Supporting Information: Energetic optimization of thermochemical air separation for the production of sustainable nitrogen

1 Thermodynamic properties

Thermodynamic properties of the materials investigated are summarized in table [1.](#page-0-0) The values of $Ca_{1-x}Sr_xMnO_{3-\delta}$ $Ca_{1-x}Sr_xMnO_{3-\delta}$ $Ca_{1-x}Sr_xMnO_{3-\delta}$ are extracted from¹ with a linear approximation. The original data was collected via the van't Hoff approach of thermogravimetric measureoriginal data was collected via the van't Hoff approach of thermogravimetric measurements.

Table 1 Thermodynamic properties of the materials investigated.

2 Calculation of pressure drop ∆*p*

The pressure drop ∆*p* during oxidation and reduction at 1 bar is calculated based on the Ergun equation^{[4](#page-5-3)}. The necessary input values are listed in the following:

> length of the packed bed ∆*L* : 500 mm fluid velocity in the empty pipe $v : 0.422 \frac{m}{s}$ s porosity of the filling ψ : 0.4 Sauter particle diameter *^d* : 1.5 mm

The temperature and pressure dependent dynamic viscosity and fluid density are summarized in table [2](#page-1-0) and [3.](#page-1-1) These values are calculated based on the material prop-erties of air extracted from^{[5](#page-5-4)}.

Table 2 Dynamic viscosity η in $\frac{kg}{ms}$ calculated for the applied temperatures and pressures during oxidation and reduction.

		Temperature [K]					
		623	873	973	1023	1173	1223
pressure [bar]		316.5	398.0 427.9		442.4	484.6	498.4
		316.8		427.7	442.1		
	3	316.8		427.7	442.1		
		316.8		427.7	442.1		
		317.1		427.6	441.9		

Table 3 Fluid density of air in $\frac{kg}{m^3}$ calculated for the applied temperatures and pressures during oxidation and reduction.

The resulting pressure drop Δp is listed in the following table.

Table 4 Pressure drop ∆*p* in bar. Calculated for the applied temperatures and pressures during oxidation and reduction.

3 Material composition of $\mathrm{SrFeO}_{3\text{-}\delta}$ granules

The material composition of the SrFeO_{3- δ} granules was studied with powder X-ray diffraction (XRD) using a D8-Advance (A25) instrument from *Bruker* with a cobalt diffraction (XRD) using a *D8-Advance (A25)* instrument from *Bruker* with a cobalt

Figure 1 XRD-pattern of the SrFeO $_{3-\delta}$ granules. This patter was measured with a cobalt anode. The vertical lines indicate the main peaks of the structure with which this pattern was identified. They refer to PDF 01-081-9514 of the database PDF 2 - Release 2019 RDB of the International Center for Diffraction Data (ICCD).

anode and a *Lynxe-EyeXET-Detector* (fig[.1\)](#page-2-0).

The figure [1](#page-2-0) shows that the granules prepared are S rFe $O_{3-\delta}$ granules without major phases. The vertical lines indicate the neak positions of the PDF 01-081-0514 of side phases. The vertical lines indicate the peak positions of the PDF 01-081-9514 of the database *PDF 2 - Release 2019 RDB* of the *International Center for Di*ff*raction Data (ICCD)*.

4 Additional graphs for parametric study

The figures [2](#page-3-0) and [3](#page-4-0) display both graphs of fig. 6d in the main manuscript separately.

Figure 2 Variation of the PSA output oxygen x_{O_2} mole fraction and thus of the oxygen partial pressure during oxidation for $\text{Sr}_{0.8}\text{Ca}_{0.2}\text{FeO}_{3\text{-}\delta}.$

Figure 3 Extract from fig. [2.](#page-3-0)

References

- [1] L. Klaas, B. Bulfin, D. Kriechbaumer, M. Roeb and C. Sattler, *Physical Chemistry Chemical Physics*, 2023, 25, 9188–9197.
- [2] J. Vieten, B. Bulfin, D. E. Starr, A. Hariki, F. M. F. de Groot, A. Azarpira, C. Zachäus, M. Hävecker, K. Skorupska, N. Knoblauch, M. Schmücker, M. Roeb and C. Sattler, *Energy Technology*, 2018, 7, 131–139.
- [3] S. Capstick, B. Bulfin, J. Naik, M. Gigantino and A. Steinfeld, *Chemical Engineering Journal*, 2023, 452, 139289.
- [4] S. Ergun, *Chemical Engineering Progress*, 1952, 48, 89–94.
- [5] V. D. I.-G. V. und Chemieingenieurwesen (GVC), *VDI-Wärmeatlas (VDI-Buch)*, Springer, 2005, p. 1500.