Supporting information

Efficient removal of organic dyestuff in water contamination over MOF-derived Co-based adsorbent

Yuxi Yang^a[†], Yaqi Xue^a[†], Jing Li^b, Haihong Xia^b, Minghao Zhou^{a*}

- a. School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
- b. Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China

E-mail: zhouminghao@yzu.edu.cn (Minghao Zhou)

[†]These authors contributed equally: Yaqi Xue and Yuxi Yang.

Fig. S1. The time-dependent removal efficiency of RhB aqueous solution (125 mg/L) over Co_{0.5}(PTA)@C catalysts at different roasting temperatures (300 °C, 400 °C, 500 °C, and 600 °C). (Reaction condition: 30 mg adsorbent, 60 mL dye solution, 60 minutes.)

Fig. S2. The adsorption of RhB aqueous solution (125 mg/L) over $Co_{0.5}(BTC)@C$ and $Co_{0.5}(PTA)@C$ catalysts with the best ratio (1:2) (a1-a9) Visible light absorption spectra (10-360 min).

Fig. S3. (a) Removal efficiency of cycled Co_{0.5}(PTA)@C samples. (b) XRD spectra of Co_{0.5}(PTA)@C, Co_{0.5}(PTA)@C-cycle and Co_{0.5}(PTA)-MOF samples.

Fig. S4. The Langmuir and Freundlich adsorption isotherms of RhB over Co_{0.5}(PTA)@C (solid and broken lines present the experimental curve and the simulated values, respectively).

Fig. S5. Nonlinear kinetic curves fitted to the pseudo-first-order and pseudo-second-order models of RhB.

Fig. S6. Magnetism of MOF-derived metal-based catalysts.

	А	$q_t(mg/g)$				removal efficiency			
C ₀	_	60	120	180	240	60	120	180	240
		min	min	min	min	min	min	min	min
25	0.02	98.67	47.97	47.97	47.97	0.97	0.99	0.99	0.99
50	0.01	98.67	98.40	98.99	98.99	0.99	0.99	0.99	0.99
75	0.01	147.87	147.87	147.87	147.87	0.99	0.99	0.99	0.99
100	0.01	197.96	197.96	197.96	197.96	0.99	0.99	0.99	0.99
125	0.15	286.36	295.72	298.03	298.53	0.95	0.98	0.99	0.99
150	0.44	250.55	251.48	250.58	249.50	0.99	0.99	0.99	0.98
175	0.85	254.72	282.44	299.54	312.77	0.74	0.82	0.87	0.91
200	0.87	292.50	310.84	323.31	336.73	0.73	0.78	0.81	0.84

Table S1. The adsorption of different initial concentrations from 25 mg/L to 200 mg/L (RhB aqueous solution) over $Co_{0.5}(PTA)@C$ catalysts. (Reaction condition: 30 mg adsorbent, 60 mL dye solution, 500 rpm, 360 minutes.)

 C_0 (mg/L) – the initial concentrations.

A – the absorbance (RhB, $\lambda max = 554 \text{ nm}$).

 $q_t(mg/g)$ - the time-dependent adsorption capacities.

Isotherm models	parameters/coefficients	RhB
Langmuir	$q_m (mg/g)$	8.49×10 ³
	$K_L (dm^3/mg)$	3.18×10 ⁻³
	R ²	9.79×10 ⁻¹
	Reduced Chi-Sqr	3.83×10^{2}
Freundlich	$K_{\rm F}$ ((mg/g) (L/mg)1/n)	6.80
	n	1.37
	R ²	0.96
	Reduced Chi-Sqr	6.44×10^{2}

Table S2. The correlation parameters and coefficients of Langmuir and Freundlich for RhB adsorptions over $Co_{0.5}(PTA)@C$.

 $\overline{K_L}$ - the Langmuir constant, which is defined as the ratio of the adsorption rate constant to the desorption rate constant.

 K_F - the Freundlich constant, which is related to adsorption capacity and adsorption strength under the Freundlich model.

Table S3. The correlation parameters and coefficients of the pseudo-first-order and pseudo-

C_0	q _{e,exp}	р Р	seudo-first-or	der kinetic	Pseud	o-second-order	r kinetic
(ma	/I) (ma	k_1	R_1^2	q _{e1,cal}	\mathbf{k}_2	R_2^2	q _{e2,cal}
(IIIg/	(IIIg	(min ⁻¹	(min ⁻¹)		(min ⁻¹)		(mg/g)
25	47.97	1.50×10 ⁻¹	9.79×10 ⁻¹	50.00	1.16×10-2	9.99×10 ⁻¹	48.12
50	98.99	2.11×10 ⁻¹	9.99×10 ⁻¹	98.32	1.11×10 ⁻²	9.99×10 ⁻¹	99.31
75	147.87	3.50×10 ⁻¹	9.98×10 ⁻¹	150.00	6.75×10 ⁻³	9.99×10 ⁻¹	148.15
100	197.96	2.56×10-1	9.99×10 ⁻¹	197.66	1.47×10-2	9.99×10 ⁻¹	197.63
125	251.55	1.25×10 ⁻¹	9.97×10 ⁻¹	250.00	3.25×10-3	9.99×10 ⁻¹	251.89
150	296.51	8.56×10 ⁻²	9.91×10 ⁻¹	291.65	6.56×10-4	9.99×10 ⁻¹	303.03
175	328.31	4.56×10 ⁻²	9.29×10 ⁻¹	300.96	1.68×10-4	9.99×10 ⁻¹	338.98
200	338.73	4.20×10 ⁻¹	9.56×10 ⁻¹	331.17	1.25×10-4	9.99×10 ⁻¹	363.64

second-order kinetic models for RhB adsorptions over Co_{0.5}(PTA)@C.

Table S4. The detailed data on BET surface area, pore size, and the Co content of M@C catalysts.

Samples	The content of Co ^a (At. %)
Co _{0.5} (PTA)@C	1.10
Co _{0.5} (PTA)@C-cycled	1.04

a - detected by ICP.