO2	750	34.6	62.9	55.0	[16]

Table S5 A review of the OCM catalysts reported in the literature.

Table S5 A review of the OCM catalysts reported in the literature. (continued)

	Reaction	C_{2^+}	C_{2^+}	CH ₄	
Catalyst	temperature	yield	selectivity	conversion	Ref.
	(°C)	(%)	(%)	(%)	54.63
KCl-Mn-Na ₂ WO ₄ /SiO ₂	750	27.0	75.3	35.9	[16]
CsCl-Mn-Na ₂ WO ₄ /SiO ₂	750	22.6	74.9	30.1	[16]
LiCl-Mn-Na ₂ WO ₄ /SiO ₂	750	11.3	80.2	14.1	[16]
Mn-Na ₂ WO ₄ /SiO ₂	750	5.2	63.4	8.2	[16]
Mn _x O _y -Na ₂ WO ₄ /D11-10	750	3.6	52.9	6.7	[17]
Mn _x O _y -Na ₂ WO ₄ /SiO ₂ (grade 923)	750	1.3	63.6	2.0	[17]
Mn _x O _y -Na ₂ WO ₄ /SiO ₂ (fumed)	750	4.5	61.3	7.4	[17]
Mn _x O _y -Na ₂ WO ₄ /Aerosil TT 600	750	4.5	60.7	7.3	[17]
Mn _x O _y -Na ₂ WO ₄ /Aeroperl R 806/30	750	4.9	68.9	7.1	[17]
Mn _x O _y -Na ₂ WO ₄ /Aerosil OX 50	750	3.5	55.4	6.4	[17]
Mn _x O _y -Na ₂ WO ₄ /Aerosil 380	750	4.2	62.6	6.6	[17]
MnxOy-Na2WO4/Aerosil 300	750	3.3	57.4	5.9	[17]
Mn _x O _y -Na ₂ WO ₄ /Sipernat D10	750	3.5	80.3	4.4	[17]
MnxOy-Na2WO4/Sipernat 310	750	5.4	75.8	7.0	[17]
MnxOy-Na2WO4/SBA-15	750	10.4	73.4	14.1	[17]
Na ₂ WO ₄ /Mn/SiO ₂	800	2.5	67.6	3.2	[18]
Na2WO4-Mn/SiO2	800	19.6	66.4	29.5	[18]
TiO2-Mn2O3-Na2WO4/SiO2	700	14.0	70.0	20.0	[19]
TiO ₂ -Mn ₂ O ₃ -Na ₂ WO ₄ /SiO ₂	720	19.7	76.0	26.0	[20]
Mn2O3-TiO2-Na2WO4/SiO2	650	13.6	62.0	22.0	[20]
Na2WO4/Mn/SiO2 (silica gel)	775	16.9	50.8	33.4	[21]
Na ₂ WO ₄ /Mn/SiO ₂ (silica gel)	800	17.1	51.0	33.5	[21]
Na2WO4/Mn/SiO2 (fumed silica)	800	16.5	52.7	33.3	[21]
Mn/Na2WO4/SiO2	725	16.0	79.8	20.2	[22]
Mn-Na-W/SiO ₂	750	16.0	64.0	25.0	[23]
Al-Na ₂ WO ₄ /SiO ₂	800	3.2	37.0	7.69	[24]
Li-Na ₂ WO ₄ /SiO ₂	800	4.6	47.8	9.56	[24]
La-Na ₂ WO ₄ /SiO ₂	800	6.1	49.5	11.9	[24]
Cu-Na ₂ WO ₄ /SiO ₂	800	7.5	22.3	33.8	[24]
Cr-Na ₂ WO ₄ /SiO ₂	800	9.8	29.9	27.7	[24]
Na ₂ -WO ₄ /SiO ₂	800	10.9	24.0	33.5	[24]
Mg-Na ₂ WO ₄ /SiO ₂	800	12.5	53.2	21.6	[24]
Ni-Na ₂ WO ₄ /SiO ₂	800	13.7	36.1	35.4	[24]
Ce-Na ₂ WO ₄ /SiO ₂	800	15.4	32.9	42.1	[24]
Zn-Na ₂ WO ₄ /SiO ₂	800	17.8	65.9	25.5	[24]
Co-Na ₂ WO ₄ /SiO ₂	800	18.4	10.2	41.8	[24]

Table S5 A review of the OCM catalysts reported in the literature. (continued)

	· · ·	â	`~~´	~**	
	Reaction	C_{2+}	C_{2+}	CH4	
Catalyst	temperature	yield	selectivity	conversion	Ref.
	(°C)	(%)	(%)	(%)	
Mn-W/SiO ₂	800	11.0	48.0	24.0	[24]

Ce-W/SiO ₂	800	7.0	35.0	20.0	[24]
Mn-Na/SiO ₂	800	14.0	44.0	31.0	[24]
Na ₂ WO ₄ -Mn/SiO ₂	800	20.0	67.0	30.0	[24]
Na2WO4-Ce/SiO2	800	20.0	74.0	27.0	[24]
TiO ₂ -Mn ₂ O ₃ -Na ₂ WO ₄ /SiO ₂	700	16.7	73.0	23.0	[25]
Na ₂ WO ₄ -TiO ₂ /SiO ₂	700	4.9	71.7	6.8	[26]
MnO _x -Na ₂ WO ₄ /SiO ₂	770	12.4	70.4	17.6	[27]
Nb-MnO _x -Na ₂ WO ₄ /SiO ₂	770	15.2	68.2	22.3	[27]
Ti-MnO _x -Na ₂ WO ₄ /SiO ₂	770	11.2	70.4	15.9	[27]
Sn-MnOx-Na2WO4/SiO2	770	7.5	69.5	10.8	[27]
Ce-MnO _x -Na ₂ WO ₄ /SiO ₂	770	12.7	66.7	19.0	[27]
Fe-MnO _x -Na ₂ WO ₄ /SiO ₂	770	15.8	65.5	24.1	[27]
Ge-MnO _x -Na ₂ WO ₄ /SiO ₂	770	16.4	70.7	23.2	[27]
Mn ₂ O ₃ -Na ₂ WO ₄ /SiC	800	20.5	54.5	37.5	[28]
Mn2O3-Na2WO4/SiO2	700	23.5	60.5	39.7	[29]
Na2WO4-Ti-Mn/SiO2	700	22.1	62.3	35.4	[30]
$Na_2WO_4\text{-}TiO_2\text{-}MnO_x\text{-}Sr_{0.25}/SiO_2$	750	22.9	62.5	36.6	[31]
(NH4)2WO4/SiO2	850	2.4	20	12	[32]
Mn/SiO ₂	850	5.29	23	23	[32]
Mn/Na2WO4/SiO2	850	8	40	20	[32]
Sn-W-Mn/SiO ₂	750	20.22	68.1	29.7	[32]
Ce-Na ₂ WO ₄ / TiO ₂	800	26.2	52.3	50.1	[33]
La-Li-Mn/WO ₃ /TiO ₂	750	19.2	64	30	[34]
Mn-Na ₂ WO ₄ /CeO ₂ -TiO ₂	775	30.3	52.8	57.4	[35]
Ce-Mn/Na ₂ WO ₄ /SiO ₂	840	16.24	65.5	24.8	[12]
S-Na-W-Mn-Zr/SiO ₂	750	16.18	42.7	37.9	[36]
S-Na-W-Mn-Zr/SiO ₂	750	16.3	46.2	35.3	[37]
Na ₂ WO ₄ -Mn/SiO ₂	850	11.18	51.9	21.5	[38]
Na ₂ WO ₄ -Mn/SBA-15	850	14.78	56.2	26.3	[32]
MnTiO ₃ -Na ₂ WO ₄ /SBA-15	750	8.84	68	13	[39]
Mn _x O _y -Na ₂ WO ₄ /TiO ₂ -rutile	700	24.82	63	39.4	[40]
$Mn_2O_3\text{-}Na_2WO_4/TiO_2\text{-}SiO_2$	750	2.91	42.8	6.8	[19]
SiO2@MnOx@Na2WO4@SiO2	700	17.76	74	24	[32]

References:

[1] Z. C. Jiang, C.-J. Yu, X.-P. Fang, S.-B. Li, H.-L. Wang, Oxide/support interaction and surface reconstruction in the sodium tungstate (Na₂WO₄)/silica system, Journal of Physical Chemistry A, 97 (1993) 12870-12875.

[2] A. Palermo, J.P.H. Vazquez, M.S. Tikhov, R.M. Lambert, Critical influence of the amorphous silica-tocristobalite phase transition on the performance of Mn/Na₂WO₄/SiO₂ catalysts for the oxidative coupling of methane, Journal of Catalysis, 177 (1998) 259-266.

[3] A. Malekzadeh, A. Khodadadi, M. Abedini, M. Amini, A. Bahramian, A.K. Dalai, Correlation of electrical properties and performance of OCM MO_x/Na₂WO₄/SiO₂ catalysts, Catalysis Communications, 2 (2001) 241-247.

[4] S.-F. Ji, T.-C. Xiao, S.-B. Li, C.-Z. Xu, R.-L. Hou, K.S. Coleman, M.L.H. Green, The relationship between the structure and the performance of Na-W-Mn/SiO₂ catalysts for the oxidative coupling of methane, Applied Catalysis A: General, 225 (2002) 271-284.

[5] S. Ji, T. Xiao, S. Li, L. Chou, B. Zhang, C. Xu, R. Hou, A.P.E. York, M.L.H. Green, Surface WO₄ tetrahedron: The essence of the oxidative coupling of methane over M-W-Mn/SiO₂ catalysts, Journal of Catalysis, 220 (2003) 47-56.

[6] J. Wang, L. Chou, B. Zhang, H. Song, J. Zhao, J. Yang, S. Li, Comparative study on oxidation of methane to ethane and ethylene over Na₂WO₄-Mn/SiO₂ catalysts prepared by different methods, J Mol Catal A-Chem, 245 (2006) 272-277.

[7] A. Malekzadeh, A. Khodadadi, A.K. Dalai, M. Abedini, Oxidative coupling of methane over lithium doped (Mn+W)/SiO₂ catalysts, Journal of Natural Gas Chemistry, 16 (2007) 121-129.

[8] J. Wu, H. Zhang, S. Qin, C. Hu, La-promoted Na₂WO₄/Mn/SiO₂ catalysts for the oxidative conversion of methane simultaneously to ethylene and carbon monoxide, Applied Catalysis A: General, 323 (2007) 126-134.

[9] Y.T. Chua, A.R. Mohamed, S. Bhatia, Oxidative coupling of methane for the production of ethylene over sodium-tungsten-manganese-supported-silica catalyst (Na-W-Mn/SiO₂), Applied Catalysis A: General, 343 (2008) 142-148.

[10] Z. Gholipour, A. Malekzadeh, R. Hatami, Y. Mortazavi, A. Khodadadi, Oxidative coupling of methane over (Na₂WO₄+Mn or Ce)/SiO₂ catalysts: In situ measurement of electrical conductivity, Journal of Natural Gas Chemistry, 19 (2010) 35-42.

[11] S. Mahmoodi, M.R. Ehsani, S.M. Ghoreishi, Effect of promoter in the oxidative coupling of methane over synthesized Mn/SiO₂ nanocatalysts via incipient wetness impregnation, Journal of Industrial and Engineering Chemistry, 16 (2010) 923-928.

[12] S.M.K. Shahri, A.N. Pour, Ce-promoted Mn/Na₂WO₄/SiO₂ catalyst for oxidative coupling of methane at atmospheric pressure, Journal of Natural Gas Chemistry, 19 (2010) 47-53.

[13] J.Y. Lee, W. Jeon, J.-W. Choi, Y.-W. Suh, J.-M. Ha, D.J. Suh, Y.-K. Park, Scaled-up production of C₂ hydrocarbons by the oxidative coupling of methane over pelletized Na₂WO₄/Mn/SiO₂ catalysts: Observing hot spots for the selective process, Fuel, 106 (2013) 851-857.

[14] H.R. Godini, A. Gili, O. Görke, S. Arndt, U. Simon, A. Thomas, R. Schomäcker, G. Wozny, Sol–gel method for synthesis of Mn–Na₂WO₄/SiO₂ catalyst for methane oxidative coupling, Catalysis Today, 236 (2014) 12-22.

[15] T.W. Elkins, H.E. Hagelin-Weaver, Characterization of Mn-Na₂WO₄/SiO₂ and Mn-Na₂WO₄/MgO catalysts for the oxidative coupling of methane, Applied Catalysis A: General, 497 (2015) 96-106.

[16] N. Hiyoshi, T. Ikeda, Oxidative coupling of methane over alkali chloride-Mn-Na₂WO₄/SiO₂ catalysts: Promoting effect of molten alkali chloride, Fuel Processing Technology, 133 (2015) 29-34.

[17] M. Yildiz, Y. Aksu, U. Simon, T. Otremba, K. Kailasam, C. Göbel, F. Girgsdies, O. Görke, F. Rosowski, A. Thomas, R. Schomäcker, S. Arndt, Silica material variation for the Mn_xO_y-Na₂WO₄/SiO₂, Applied Catalysis A: General, 525 (2016) 168-179.

[18] V. Fleischer, R. Steuer, S. Parishan, R. Schomäcker, Investigation of the surface reaction network of the oxidative coupling of methane over Na₂WO₄/Mn/SiO₂ catalyst by temperature programmed and dynamic experiments, Journal of Catalysis, 341 (2016) 91-103.

[19] P. Wang, G. Zhao, Y. Liu, Y. Lu, TiO₂-doped Mn₂O₃-Na₂WO₄/SiO₂ catalyst for oxidative coupling of methane: Solution combustion synthesis and MnTiO₃-dependent low-temperature activity improvement, Applied Catalysis A: General, 544 (2017) 77-83.

[20] P. Wang, G. Zhao, Y. Wang, Y. Lu, MnTiO₃-driven low-temperature oxidative coupling of methane over TiO₂-doped Mn₂O₃-Na₂WO₄/SiO₂ catalyst, Science Advances, 3 (2017) e1603180.

[21] R.T. Yunarti, S. Gu, J.-W. Choi, J. Jae, D.J. Suh, J.-M. Ha, Oxidative coupling of methane using Mg/Ti-doped SiO₂-supported Na₂WO₄/Mn catalysts, ACS Sustainable Chemistry & Engineering, 5 (2017) 3667-3674.

[22] C. Uzunoglu, A. Leba, R. Yildirim, Oxidative coupling of methane over Mn-Na₂WO₄ catalyst supported by monolithic SiO₂, Applied Catalysis A: General, 547 (2017) 22-29.

[23] N.S. Hayek, N.S. Lucas, C.W. Damouny, O.M. Gazit, Critical surface parameters for the oxidative coupling of methane over the Mn-Na-W/SiO₂ catalyst, ACS Appl Mater Interfaces, 9 (2017) 40404-40411.

[24] S. Gu, H.-S. Oh, J.-W. Choi, D.J. Suh, J. Jae, J. Choi, J.-M. Ha, Effects of metal or metal oxide additives on oxidative coupling of methane using Na₂WO₄/SiO₂ catalysts: Reducibility of metal additives to manipulate the catalytic activity, Applied Catalysis A: General, 562 (2018) 114-119.

[25] P. Wang, X. Zhang, G. Zhao, Y. Liu, Y. Lu, Oxidative coupling of methane: MO_x-modified (M=Ti, Mg, Ga, Zr) Mn₂O₃-Na₂WO₄/SiO₂ catalysts and effect of MO_x modification, Chinese Journal of Catalysis, 39 (2018) 1395-1402.

[26] A. Seubsai, P. Tiencharoenwong, P. Kidamorn, C. Niamnuy, Synthesis of light hydrocarbons via oxidative coupling of methane over silica-supported Na₂WO₄-TiO₂ catalyst, Engineering Journal, 23 (2019) 169-182.

[27] N.S. Hayek, G.J. Khlief, F. Horani, O.M. Gazit, Effect of reaction conditions on the oxidative coupling of methane over doped MnO_x-Na₂WO₄/SiO₂ catalyst, Journal of Catalysis, 376 (2019) 25-31.

[28] J. Kim, L.-H. Park, J.-M. Ha, E.D. Park, Oxidative coupling of methane over Mn₂O₃-Na₂WO₄/SiC catalysts, Catalysts, 9 (2019).

[29] T. Chukeaw, S. Sringam, M. Chareonpanich, A. Seubsai, Screening of single and binary catalysts for oxidative coupling of methane to value-added chemicals, Molecular Catalysis, 470 (2019) 40-47.

[30] S. Sringam, P. Kidamorn, T. Chukeaw, M. Chareonpanich, A. Seubsai, Investigation of metal oxide additives onto Na₂WO₄-Ti/SiO₂ catalysts for oxidative coupling of methane to value-added chemicals, Catalysis Today, 358 (2020) 263-269.

[31] P. Kidamorn, W. Tiyatha, T. Chukeaw, C. Niamnuy, M. Chareonpanich, H. Sohn, A. Seubsai, Synthesis of value-added chemicals via oxidative coupling of methanes over Na₂WO₄-TiO₂-MnO_x/SiO₂ catalysts with alkali or alkali earth oxide additives, ACS Omega, 5 (2020) 13612-13620.

[32] J. Liu, J. Yue, M. Lv, F. Wang, Y. Cui, Z. Zhang, G. Xu, From fundamentals to chemical engineering on oxidative coupling of methane for ethylene production: A review, Carbon Resources Conversion, 5 (2022) 1-14.

[33] V. Jodaian, M. Mirzaei, Ce–promoted Na₂WO₄/TiO₂ catalysts for the oxidative coupling of methane, Inorganic Chemistry Communications, 100 (2019) 97-100.

[34] F. Cheng, J. Yang, L. Yan, J. Zhao, H. Zhao, H. Song, L.J. Chou, Enhancement of La2O3 to Li-Mn/WO₃/TiO₂ for oxidative coupling of methane, Journal of Rare Earths, 38 (2020) 167-174. [35] G.J. Kim, J.T. Ausenbaugh, H.T. Hwang, Effect of TiO2 on the Performance of Mn/Na2WO4 Catalysts in Oxidative Coupling of Methane, Industrial & Engineering Chemistry Research, 60 (2021) 3914-3921.

[36] W. Zheng, D. Cheng, N. Zhu, F. Chen, X. Zhan, Studies on the structure and catalytic performance of S and P promoted Na-W-Mn-Zr/SiO₂ catalyst for oxidative coupling of methane, Journal of Natural Gas Chemistry, 19 (2010) 15-20.

[37] W. Zheng, D. Cheng, F. Chen, X. Zhan, Characterization and catalytic behavior of Na-W-Mn-Zr-S-P/SiO₂ prepared by different methods in oxidative coupling of methane, Journal of Natural Gas Chemistry, 19 (2010) 515-521.

[38] H. Liu, D. Yang, R. Gao, L. Chen, S. Zhang, X. Wang, A novel Na₂WO₄–Mn/SiC monolithic foam catalyst with improved thermal properties for the oxidative coupling of methane, Catalysis Communications, 9 (2008) 1302-1306.

[39] T. Chukeaw, W. Tiyatha, K. Jaroenpanon, T. Witoon, P. Kongkachuichay, M. Chareonpanich, K. Faungnawakij, N. Yigit, G. Rupprechter, A. Seubsai, Synthesis of value-added hydrocarbons via oxidative coupling of methane over MnTiO₃-Na₂WO₄/SBA-15 catalysts, Process Safety and Environmental Protection, 148 (2021) 1110-1122.

[40] M. Yıldız, Mesoporous TiO₂-rutile supported Mn_xO_y-Na₂WO₄: Preparation, characterization and catalytic performance in the oxidative coupling of methane, Journal of Industrial and Engineering Chemistry, 76 (2019) 488-499.