Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Ru/La_2S_3 nanorods as electrocatalyst for efficient N_2 fixation under

ambient conditions

Wang Yingshu^{a*}, Wang Hong^a, Tang Yixin^a, Shu Yu^b, Zhao Suying^a, Hong Lu^a, Xu Zhenqi^a

^aFujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals,

College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China

^bCollege of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108,

China

*Corresponding authors: ljhwysh@fzu.edu.cn (Y. Wang)

Table of Contents:

I .Experimental Section	
II .Supplementary Figures	
III.Supplementary Table	S6-S7
IV.References	S8

I. Experimental Section

Process of the Nafion membrane

Step 1: Boiling it in a 3 wt% H_2O_2 solution at 80 °C for 1 h. Step 2: Washing it in deionized water several times. Step 3: Boiling it for 1 h in 80 °C sulfuric acid. Step 4: Soaking it for 30 min and repeating several times in deionized water.

Determination of ammonia (NH₃)

Typically, the indophenol blue method was adopted to quantify the NH₃ in 0.1 M electrolyte. In 0.1 M Na₂SO₄, 4 mL the electrolyte was taken from the cathode chamber and was mixed with 50 µL oxidizing solution prepared by NaClO (ρ Cl = 4–4.9) and 0.75 M NaOH, 500 µL coloring solution (0.4 M C₇H₅O₃Na and 0.32 M NaOH), and 50 µL catalyst solution (1 wt% Na₂[Fe(CN)₅NO]₂H₂O). After standing in a lightless environment ambient temperatures for 1 h, such solution was analyzed via the UV-Vis spectroscopy at the wavelength of 670 nm. The standard curve is (*Y* = 0.682*X*+0.005 R²=0.999), which was calibrated using a standardized NH₄Cl solution with five progressive concentrations.

Determination of hydrazine (N₂H₄)

The hydrazine was identified using the Watt and Chrisp method. Typically, 5 mL electrolyte solution was added with 5 mL hydrazine chromogenic agent prepared by 5.99 g C₉H₁₁NO, 30 mL HCl and 300 mL ethanol. Followed by 20 min complete stir, the absorbance of such solution at the wavelength of 455 nm was measured to quantify the hydrazine yields with a standard curve of hydrazine (Y = 2.58529X + 0.12902, R² = 0.998).

Calculations of NH₃ formation rate and FE

Rate of NH₃ formation was calculated using the following equation:

NH₃ yield = $[NH_3] \times V / (m_{cat} \times t)$

FE was calculated according to following equation:

FE (NH₃) = $3 \times F \times [NH_3] \times V / (17 \times Q) \times 100\%$

Where $[NH_3]$ is the measured NH_4Cl concentration; V is the volume of the cathode reaction electrolyte; t is the potential applied time; m is the loaded quality of catalyst; F is the Faraday constant; and Q is the quantity of applied electricity.

II. Supplementary Figures

Fig. S1. (a) UV-Vis absorption spectra of indophenol assays performed with different concentrations of NH₃ in 0.1 M Na₂SO₄. (b) A calibration curve used for estimating the NH₃ concentration.

Fig. S2. (a) UV-Vis spectra of various N₂H₄ concentrations after adding into chemical indicator by the Watt and Chrisp method. (b) A calibration curve used for the calculation of N₂H₄ concentrations.

Fig. S3. SEM micrograph of La₂S₃

Fig. S4. HRTEM micrograph of La₂S₃

Fig. S5. EDX spectrum of La₂S₃

Fig. S6. Calibration curve for ion chromatographic of NH_3 concentration

Number	Ion chromatography (^{NH ⁺} ₄ ,µg/mL)	Absorbance	Indophenol method (µg/mL)	Different (µg/mL)
1	0.060	0.034	0.061	0.001
2	0.069	0.038	0.071	0.002
3	0.112	0.058	0.119	0.007
4	0.156	0.071	0.152	0.004
5	0.256	0.120	0.271	0.015

Table S1. Ion chromatography was compared with salicylic acid method

Catalyst	Electrolyte	NH ₃ Yield Rate	FE(%)	Ref
Ag NPs-rGO	0.1 M HCl	2.8	4.80	[1]
Au/Ni	$0.05 \text{ MH}_2\text{SO}_4$	7.4	67.80	[2]
a-Au/Cex-RGD	0.1 M HCl	8.3	10.10	[3]
Ru NPs	0.1 M KOH	1.3	5.40	[4]
Ru@ZrO ₂ /NC	0.1 M HCl	3.7	15	[5]
Au_1/C_3N_4	$0.05 \text{ MH}_2\text{SO}_4$	2.0	11.10	[6]
Ru/MoS ₂	0.01 M HCl	6.98	17.60	[7]
MoS ₂	$0.1 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$	4.94	1.17	[8]
DR MoS ₂	$0.1 \mathrm{M} \mathrm{Na}_2 \mathrm{SO}_4$	11.72	8.34	[9]
MoS ₂ -rGO	0.1 M LiClO ₄	24.82	4.58	[10]
CoS ₂ /NS-G	$0.05 \text{ MH}_2\text{SO}_4$	10.00	25.90	[11]
FeS ₂ -Mo _{17.3}	0.1 M KOH	25.2	14.41	[12]
Fe ₃ S ₄	0.1 M HCl	75.4	6.45	[13]

Table S2. Comparison of the NRR electrocatalytic activity of Ru/La₂S₃ catalyst under ambient conditions with other catalysts.

References:

- Li X, Xie H, Mao J. Ag nanoparticles-reduced graphene oxide hybrid: an efficient electrocatalyst for artificial N₂ fixation to NH₃ at ambient conditions, *Journal of Materials Science*, 55 (2020) 5203-5210.
- [2] Zhang M, Wang Z, Yu H, et al. A mesoporous Au film with surface sulfur modification for efficient ammonia electrosynthesis, *Journal of Materials Chemistry A*, 8 (2020) 20414-20419.
- [3] Li S J, Bao D, Shi M M, et al. Amorphizing of Au Nanoparticles by CeO_x -RGO Hybrid Support towards Highly Efficient Electrocatalyst for N₂ Reduction under Ambient Conditions, *Adv Mater*, 29 (2017).
- [4] Zhao L, Zhao J, Zhang L, et al. Artificial N₂ fixation to NH₃ by electrocatalytic Ru NPs at low overpotential, *Nanotechnology*, 31 (2020) 29LT01.
- [5] Wang Z Q, Ma Y C, Lin J X. Ruthenium catalyst supported on high-surface-area basic ZrO₂ for ammonia synthesis, *Journal of Molecular Catalysis A: Chemical*, 378 (2013) 307-313.
- [6] Wang X, Zhang Q, Hao W, et al. A novel porous graphitic carbon nitride $(g-C_7N_3)$ substrate: prediction of metal-based π -d conjugated nanosheets toward the highly active and selective electrocatalytic nitrogen reduction reaction, *Journal of Materials Chemistry*, 10 (2022) 15036-15050.
- [7] Li J, Chen S, Quan F, et al. Accelerated Dinitrogen Electroreduction to Ammonia via Interfacial Polarization Triggered by Single-Atom Protrusions, *Chem*, 6 (2020) 885-901.
- [8] Song W, Fu L, Ma P, et al. A computational study of strained MoS₂ as catalysts for the electrocatalytic nitrogen reduction reaction, *Journal of Molecular Structure*, 1259 (2022).
- [9] Zhou Y, Yu X, Wang X, et al. MoS₂ nanosheets supported gold nanoparticles for electrochemical nitrogen fixation at various pH value, *Electrochimica Acta*, 317 (2019) 34-41.
- [10] Li X, Ren X, Liu X, et al. A MoS₂ nanosheet–reduced graphene oxide hybrid: an efficient electrocatalyst for electrocatalytic N₂ reduction to NH₃ under ambient conditions, *Journal of Materials Chemistry*, 7 (2019) 2524-2528.
- [11] Chen P, Zhang N, Wang S, et al. Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis, *Proc Natl Acad Sci U S A*, 116 (2019) 6635-6640.
- [12] Yang M, Jin Z, Wang C, et al. Fe Foam-Supported FeS₂-MoS₂ Electrocatalyst for N₂ Reduction under Ambient Conditions, ACS Appl Mater Interfaces, 13 (2021) 55040-55050.
- [13] Chen X, Yin H, Yang X, et al. Co-Doped Fe₃S₄ Nanoflowers for Boosting Electrocatalytic Nitrogen Fixation to Ammonia under Mild Conditions, *Inorg Chem*, (2022).