Supplementary Information

Modeling and analysis of ammonia oxidation and nitrous oxide formation on dual-layer ammonia slip catalyst for diesel aftertreatment

Dongwei Yao^{a,b,*}, Yuxi Li^a, Feng Wu^a, Weiyang Jin^c, Ziyan Zhang^a, Xiaohan Hu^a, Jiadong Hu^a

(a College of Energy Engineering, Zhejiang University, Hangzhou 310027, China

b Key Laboratory of Smart Thermal Management Science & Technology for Vehicles of Zhejiang Province, Taizhou 317200, China

c Wuxi Weifu Environmental Catalysts Co., Ltd, Wuxi 214018, China)

* Corresponding author at: College of Energy Engineering, Zhejiang University, 38 Zheda Road, West Lake District, Hangzhou, Zhejiang Province 310027, China

E-mail: dwyao@zju.edu.cn (Dongwei Yao)

The developed low-dimensional kinetic model was compared with the full 1+1D kinetic model from reference to confirm the validity of the approximation of the internal Sherwood number.¹ The optimized kinetic parameters from the developed low-dimensional kinetic model were used in the full 1+1D kinetic model without further optimization. As shown in Fig. S1-S3, the simulated results indicated that the developed low-dimensional kinetic model has good prediction in conversion and product selectivity as well as the full 1+1D kinetic model. The biggest prediction errors of the developed low-dimensional kinetic model for Cu/SSZ-13 catalyst under Standard SCR conditions, Pt/Al₂O₃ and dual-layer ASC catalysts under ammonia oxidation conditions were 6.2%, 6.4% and 4.7%, respectively. While the biggest prediction errors of the full 1+1D kinetic model were 6.0%, 8.3% and 5.0%, respectively. The quantitative comparison results of model prediction error confirmed the validity of approximation.

Fig. S1. (A) The developed low-dimensional kinetic model and (B) full 1+1D kinetic model simulated NH₃, NO conversions and N₂O yields under Standard SCR conditions over Cu/SSZ-13 catalyst at GHSV 60,000/hour. Feed: 300 ppm NH₃, 300 ppm NO, 10% O₂, 5% H₂O, balance N₂. (symbols: experiments; dash lines: developed low-dimensional kinetic model simulation; lines: full 1+1D kinetic model simulation)

Fig. S2. (A) The developed low-dimensional kinetic model and (B) full 1+1D kinetic model simulated NH₃ conversions and product yields under NH₃ oxidation conditions over Pt/Al₂O₃ catalyst at GHSV 90,000/hour. Feed: 300 ppm NH₃, 10%O₂, 5%H₂O, balance N₂. (symbols: experiments; dash lines: developed low-dimensional kinetic model simulation; lines: full 1+1D kinetic model simulation)

Fig. S3. (A) The developed low-dimensional kinetic model and (B) full 1+1D kinetic model simulated NH₃ conversions and product yields under NH₃ oxidation conditions over dual-layer ASC catalyst at GHSV 90,000/hour. Feed: 300 ppm NH₃, 10%O₂, 5%H₂O, balance N₂. (symbols: experiments; dash lines: developed low-dimensional kinetic model simulation; lines: full 1+1D kinetic model simulation)

Fig. S4. Simulated NH₃ coverages during NH₃-TPD experiment over Cu/SSZ-13 catalyst at GHSV 60,000/hour. Feed: 300 ppm NH₃, 5% H₂O, balance N₂ during adsorption; 5% H₂O, balance N₂ during purge process and temperature programmed desorption process.

Fig. S5 Isothermal transient experiment inlet gas mole fraction concentrations at 250°C with N₂ as balance gas.

Fig. S6 Model predicted (A) N_2 and (B) N_2O formation rates under NH_3 oxidation conditions at GHSV 90,000/hour. Feed: 300 ppm NH_3 , 10% O_2 , 5% H_2O , balance N_2 .

Fig. 57 Model predicted species concentrations within washcoat over (A) Pt/Al₂O₃ catalyst and (B) dual-layer ASC catalyst under NH₃ oxidation conditions at GHSV 90,000/hour. Feed: 300 ppm NH₃, 10% O₂, 5% H₂O, balance N₂. (lines: Pt/Al₂O₃ layer; dash lines: Cu/SSZ-13 layer)

Reference

1 P. S. Dhillon, M. P. Harold, D. Wang, A. Kumar and S. Y. Joshi, React. Chem. Eng., 2019, 4, 1103–1115.