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1 Linearizing Rate Expressions
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y = b+m · x (S3)

2 Preferential Oxidation Mechanism

Table S1 Reactions and parameters for the PROX mechanism taken from 1 originating from 2

No. Reaction s0 or A0 EA
dEA
dθH

dEA
dθO

dEA
dθOH

dEA
dθH2O

dEA
dθCO

unitless or s−1 unitless kJ/mol kJ/mol kJ/mol kJ/mol kJ/mol kJ/mol

H2 oxidation on Pt

R1 H2 +2 ∗ −−→←−− 2H∗ 1.287 × 10−1 0.8584 - - - - - -
7.953 × 1012 1.911 79.09 −25.10 0 0 0 0

R2 O2 +2 ∗ −−→←−− 2O∗ 5.423 × 10−1 0.7656 - - - - - -
8.406 × 1012 0.9275 208.9 0 −133.9 0 0 0

R3 OH∗+ ∗ −−→←−− O∗+H∗ 1.950 × 1012 13.286 111.2 67.321 −4.87 0 62.89 0
6.325 × 1012 10.812 32.48 −5.820 22.26 0 −41.71 0

R4 H2O∗+ ∗ −−→←−− OH∗+H∗ 9.358 × 1012 −0.3949 74.57 4.795 50.33 52.30 −43.25 0
9.989 × 1012 −0.3664 53.43 −7.757 −87.75 −52.30 71.81 0

R5 H2O∗+O∗ −−→←−− 2OH∗ 4.316 × 1010 0.3262 36.74 0 70.10 52.30 −83.68 0
1.700 × 1010 0.5285 94.32 0 −139.12 −52.30 136.0 0

R6 H2O+ ∗ −−→←−−H2O∗ 1.084 × 10−1 11.624 - - - - - -
2.033 × 1012 2.490 39.98 0 0 104.6 −10.46 0

CO oxidation on Pt

R7 CO+ ∗ −−→←−− CO∗ 1.000 0 - - - - - -
5.659 × 1015 0.3946 165.9 0 0 0 0 −62.70

R8 CO2 +
∗ −−→←−− CO2

∗ 1.950 × 10−1 0.2500 - - - - - -
3.626 × 1012 0.2459 11.60 0 0 0 0 0

R9 CO2
∗+ ∗ −−→←−− CO∗+O∗ 4.178 × 1010 −0.2778 110.4 0 4.27 0 0 24.21

2.393 × 1011 0.4558 85.42 0 −17.69 0 0 −38.53
Coupling reactions between CO- and H2 oxidation

R10 CO2
∗+H∗ −−→←−− CO∗+OH∗ 8.031 × 108 −0.3259 23.22 −6.276 60.25 0 −45.56 18.12

1.245 × 109 0.8237 76.91 6.276 −77.83 0 59.04 −44.63

R11 COOH∗+ ∗ −−→←−− CO∗+OH∗ 8.426 × 108 0.025 77 22.66 0 60.25 0 −45.56 18.13
1.187 × 109 0.4719 77.46 0 −77.83 0 59.94 −44.63

R12 COOH∗+ ∗ −−→←−− CO2
∗+H∗ 1.058 × 1011 0.5812 4.975 6.276 0 0 0 0

9.454 × 1010 −0.1098 6.079 −62.844 0 0 0 0

R13 CO∗+H2O∗ −−→←−− COOH∗+H∗ 1.103 × 1011 0.4911 98.71 4.904 0 52.30 −5.230 −31.38
9.070 × 1010 −0.027 78 22.79 −7.657 0 −52.30 5.230 31.38

R14 CO2
∗+OH∗ −−→←−− COOH∗+O∗ 5.349 × 1010 0.052 72 109.5 0 −41.13 0 52.30 0

1.870 × 1011 0.4515 29.70 0 30.00 0 −52.30 0

R15 CO2
∗+H2O∗ −−→←−− COOH∗+OH∗ 8.642 × 1010 −0.0481 71.31 0 52.45 52.30 −44.87 0

1.157 × 1011 0.5647 49.07 0 −85.62 −52.30 70.19 0

R16 CO2
∗+H∗ −−→←−−HCOO∗+ ∗ 1.117 × 1011 −0.075 25 73.49 −12.55 0 0 0 0

8.957 × 1010 0.4218 0.00 0 0 0 0 0

R17 CO2
∗+OH∗ −−→←−−HCOO∗+O∗ 6.168 × 1010 −0.3443 154.8 0 −67.47 0 100.2 0

1.621 × 1011 −0.1617 2.577 0 3.657 0 −4.351 0

R18 CO2
∗+H2O∗ −−→←−−HCOO∗+OH∗

1.022 × 1011 −0.3574 111.8 0 118.7 90.99 −98.17 0
9.785 × 1010 0.066 65 17.15 0 −19.40 −13.61 16.89 0

3 Ammonia Oxidation Mechanism
Table S2 shows all 15 reversible reactions of the ammonia oxidation mechanism considered in this work, the activation energy EA
associated with the forward direction and the energy difference ∆E of the reaction. Table S3 lists all non-imaginary frequencies ν

of the initial- and transition states. Values have to be multiplied by the elementary charge e and divided by Planck’s constant h to
convert to the unit Hz. Sticking coefficients of all adsorption reactions are assumed to be one.
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Table S2 All 15 reversible ammonia oxidation reactions, the activation energy EA associated with the forward direction and the energy difference
∆E of the reaction

Reaction EA / J mol−1 ∆E / J mol−1

O2 +2∗ −−→←−− 2O∗ 0 −238 319
NH3 +

∗ −−→←−− NH3
∗ 0 −66 575

NH3
∗+O∗ −−→←−− NH2

∗+OH∗ 67 540 39 559
NH2

∗+O∗ −−→←−− NH∗+OH∗ 78 153 −14 473
NH∗+O∗ −−→←−− N∗+OH∗ 154 377 31 840
NH3

∗+OH∗ −−→←−− NH2
∗+H2O∗ 33 770 −13 508

NH2
∗+OH∗ −−→←−− NH∗+H2O∗ 965 −67 540

NH∗+OH∗ −−→←−− N∗+H2O∗ 39 559 −22 192
2OH∗ −−→←−− O∗+H2O∗ 0 −53 067
H2O∗ −−→←−−H2O+ ∗ 18 332 18 332
2N∗ −−→←−− N2 +2∗ 244 108 −52 102
N∗+O∗ −−→←−− NO∗+ ∗ 213 233 3859
NO∗ −−→←−− NO+ ∗ 184 287 184 287
N∗+NO∗ −−→←−− N2O∗+ ∗ 164 990 89 731
N2O∗ −−→←−− N2O+ ∗ 0 −2895

Table S3 A list of all non-imaginary frequencies ν of the initial states IS and transition states TS

Species Type ν / V
NH3

∗ IS 0.4320 0.4319 0.4152 0.1936 0.1934 0.1342 0.0820 0.0819 0.0458 0.0150 0.0149
NH2

∗ IS 0.4327 0.4189 0.1800 0.0969 0.0954 0.0825 0.0595 0.0436 0.0269
NH∗ IS 0.4242 0.0994 0.0992 0.0665 0.0588 0.0587
N∗ IS 0.0612 0.0612 0.0612
N2O∗ IS 0.2980 0.1614 0.0541 0.0540 0.0225 0.0150 0.0149 0.0033
NO∗ IS 0.1924 0.0512 0.0511 0.0388 0.0187 0.0184
H2O∗ IS 0.4578 0.4448 0.1919 0.0635 0.0573 0.0167 0.0122 0.0114
OH∗ IS 0.4391 0.0930 0.0896 0.0466 0.0244 0.0225
O∗ IS 0.0558 0.0454 0.0453
∗ IS –
NH3−O TS 0.4379 0.4262 0.3916 0.1802 0.1211 0.1125 0.0810 0.0685 0.0641 0.0588 0.0418 0.0316 0.0201 0.0137
NH2−O TS 0.4129 0.1870 0.1610 0.1155 0.1045 0.0786 0.0669 0.0576 0.0458 0.0332 0.0272
NH−O TS 0.2167 0.1402 0.0776 0.0656 0.0569 0.0523 0.0355 0.0298
NH3−OH TS 0.4564 0.4366 0.4309 0.4057 0.1952 0.1826 0.1033 0.0825 0.0671 0.0638 0.0426 0.0333 0.0270 0.0201

0.0143 0.0088 0.0065
NH2−OH TS 0.4623 0.4009 0.3930 0.1915 0.1032 0.0995 0.0750 0.0607 0.0569 0.0502 0.0460 0.0197 0.0178 0.0113
NH−OH TS 0.4531 0.2032 0.1503 0.1021 0.0783 0.0637 0.0626 0.0563 0.0448 0.0306 0.0198
OH−OH TS 0.4549 0.1881 0.1673 0.1026 0.0799 0.0709 0.0632 0.0534 0.0368 0.0231 0.0180
N−N TS 0.0716 0.0702 0.0537 0.0474 0.0228
N−O TS 0.0722 0.0613 0.0525 0.0299 0.0287
N−NO TS 0.2166 0.0731 0.0574 0.0515 0.0367 0.0339 0.0159 0.0060
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4 Training Times
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Figure S1 Median training times of the neural networks predicting CO source terms with the latent hyperbolic sine transformation strategy.
Measured using three threads of a Intel® Xeon® Platinum 9242 Processor each.

5 Comparing Relative Error and MATE
So far, we applied the inverse hyperbolic sine transformation in a latent way. To investigate the effects of the latent approach, we
also applied the inverse hyperbolic sine transformation in the conventional way. This means data are transformed in a preprocessing
step and the transformed values are used as targets to be learned by a conventional neural network. As shown in table S4, the
conventional approach leads to relative prediction errors above 1000 %, while the latent approach achieves 15 %. This can be
attributed to the fact that instead of the relative error, the conventional approach minimizes an error measure defined in terms of
the transformed values asinh(ṡ) which we call MATE. This error measure, however, is not relevant for reactor simulations.

Table S4 Prediction errors of lightweight neural networks with 40 nodes in a single hidden layer (≈320 parameters) modeling the CO source
terms ṡ with two different approaches: Latent transformation minimizes the relative error during training resulting in an average accuracy of 15 %.
Conventional transformation minimizes the error of transformed values MATE instead.1 Therefore, its predictions are two orders of magnitude
less accurate, as measured by the relative error. Because MATE is not a relevant measure for the application in reactor simulations, the slightly
better MATE score of the conventional approach poses no considerable advantage over the latent approach. The equations show how the errors
are computed using the neural network predictions h

error measure equation latent (this work) conventional

relative error
∣∣∣ ṡ−h(ṡ)

ṡ

∣∣∣ 15 % >1000 %

MATE |asinh(ṡ)−h(asinh(ṡ))| 120 % 110 %

Figure S2 shows the relative error and the mean absolute transformed error MATE as a function of the predicted value. The
exact value is arbitrarily chosen to be one. Both error measures share the same minimum and show similar asymptotic behavior for
underestimations. Because of the logarithmic x-axis, the relative error grows exponentially for overestimations while MATE grows
linearly. This leads to much more significant overestimations occuring in models trained with the conventional transformation
approach as opposed to the latent approach.

1Actually, both approaches minimize the root mean square of the term shown in the respective equation, not the mean absolute which is reported in table S4. As the
root mean square is more sensitive to outliers it is well suited for model training but not an intuitive indicator of the model quality.
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Figure S2 Comparison between the relative error and the mean absolute transformed error MATE (y-axis) for different predicted values (x-axis)
assuming an exact solution of one.

6 Comparing Conventional and Latent Transformation Results
Figure S3 shows the prediction accuracy gain when using latent inverse hyperbolic sine transformation instead of the conventional
approach modeling steady state CO source terms from test case one. The numbers shown are computed by dividing the relative
prediction error obtained with the conventional approach by the error of the latent approach.
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Figure S3 The accuracy gain of latent over conventional data transformation is shown as the quotient between relative prediction errors of models
with identical complexity modeling steady state CO source terms. Results are shown for different numbers of hidden layers as a function of the
number of model parameters.

7 Inference Time
Source term prediction time tpredict for 100 000 reaction conditions is averaged over 1000 runs with the models used for the
preferential oxidation plug-flow reactor simulations. Results are shown in table S5 using an AMD Ryzen 7 5800X CPU and a
GEFORCE RTX 3070 GPU. Computing the exact solution on the same machine takes 800 s resulting in a speed-up of 45 700 on the
CPU and 95 200 on the GPU.

Table S5 Neural network prediction times tpredict for 100 000 reaction conditions averaged over 1000 measurements with the same models as used
for the preferential oxidation plug-flow reactor simulations

Hardware tpredict(O2) / ms tpredict(CO) / ms

CPU: AMD Ryzen 7 5800X 5.5 12
GPU: GEFORCE RTX 3070 3.0 5.4
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8 Comparing to our Previous Work Using Mechanistic Insights
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Figure S4 Relative prediction error of CO source terms dependent of the total number of learnable parameters in a neural network compared
between different modeling strategies. Our previous work 1 performs best but requires a reaction path analysis and therefore cannot be used with
experimental data or highly complex computational models.

9 Alternatives to the Hyperbolic Sine
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Figure S5 Comparing the prediction accuracy of different transformation functions as a function of trainable model parameters in a single hidden
layer for . . .
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