Supporting Information: Energetic optimization of thermochemical air separation for the production of sustainable nitrogen

1 Thermodynamic properties

Thermodynamic properties of the materials investigated are summarized in table 1. The values of $Ca_{1-x}Sr_xMnO_{3-\delta}$ are extracted from¹ with a linear approximation. The original data was collected via the van't Hoff approach of thermogravimetric measurements.

Material	$\Delta h^{\circ}_{\delta}$	$\Delta s^{\circ}_{\delta}$	a	extracted from
	[kJmol ⁻¹]	$[\text{Jmol}^{-1}\text{K}^{-1}]$	[-]	
SrFeO _{3-δ}	74	47	1.07	2
$Sr_{0.8}Ca_{0.2}FeO_{3-\delta}$	57.5	-	-	3
CaMnO _{3-δ}	180	108	1	1
$Ca_{0.9}Sr_{0.1}MnO_{3-\delta}$	168	100	1	1
$Ca_{0.8}Sr_{0.2}MnO_{3-\delta}$	157	92	1	1
$Ca_{0.7}Sr_{0.3}MnO_{3-\delta}$	146	84	1	1
$Ca_{0.6}Sr_{0.4}MnO_{3-\delta}$	135	76	1	1

Table 1 Thermodynamic properties of the materials investigated.

2 Calculation of pressure drop Δp

The pressure drop Δp during oxidation and reduction at 1 bar is calculated based on the Ergun equation⁴. The necessary input values are listed in the following:

length of the packed bed ΔL : 500 mm fluid velocity in the empty pipe v : 0.422 $\frac{\text{m}}{\text{s}}$ porosity of the filling ψ : 0.4 Sauter particle diameter d : 1.5 mm The temperature and pressure dependent dynamic viscosity and fluid density are summarized in table 2 and 3. These values are calculated based on the material properties of air extracted from⁵.

Table 2 Dynamic viscosity η in $\frac{kg}{ms}$ calculated for the applied temperatures and pressures during oxidation and reduction.

		Temperature [K]					
		623	873	973	1023	1173	1223
pressure [bar]	1	316.5	398.0	427.9	442.4	484.6	498.4
	2	316.8		427.7	442.1		
	3	316.8		427.7	442.1		
	4	316.8		427.7	442.1		
	5	317.1		427.6	441.9		

Table 3 Fluid density of air in $\frac{kg}{m^3}$ calculated for the applied temperatures and pressures during oxidation and reduction.

		Temperature [K]					
		623	873	973	1023	1173	1223
pressure [bar]	1	0.56	0.398	0.358	0.341	0.3	0.288
	2	1.092		0.728	0.702		
	3	1.626		1.097	1.060		
	4	2.161		1.465	1.418		
	5	2.691		1.873	1.782		

The resulting pressure drop Δp is listed in the following table.

Table 4 Pressure drop Δp in bar. Calculated for the applied temperatures and pressures during oxidation and reduction.

		Temperature [K]					
		623	873	973	1023	1173	1223
pressure [bar]	1	0.0143	0.0248	0.0295	0.0319	0.0395	0.0423
	2	0.0073		0.0145	0.0155		
	3	0.0049		0.0096	0.0103		
	4	0.0037		0.0072	0.0077		
	5	0.0030		0.0057	0.0060		

3 Material composition of $SrFeO_{3-\delta}$ granules

The material composition of the SrFeO_{3- δ} granules was studied with powder X-ray diffraction (XRD) using a *D8-Advance (A25)* instrument from *Bruker* with a cobalt

Figure 1 XRD-pattern of the SrFeO_{3- δ} granules. This patter was measured with a cobalt anode. The vertical lines indicate the main peaks of the structure with which this pattern was identified. They refer to PDF 01-081-9514 of the database *PDF 2 - Release 2019 RDB* of the *International Center for Diffraction Data (ICCD)*.

anode and a Lynxe-EyeXET-Detector (fig.1).

The figure 1 shows that the granules prepared are $SrFeO_{3-\delta}$ granules without major side phases. The vertical lines indicate the peak positions of the PDF 01-081-9514 of the database *PDF 2 - Release 2019 RDB* of the *International Center for Diffraction Data (ICCD)*.

4 Additional graphs for parametric study

The figures 2 and 3 display both graphs of fig. 6d in the main manuscript separately.

Figure 2 Variation of the PSA output oxygen x_{O_2} mole fraction and thus of the oxygen partial pressure during oxidation for Sr_{0.8}Ca_{0.2}FeO_{3.6}.

Figure 3 Extract from fig. 2.

References

- L. Klaas, B. Bulfin, D. Kriechbaumer, M. Roeb and C. Sattler, *Physical Chemistry Chemical Physics*, 2023, 25, 9188–9197.
- [2] J. Vieten, B. Bulfin, D. E. Starr, A. Hariki, F. M. F. de Groot, A. Azarpira, C. Zachäus, M. Hävecker, K. Skorupska, N. Knoblauch, M. Schmücker, M. Roeb and C. Sattler, *Energy Technology*, 2018, 7, 131–139.
- [3] S. Capstick, B. Bulfin, J. Naik, M. Gigantino and A. Steinfeld, *Chemical Engineer-ing Journal*, 2023, 452, 139289.
- [4] S. Ergun, Chemical Engineering Progress, 1952, 48, 89–94.
- [5] V. D. I.-G. V. und Chemieingenieurwesen (GVC), VDI-Wärmeatlas (VDI-Buch), Springer, 2005, p. 1500.