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Figure S1. Rate constants of (a) NH3+OH=NH2+H2O measured by Salimian et al. [1], Gehring et al. 
[2], Silver and Kolb [3], Stuhl [4], Zellner and Smith [5], Zabielski and Seery [6] and Perry et al.[7], 
and (b) N+O2=NO+O measured by Kistiakowsky and Volpi [8], Kaufman and Decker [9], Clyne and 
Thrush [10], Vlastaras et al. [11], Wilson [12], Westenberg et al. [13], Livesey et al. [14], Barnett 
et al. [15] and Fernandez et al. [16], and those predicted using the updated (blue) and original 
(red) rate parameters.

Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering.
This journal is © The Royal Society of Chemistry 2023



Figure S2. Rate constant of NH3+H=NH2+H2 in the trial model and the uncertainty factor 
estimated based on available experimental data of Yumura and Asaba [17], Michael et al. [18], 
Hack et al. [19], Corchado and Espinosa-Garcı́a [20], Marshall and Fontijn [21] and Ko et al. [22].

Figure S3. Rate constant of NH2+H=NH+H2 in the trial model and the uncertainty factor estimated 
based on available experimental data of Röhrig and Wagner [23], Dove and Nip [24], Davidson et 



al. [25], Bahng and Macdonald [26] and Fontijn et al. [27].

Figure S4. Rate constant of N2H2+M=NNH+H+M predicted using the investigated models.

 
Figure S5. Rate constant of H2NO+O2=HNO+HO2 predicted using the investigated models.



 
Figure S6. Rate constant of HNOH+NH2=H2NN+H2O predicted using the investigated models.

Figure S7. Rate constant of NH+O2=HNO+O predicted using the investigated models and the 
experimental data of Römming and Wagner [28], Zetzsch and Hansen [29], Miller and Melius [30] 
and Mertens et al. [31].



 

Figure S8. Rate constant of (a) NH3+HO2=NH2+H2O2 and (b) N2H4+NH2=N2H3+NH3 predicted using 
the investigated models.

 

Figure S9. Rate constant of (a) NH2+NO2=N2O+H2O and (b) NH2+NO2=H2NO+NO predicted using 
the investigated models.

 

Figure S10. Rate constant of (a) H2NO+O=HNO+OH and (b) H2NO+OH=HNO+H2O predicted using 
the investigated models.



 

Figure S11. Rate constant of (a) H2NO+NH2=HNO+NH3 and (b) H2NO+NO2=HONO+HNO predicted 
using the investigated models.

 

Figure S12. Rate constant of (a) H2NO+H=NH2+OH and (b) H2NO+H=HNO+H2 predicted using the 
investigated models.



Figure S13. Distribution of normalized reaction rate of reactions in the optimized model. 
Reaction rates are calculated separately for forward and reverse directions for reversable 
reactions. Values smaller than 1 indicate no violation of collision limit.

Figures S14. Simulation results for the ignition delay time measurements reported by (a) Mathieu 
and Petersen [32] and (b) He et al. [33] using the investigated models. The experimental and 
simulation condition in (a) is stoichiometric NH3/O2 mixtures diluted in 98% Ar at 1.4 atm. The 
experimental and simulation condition in (b) is NH3/O2/Ar=0.12/0.18/0.7 mixtures at 40 bar after 
compression.



Figure S15. Simulation results of the NH3 and NO data measured by Stagni et al. [34]. The 
experimental conditions are (a) and (c) 500 ppm NH3 and 2% O2 diluted in He at 800 torr, (b) and 
(d) 500 ppm NH3 and 4% O2 diluted in He at 800 torr. The residence time is 1.5s for all cases.

Table S1. Ammonia ignition delay time experiments used in the current study.
Number of 

measurement
s

Mixture Equivalence 
ratio

Pressure 
(atm)

Temperature 
(K)

Uncertainty

Mathieu et al. (2015) [32]; ignition criterial: d[OH*]/dt maximum
104 NH3/O2/Ar 0.5-2.0 1.25-30.4 1564-2489 10%

Shu et al. (2019) [35]; ignition criteria: dP/dt maximum
30 NH3/air 0.5-2.0 15.9-41.6 1181-1581 20%

Chen et al. (2021) [36]; ignition criteria: d[OH*]/dt maximum
66 NH3/H2/O2/Ar 1 1.01-12.6 1022-1956.9 20%

He et al. (2019) [33]; ignition criteria: dP/dt maximum
84 NH3/H2/O2/Ar/N

2

0.5-2.0 19.5-59.8 969.4-1130.6 15%-55%

Dai et al. (2020) [37]; ignition criteria: dP/dt maximum
88 NH3/H2/O2/Ar/N

2

0.5-3.0 19.5-72.6 955.5-1205 8.8%-25.2%

Table S2. Ammonia laminar flame speed experiments used in the current study.
Number of 

measurement
s

Fuel Diluent Equivalence 
ratio

Temperature 
(atm)

Pressure 
(K)

Uncertainty

Lhuillier et al. (2020) [38]
265 NH3, H2 N2 0.8-1.4 298-473 0.99 10.8%-



68.2%
Ronney (1988) [39]

71 NH3 N2 0.7-1.65 298 0.06-
1.97

15%

Han et al. (20169) [40]
216 NH3, H2, 

CO
N2 0.7-1.7 298 1 1%-33.3%

Han et al. (2020) [41]
172 NH3, H2, 

CO
N2 0.7-1.6 298 1 1%-10.8%

Mei et al. (2021) [42]
9 NH3 NO 1.1-1.9 298 1 7.2%-10.5%

Takizawa et al. (2008) [43]
7 NH3 N2 0.9-1.2 298 1.05 25%

Ichikawa et al. (2015) [44]
21 NH3, H2 N2 1.0 298 0.99-

4.93
15%

Hayakawa et al. (2015) [45]
13 NH3 N2 0.8-1.2 298 0.99-

4.93
3%-24.2%

Pfahl et al. (2000) [46]
46 NH3, H2 N2 0.44-4.5 298 0.09-

0.61
15%

Mei et al. (2020) [47]
100 NH3, H2, 

CO
N2 0.7-1.5 298 1-10 2.7%-10.2%

Liu et al. (2019) [48]
24 NH3 N/A 0.5-1.75 298 0.5-1.6 20%

Mei et al. (2019) [49]
51 NH3 N2 0.6-1.5 298 1-5 3%-15.5%

Wang et al. (2020) [50]
51 NH3 N2 0.6-1.4 303-393 0.99 6.9%-15.9%

Wang et al. (2020) [51]
289 NH3, H2, 

CO
N2 0.6-1.6 298 0.99-4.9 1.5%-15.2%

Lee et al. (2010) [52]
10 NH3, H2 N2 0.62-0.73 298 1 15%

Li et al. (2014) [53]
66 NH3, H2 N2 0.6-1.37 298 1 20%

Table S3. List of the influential reactions and their estimated uncertainty function .( )f T
Reaction ( )f T Estimation approach Source

HNO+OH=NO+H2O 0.48 between 300 K and 3000 K Based on review 
literature

[54]

HNO+O2=HO2+NO 0.5 between 300 K and 3000 K Based on Bertolino 
rules

[55]

NO+H(+M)=HNO+M 0.5 at 400 K, increasing to 0.55 
at 900 K, increasing to 1.00 at 

2000 K

Based on uncertainty 
quantification work

[56]

N2O(+M)=N2+O(+M) 1 at 700 K, decreasing to 0.75 at 
1200 K, increasing to 1 at 3200 K

Based on uncertainty 
quantification work

[56]

N2O+H=N2+OH 1.60 at 500 K, decreasing to 0.70 Based on uncertainty [56]



at 1200 K, increasing to 0.60 at 
2600 K

quantification work

NH2+H(+M)=NH3(+M) 0.4 between 2000 K and 3000 K Based on review 
literature

[57]

NH3+H=NH2+H2 1.2 at 400 K, increasing to 0.9 at 
650 K, decreasing to 0.45 at 

1500 K, increasing to 0.9 at 2500 
K

Based on 
experimental 

measurements (see 
Fig. S2)

[17-22]

NH3+HO2=NH2+H2O2 0.7 between 300 K and 3000 K Based on domain 
knowledge

[58]

NH2+H=NH+H2 0.15 at 300 K, increasing to 0.9 
at 800 K, decreasing to 0.15 at 

1700 K, increasing to 0.3 at 2800 
K

Based on 
experimental 

measurements (see 
Fig. S3)

[23-27]

NH2+O=HNO+H 0.7 between 300 K and 3000 K Based on domain 
knowledge

[59]

NH2+HO2=H2NO+OH 1.0 between 300 K and 3000 K Based on Bertolino 
rules

[60]

NH2+O2=H2NO+O 0.3 between 300 K and 3000 K Based on Bertolino 
rules

[61]

NH2+NH=N2H2+H 0.7 between 300 K and 3000 K Based on Bertolino 
rules

[62]

NH2+NO=N2+H2O 0.3 between 298 K and 1200 K, 
increasing to 0.5 between 2000 

K and 3300 K

Based on review 
literature

[57]

NH2+NO=NNH+OH 0.3 between 298 K and 1200 K, 
increasing to 0.5 between 2000 

K and 3300 K

Based on review 
literature

[57]

NH2+HONO=NH3+NO2 0.7 between 300 K and 3000 K Based on Bertolino 
rules

[63]

NH2+NO2=N2O+H2O 0.7 between 300 K and 3000 K Based on domain 
knowledge

[64]

NH2+NO2=H2NO+NO 0.7 between 300 K and 3000 K Based on domain 
knowledge

[64]

NH+O2=HNO+O 0.7 between 300 K and 3000 K Based on domain 
knowledge

[30]

NH+NO=N2O+H 0.3 between 300 K and 3000 K Based on Bertolino 
rules

[61]

N+NO=N2+O 0.2 between 300 K and 3000 K Based on review 
literature

[65]

NH2+NH2(+M)=N2H4(+M) 0.3 between 300 K and 3000 K Based on Bertolino 
rules

[66]

N2H4+NH2=N2H3+NH3 0.7 between 300 K and 3000 K Based on domain 
knowledge

[59]

N2H3+M=N2H2+H+M 0.5 between 300 K and 3000 K Based on Bertolino 
rules

[55]

N2H3+HO2=N2H4+O2 0.5 between 300 K and 3000 K Based on Bertolino 
rules

[55]

N2H3+NH2=H2NN+NH3 0.5 between 300 K and 3000 K Based on Bertolino 
rules

[55]

N2H2+M=NNH+H+M 0.7 between 300 K and 3000 K Based on Bertolino 
rules

[62]

N2H2+H=NNH+H2 0.7 between 300 K and 3000 K Based on Bertolino [62]



rules
N2H2+NO=N2O+NH2 0.5 between 300 K and 3000 K Based on Bertolino 

rules
[55]

NH2+NH2=N2H2+H2 0.3 between 300 K and 3000 K Based on Bertolino 
rules

[66]

H2NN=N2+H2 0.5 between 300 K and 3000 K Based on Bertolino 
rules

[55]

H2NN+O2=NH2+NO2 0.5 between 300 K and 3000 K Based on Bertolino 
rules

[55]

H2NO+HO2=HNO+H2O2 0.5 between 300 K and 3000 K Based on Bertolino 
rules

[55]

H2NO+O2=HNO+HO2 0.6 between 300 K and 3000 K Based on Bertolino 
rules

[67]

HNOH+NH2=H2NN+H2O 0.5 between 300 K and 3000 K Based on Bertolino 
rules

[55]

H2NO+NH2=HNO+NH3 0.7 between 300 K and 3000 K Based on domain 
knowledge

[68]

H2NO+H=HNO+H2 0.7 between 300 K and 3000 K Based on domain 
knowledge

[68]

H2NO+H=NH2+OH 0.7 between 300 K and 3000 K Based on domain 
knowledge

[68]

H2NO+O=HNO+OH 0.7 between 300 K and 3000 K Based on domain 
knowledge

[68]

H2NO+OH=HNO+H2O 0.7 between 300 K and 3000 K Based on domain 
knowledge

[68]

H2NO+NO2=HONO+HNO 0.7 between 300 K and 3000 K Based on domain 
knowledge

[68]

*Uncertainty factor was interpreted as a piece-wise linear function between the reported temperature nodes and a constant 
outside the reported temperature range
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