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1 Analytical solutions for the concentration profiles
inside pore α-A

Using the methodology first established by Professor Ernst
Thiele1 and presented in detail in Professor Octave Levenspiel's
book2 we derive material balances for the pores. The analytical
solutions for the material balances are presented here. The meth-
ods we applied to derive the analytical solutions can be found in
the book of Professor George Simmons3. For substrate S1, we
derive the following material balance around pore α-A.

d2S1,α−A
dx2

=
kA ⋅EA,α−A

D1
⋅S1,α−A (1)

The following two boundary conditions are considered:

S1,α−A|x=0 = S1,0 (2)

dS1,α−A
dx

|

|

|x=L
= 0 (3)

Equation (1) is a second order, linear and homogeneous differ-
ential equation with constant coefficients. The general solution
is:

S1,α−A = c1 ⋅ em1,α−A⋅x+ c2 ⋅ e−m1,α−A⋅x (4)

with

m1,α−A =

√

kA ⋅EA,α−A
D1

(5)

c1 =
S1,0 ⋅ e−m1,α−A⋅L

em1,α−A⋅L+ e−m1,α−A⋅L
(6)

c2 =
S1,0 ⋅ em1,α−A⋅L

em1,α−A⋅L+ e−m1,α−A⋅L
(7)

For substrate S2, we derive the following material balance

around pore α-A.

d2S2,α−A
dx2

= −
kA ⋅EA,α−A

D2
⋅S1,α−A (8)

Substituting the solution we obtained for S1,α−A in Equation
(8) we get:

d2S2,α−A
dx2

= −
kA ⋅EA,α−A

D2
⋅ c1 ⋅ e

m1,α−A⋅x+

−
kA ⋅EA,α−A

D2
⋅ c2 ⋅ e

−m1,α−A⋅x (9)

The following two boundary conditions are considered:

S2,α−A|x=0 = S2,0 (10)

dS2,α−A
dx

|

|

|x=L
= 0 (11)

Equation (9) is a second order, linear and heterogeneous differ-
ential equation with constant coefficients. The general solution
is:

S2,α−A = c3 ⋅x+ c4+ c5 ⋅ em1,α−A⋅x+ c6 ⋅ e−m1,α−A⋅x (12)

with

c3 = −c5 ⋅m1,α−A ⋅ em1,α−A⋅L+ c6 ⋅m1,α−A ⋅ e−m1,α−A⋅L (13)

c4 = S2,0− c5− c6 (14)

c5 = −
kA ⋅EA,α−A ⋅ c1
D2 ⋅m21,α−A

(15)

c6 = −
kA ⋅EA,α−A ⋅ c2
D2 ⋅m21,α−A

(16)
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2 Analytical solutions for the concentration profiles
inside pore α-B

For substrate S2, we derive the following material balance around
pore α-B.

d2S2,α−B
dx2

=
kB ⋅EB,α−B

D2
⋅S2,α−B (17)

The following two boundary conditions are considered:

S2,α−B|x=0 = S2,0 (18)

dS2,α−B
dx

|

|

|x=L
= 0 (19)

Equation (17) is a second order, linear and homogeneous dif-
ferential equation with constant coefficients. The general solution
is:

S2,α−B = d1 ⋅ em2,α−B⋅x+d2 ⋅ e−m2,α−B⋅x (20)

with

m2,α−B =

√

kB ⋅EB,α−B
D2

(21)

d1 =
S2,0 ⋅ e−m2,α−B⋅L

em2,α−B⋅L+ e−m2,α−B⋅L
(22)

d2 =
S2,0 ⋅ em2,α−B⋅L

em2,α−B⋅L+ e−m2,α−B⋅L
(23)

For substrate S3, we derive the following material balance
around pore α-B.

d2S3,α−B
dx2

= −
kB ⋅EB,α−B

D3
⋅S2,α−B (24)

Substituting the solution we obtained for S2,α−B in Equation
(24) we get:

d2S3,α−B
dx2

= −
kB ⋅EB,α−B

D3
⋅d1 ⋅ e

m2,α−B⋅x+

−
kB ⋅EB,α−B

D3
⋅d2 ⋅ e

−m2,α−B⋅x (25)

The following two boundary conditions are considered:

S3,α−B|x=0 = S3,0 (26)

dS3,α−B
dx

|

|

|x=L
= 0 (27)

Equation (25) is a second order, linear and heterogeneous dif-
ferential equation with constant coefficients. We applied the ap-
propriate methodology by first solving the corresponding homo-
geneous equation and then solving for the heterogeneous terms.
The general solution is:

S3,α−B = d3 ⋅x+d4+d5 ⋅ em2,α−B⋅x+d6 ⋅ e−m2,α−B⋅x (28)

with

d3 = −(d5 ⋅m2,α−B ⋅ em2,α−B⋅L−d6 ⋅m2,α−B ⋅ e−m2,α−B⋅L) (29)

d4 = S3,0−d5−d6 (30)

d5 = −
kB ⋅EB,α−B ⋅d1
D3 ⋅m22,α−B

(31)

d6 = −
kB ⋅EB,α−B ⋅d2
D3 ⋅m22,α−B

(32)

3 Macro kinetic expressions for the single immobi-
lization case

The macro kinetics or apparent reaction rates, vk, for the single
immobilization case can then be calculated by applying Fick’s law
at the start (x = 0) of the corresponding pore. Since the concen-
tration profiles were calculated analytically, we can also derive
analytical expressions for the concentration gradient at the be-
ginning of the pores and use this to get an analytical expression
of the apparent reaction rates. For the single immobilization case,
these are presented below.

vI = p1,α−A ⋅S1,0 (33)

vII = p2,α−B ⋅S2,0 (34)

with

p1,α−A =Nα−A ⋅A ⋅D1 ⋅m1,α−A ⋅ tanh(m1,α−A ⋅L) (35)

p2,α−B =Nα−B ⋅A ⋅D2 ⋅m2,α−B ⋅ tanh(m2,α−B ⋅L) (36)

2



4 Analytical solutions for the concentration profiles
inside pore β

For substrate S1, we derive the following material balance around
pore β.

d2S1,β
dx2

=
kA ⋅EA,β
D1

⋅S1,β (37)

The following two boundary conditions apply:

S1,β|x=0 = S1,0 (38)

dS1,β
dx

|

|

|x=L
= 0 (39)

Equation (37) is a second order, linear and homogeneous dif-
ferential equation with constant coefficients. The general solution
is:

S1,β = e1 ⋅ e
m1,β⋅x+ e2 ⋅ e

−m1,β⋅x (40)

with

m1,β =

√

kA ⋅EA,β
D1

(41)

In order to find the particular solution we use the two boundary
conditions given in Equations (38) and (39).

e1 =
S1,0 ⋅ e

−m1,β⋅L

em1,β⋅L+ e−m1,β⋅L
(42)

e2 =
S1,0 ⋅ e

m1,β⋅L

em1,β⋅L+ e−m1,β⋅L
(43)

For substrate S2, we can write the following material balance
around pore β.

d2S2,β
dx2

−
kB ⋅EB,β
D2

⋅S2,β = −
kA ⋅EA,β
D2

⋅S1,β (44)

Substituting the solution we obtained for S1,β in Equation (44)
we get:

d2S2,β
dx2

−
kB ⋅EB,β
D2

⋅S2,β = −
kA ⋅EA,β
D2

⋅ e1 ⋅ e
m1,β⋅x+

−
kA ⋅EA,β
D2

⋅ e2 ⋅ e
−m1,β⋅x (45)

The following two boundary conditions are considered:

S2,β|x=0 = S2,0 (46)

dS2,β
dx

|

|

|x=L
= 0 (47)

Equation (45) is a second order, linear and heterogeneous dif-
ferential equation with constant coefficients. We applied the ap-
propriate methodology by first solving the corresponding homo-
geneous equation and then solving for the heterogeneous terms.
The general solution is:

S2,β = e3 ⋅ e
m2,β⋅x+ e4 ⋅ e

−m2,β⋅x+ e5 ⋅ e
m1,β⋅x+ e6 ⋅ e

−m1,β⋅x (48)

with

m2,β =

√

kB ⋅EB,β
D2

(49)

e3 = S2,0− e4− e5− e6 (50)

e4 =
m2,β ⋅ e

m2,β⋅L ⋅ (S2,0− e5− e6)

m2,β ⋅ e
m2,β⋅L+m2,β ⋅ e

−m2,β⋅L
+

+
m1,β ⋅ (e5 ⋅ e

m1,β⋅L− e6 ⋅ e
−m1,β⋅L)

m2,β ⋅ e
m2,β⋅L+m2,β ⋅ e

−m2,β⋅L
(51)

e5 = −
kA ⋅EA ⋅ e1

D2 ⋅ (m21,β−m
2
2,β)

(52)

e6 = −
kA ⋅EA ⋅ e2

D2 ⋅ (m21,β−m
2
2,β)

(53)

For substrate S3, we derive the following material balance
around pore β.

d2S3,β
dx2

= −
kB ⋅EB,β
D3

⋅S2,β (54)

The following two boundary conditions are considered:

S3,β|x=0 = S3,0 (55)

dS3,β
dx

|

|

|x=L
= 0 (56)

Equation (54) is a second order, linear and heterogeneous dif-
ferential equation with constant coefficients. We applied the ap-
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propriate methodology by first solving the corresponding homo-
geneous equation and then solving for the heterogeneous terms.
The general solution is:

S3,β = e7+ e8 ⋅x+ e9 ⋅ e
m2,β⋅x+ e10 ⋅ e

−m2,β⋅x+ e11 ⋅ e
m1,β⋅x (57)

with

e7 = S3,0− e9− e10− e11− e12 (58)

e8 = m2,β ⋅ (−e9 ⋅ e
m2,β⋅L+ e10 ⋅ e

−m2,β⋅L)+

+m1,β ⋅ (−e11 ⋅ e
m1,β⋅L+ e12 ⋅ e

−m2,β⋅L) (59)

e9 = −
kB ⋅EB ⋅ e3
D3 ⋅m22,β

(60)

e10 = −
kB ⋅EB ⋅ e4
D3 ⋅m22,β

(61)

e11 = −
kB ⋅EB ⋅ e5
D3 ⋅m21,β

(62)

e12 = −
kB ⋅EB ⋅ e6
D3 ⋅m21,β

(63)

5 Macro kinetic expressions for the co-
immobilization case

The macro kinetics or apparent reaction rates, vk, for the co-
immobilization spatial immobilization distribution can then be
calculated by applying Fick’s law at the start (x = 0) of the corre-
sponding pore. Since the concentration profiles were calculated
analytically, we can also derive analytical expressions for the con-
centration gradient at the beginning of the pores and use this to
get an analytical expression of the apparent reaction rates. For
the co-immobilization case, these are presented below.

vI = p1,β ⋅S1,0 (64)

vII = p2,β ⋅S1,0+p3,β ⋅S2,0 (65)

with

p1,β =Nβ ⋅A ⋅D1 ⋅m1,β ⋅ tanh(m1,β ⋅L) (66)

p2,β =Nβ ⋅A ⋅D2 ⋅m2,β ⋅ tanh(m2,β ⋅L) (67)

p3,β =
Nβ ⋅A ⋅D1 ⋅m21,β ⋅m

2
2,β

m21,β−m
2
2,β

⋅ [
tanh(m2,β ⋅L)

m2,β
+

−
tanh(m1,β ⋅L)

m1,β
] (68)

6 Analytical solution of the time profiles in a batch
reactor for the single immobilization case

The following system of first order differential equations repre-
sents the dynamic material balances for the batch reactor when
single immobilization is used as a spatial immobilization strategy
(α):

dS1,0
dt

= −p1,α−A ⋅S1,0 (69)

dS2,0
dt

= +p1,α−A ⋅S1,0−p2,α−B ⋅S2,0 (70)

dS3,0
dt

= −p2,α−B ⋅S2,0 (71)

with the following initial conditions:

S1,0|t=0 = S01,0 (72)

S2,0|t=0 = 0 (73)

S3,0|t=0 = 0 (74)

This is a system of first order, linear differential equations. The
solution is:

S1,0 = S01,0 ⋅ e
−p1,α−A⋅t (75)

S2,0 = S01,0 ⋅
p1,α−A

p2,α−B−p1,α−A
⋅ (e−p1,α−A⋅t− e−p2,α−B⋅t) (76)

S3,0 = S01,0−S1,0−S2,0 (77)

7 Analytical solution of the time profiles in a batch
reactor for the co-immobilization case

The following system of first order differential equations repre-
sents the dynamic material balances for the batch reactor when

4



co-immobilization is used as a spatial immobilization strategy (β):

dS1,0
dt

= −p1,β ⋅S1,0 (78)

dS2,0
dt

= +p1,β ⋅S1,0−p2,CI ⋅S1,0−p3,CI ⋅S2,0 (79)

dS3,0
dt

= p2,CI ⋅S1,0+p3,CI ⋅S2,0 (80)

with initial conditions:

S1,0|t=0 = S01,0 (81)

S2,0|t=0 = 0 (82)

S3,0|t=0 = 0 (83)

This is a system of first order, linear differential equations. The
solution is:

S1,0 = S01,0 ⋅ e
−p1,β⋅t (84)

S2,0 = S01,0 ⋅
p1,β−p3,β
p2,β−p1,β

⋅ (e−p1,β⋅t− e−p2,β⋅t) (85)

S3,0 = S01,0−S1,0−S2,0 (86)

8 Simplification of α∕β
The ratio α∕β can be calculated by the following expression:

α∕β =
Sα3,0

Sβ3,0
=
1− e−p1,α−A⋅t− p1,α−A

p2,α−B−p1,α−A
⋅ (e−p1,α−A⋅t− e−p2,α−B⋅t)

1− e−p1,β⋅t−
p1,β−p3,β
p2,β−p1,β

⋅ (e−p1,β⋅t− e−p2,β⋅t)
(87)

When the products m1,n ⋅L and m2,n ⋅L are larger than one,
all tangent hyperbolicus terms become roughly equal to one. In
addition, when considering cases where D1 = D2 = D, Equation
(87) can be simplified. The terms p1,n, p2,n and p3,n will now be
as follows:

p1,α−A =Nα−A ⋅A ⋅D ⋅m1,α−A (88)

p2,α−B =Nα−B ⋅A ⋅D ⋅m2,α−B (89)

p1,β =Nβ ⋅A ⋅D ⋅m1,β (90)

p2,β =Nβ ⋅A ⋅D ⋅m2,β (91)

p3,β =
Nβ ⋅A ⋅D ⋅m21,β ⋅m

2
2,β

m21,β−m
2
2,β

⋅

[

1
m2,β

− 1
m1,β

]

(92)

They can be expressed in terms of p1,α−A and p2,α−B as follows:

p1,α−B = p1,α−A (93)

p1,β =
√

2 ⋅p1,α−A (94)

p2,β =
√

2 ⋅p2,α−B (95)

p3,β =

√

2 ⋅p1,α−A ⋅p2,α−B
p1,α−A+p2,α−B

(96)

We define two moduli, �1 and �2 as follows:

�1 = p1,α−A ⋅ t (97)

�2 = p2,α−B ⋅ t (98)

Equation (87) can then be reformulated as follows:

α∕β =
1− e−�1 − �1

�2−�1
⋅ (e−�1 − e−�2 )

1− e−
√

2⋅�1 −
�21

�22−�
2
1
⋅ (e−

√

2⋅�1 − e−
√

2⋅�2 )
(99)
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