Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information

Efficient Neural Network Models of Chemical Kinetics Using a Latent asinh Rate Transformation

Felix A. Döppel and Martin Votsmeier* *martin.votsmeier@tu-darmstadt.de

June 12, 2023

1 Linearizing Rate Expressions

 $r_{\rm j} = k_{\rm j,0} \cdot \exp\left(-\frac{E_A}{RT}\right) \cdot \prod_{\rm i} c_{\rm i}^{\nu_{\rm i,j}} \cdot \prod_{\rm k} \theta_{\rm k}^{\nu_{\rm k,j}} \tag{S1}$

$$\ln r_{j} = \ln k_{j,0} - \frac{E_{A}}{R} \cdot \frac{1}{T} + \sum_{i} \nu_{i,j} \cdot \ln c_{i} + \sum_{k} \nu_{k,j} \cdot \ln \theta_{k}$$
(S2)

$$y = b + m \cdot x \tag{S3}$$

2 Preferential Oxidation Mechanism

Table S1 Reactions and	parameters for the PROX	mechanism taken from	¹ originating from ²
------------------------	-------------------------	----------------------	--

No.	Reaction	s_0 or A_0		$E_{\rm A}$	$\frac{dE_A}{d\theta_H}$	$\frac{dE_A}{d\theta_O}$	$\frac{dE_A}{d\theta_{OH}}$	$\frac{dE_A}{d\theta_{H_a}O}$	$\frac{dE_A}{d\theta_{CO}}$
		unitless or s ⁻¹	unitless	kJ/mol	kJ/mol	kJ/mol	kJ/mol	kJ/mol	kJ/mol
H ₂ oxi	dation on Pt								
-4 D 1		$1.287 imes 10^{-1}$	0.8584	-	-	-	-	-	-
RI	$H_2 + 2^+ \overleftarrow{a}^2 2H^+$	7.953×10^{12}	1.911	79.09	-25.10	0	0	0	0
DЭ	$O \rightarrow 2^{*} \longrightarrow 2O^{*}$	$5.423 imes 10^{-1}$	0.7656	-	-	-	-	-	-
K2	$O_2 + 2^+ \longleftarrow 20^+$	8.406×10^{12}	0.9275	208.9	0	-133.9	0	0	0
ЪЭ	$OII* + * \longrightarrow O* + II*$	1.950×10^{12}	13.286	111.2	67.321	-4.87	0	62.89	0
R3	$OH^{+} + \frac{1}{2} O^{+} + H^{+}$	6.325×10^{12}	10.812	32.48	-5.820	22.26	0	-41.71	0
D4	$U \cap * + * \longrightarrow OU* + U*$	9.358×10^{12}	-0.3949	74.57	4.795	50.33	52.30	-43.25	0
K4	$H_2O + \leftarrow OH + H$	9.989×10^{12}	-0.3664	53.43	-7.757	-87.75	-52.30	71.81	0
DE	$U \cap * \vdash \cap * \longrightarrow 2011*$	4.316×10^{10}	0.3262	36.74	0	70.10	52.30	-83.68	0
КЭ	$H_2O^+ + O^+ \leftarrow 2OH^+$	1.700×10^{10}	0.5285	94.32	0	-139.12	-52.30	136.0	0
DC		$1.084 imes 10^{-1}$	11.624	-	-	-	-	-	-
RO	$H_2O + H_2O$	2.033×10^{12}	2.490	39.98	0	0	104.6	-10.46	0
CO ox	idation on Pt								
D7	$CO + * \longrightarrow CO^*$	1.000	0	-	-	-	-	-	-
1()		5.659×10^{15}	0.3946	165.9	0	0	0	0	-62.70
PS	$CO \rightarrow * \longrightarrow CO *$	$1.950 imes 10^{-1}$	0.2500	-	-	-	-	-	-
10	$co_2 + \leftarrow co_2$	3.626×10^{12}	0.2459	11.60	0	0	0	0	0
PO	$CO * \downarrow * \longrightarrow CO* \downarrow O*$	$4.178 imes 10^{10}$	-0.2778	110.4	0	4.27	0	0	24.21
1()	$co_2 + \leftarrow co + o$	$2.393 imes 10^{11}$	0.4558	85.42	0	-17.69	0	0	-38.53
Coupli	ing reactions between CO- and H ₂	2 oxidation							
R10	$CO_* + H^* \xrightarrow{\longrightarrow} CO^* + OH^*$	8.031×10^{8}	-0.3259	23.22	-6.276	60.25	0	-45.56	18.12
RIU	$co_2 + m \longleftarrow co + om$	1.245×10^{9}	0.8237	76.91	6.276	-77.83	0	59.04	-44.63
P11	11 $COOH* \downarrow * \longrightarrow CO* \downarrow OH*$	8.426×10^{8}	0.025 77	22.66	0	60.25	0	-45.56	18.13
K11		1.187×10^{9}	0.4719	77.46	0	-77.83	0	59.94	-44.63
P12	$COOH^* \downarrow * \longrightarrow CO^* \downarrow H^*$	$1.058 imes 10^{11}$	0.5812	4.975	6.276	0	0	0	0
R12	$COOII + \leftarrow CO_2 + II$	$9.454 imes 10^{10}$	-0.1098	6.079	-62.844	0	0	0	0
R13	$CO^* \perp H O^* \xrightarrow{\longrightarrow} COOH^* \perp H^*$	$1.103 imes 10^{11}$	0.4911	98.71	4.904	0	52.30	-5.230	-31.38
R15	$co + n_2 o \leftarrow coon + n$	$9.070 imes 10^{10}$	-0.02778	22.79	-7.657	0	-52.30	5.230	31.38
P14	$CO_* + OH^* \longrightarrow COOH^* + O^*$	$5.349 imes 10^{10}$	0.05272	109.5	0	-41.13	0	52.30	0
1(14	$co_2 + on \leftarrow coon + o$	$1.870 imes 10^{11}$	0.4515	29.70	0	30.00	0	-52.30	0
P15	$CO * \downarrow H O* \longrightarrow COOH* \downarrow OH*$	$8.642 imes 10^{10}$	-0.0481	71.31	0	52.45	52.30	-44.87	0
R15	$CO_2 + \Pi_2 O \leftarrow OOH^2 + OH^2$	1.157×10^{11}	0.5647	49.07	0	-85.62	-52.30	70.19	0
P 16		1.117×10^{11}	-0.07525	73.49	-12.55	0	0	0	0
RIU	$co_2 + n \leftarrow ncoo +$	$8.957 imes 10^{10}$	0.4218	0.00	0	0	0	0	0
P17	$CO * \downarrow OH* \longrightarrow HCOO* \downarrow O*$	$6.168 imes 10^{10}$	-0.3443	154.8	0	-67.47	0	100.2	0
Λ1 <i>/</i>	$CO_2 + OII \leftarrow ICOO + O$	$1.621 imes 10^{11}$	-0.1617	2.577	0	3.657	0	-4.351	0
D10		1.022×10^{11}	-0.3574	111.8	0	118.7	90.99	-98.17	0
R18 $CO_2^* + H_2O^* \rightleftharpoons HO_2^*$	$CO_2^* + H_2O^* \rightleftharpoons HCOO^* + OH^*$	$9.785 imes 10^{10}$	0.066 65	17.15	0	-19.40	-13.61	16.89	0

3 Ammonia Oxidation Mechanism

Table S2 shows all 15 reversible reactions of the ammonia oxidation mechanism considered in this work, the activation energy E_A associated with the forward direction and the energy difference ΔE of the reaction. Table S3 lists all non-imaginary frequencies v of the initial- and transition states. Values have to be multiplied by the elementary charge e and divided by Planck's constant h to convert to the unit Hz. Sticking coefficients of all adsorption reactions are assumed to be one.

Table S2 All 15 reversible ammonia oxidation reactions, the activation energy E_A associated with the forward direction and the energy difference

 ΔE of the reaction

Reaction	$E_A / J \mathrm{mol}^{-1}$	$\Delta E / J \mathrm{mol}^{-1}$
$O_2 + 2^* \rightleftharpoons 2O^*$	0	-238319
$\overline{NH}_3 + * \iff \overline{NH}_3^*$	0	-66575
$NH_3^* + O^* \rightleftharpoons NH_2^* + OH^*$	67 540	39 559
$NH_2^* + O^* \iff NH^* + OH^*$	78 153	-14473
$NH^{\overline{*}} + O^* \implies N^* + OH^*$	154377	31 840
$NH_3^* + OH^* \longrightarrow NH_2^* + H_2O^*$	33 770	-13508
$NH_2^* + OH^* \longrightarrow NH^* + H_2O^*$	965	-67540
$NH^{\overline{*}} + OH^{\ast} \iff N^{\ast} + H_2O^{\overline{\ast}}$	39 559	-22192
$2 \text{OH}^* \rightleftharpoons \text{O}^* + \text{H}_2 \text{O}^*$	0	-53067
$H_2O^* H_2O^+^*$	18332	18332
$2N^* N_2 + 2^*$	244 108	-52102
$N^* + O^* NO^* + {}^*$	213 233	3859
$NO^* NO + ^*$	184 287	184 287
$N^* + NO^* \xrightarrow{\longrightarrow} N_2O^* + *$	164 990	89731
$N_2O^* \rightleftharpoons N_2O^+^*$	0	-2895

Table S3 A list of all non-imaginary frequencies v of the initial states IS and transition states TS

Species	Туре	v / V
NH_3^*	IS	$0.4320\ 0.4319\ 0.4152\ 0.1936\ 0.1934\ 0.1342\ 0.0820\ 0.0819\ 0.0458\ 0.0150\ 0.0149$
NH_2^*	IS	0.4327 0.4189 0.1800 0.0969 0.0954 0.0825 0.0595 0.0436 0.0269
$\mathrm{NH}^{\overline{*}}$	IS	0.4242 0.0994 0.0992 0.0665 0.0588 0.0587
N^*	IS	0.0612 0.0612 0.0612
N_2O^*	IS	0.2980 0.1614 0.0541 0.0540 0.0225 0.0150 0.0149 0.0033
NŌ*	IS	0.1924 0.0512 0.0511 0.0388 0.0187 0.0184
H_2O^*	IS	0.4578 0.4448 0.1919 0.0635 0.0573 0.0167 0.0122 0.0114
OH [*]	IS	0.4391 0.0930 0.0896 0.0466 0.0244 0.0225
O*	IS	0.0558 0.0454 0.0453
*	IS	-
$NH_3 - O$	TS	0.4379 0.4262 0.3916 0.1802 0.1211 0.1125 0.0810 0.0685 0.0641 0.0588 0.0418 0.0316 0.0201 0.0137
$NH_2 - O$	TS	$0.4129\ 0.1870\ 0.1610\ 0.1155\ 0.1045\ 0.0786\ 0.0669\ 0.0576\ 0.0458\ 0.0332\ 0.0272$
NH-O	TS	0.2167 0.1402 0.0776 0.0656 0.0569 0.0523 0.0355 0.0298
NH ₃ -OH	TS	0.4564 0.4366 0.4309 0.4057 0.1952 0.1826 0.1033 0.0825 0.0671 0.0638 0.0426 0.0333 0.0270 0.0201
-		0.0143 0.0088 0.0065
$NH_2 - OH$	TS	0.4623 0.4009 0.3930 0.1915 0.1032 0.0995 0.0750 0.0607 0.0569 0.0502 0.0460 0.0197 0.0178 0.0113
NH-OH	TS	0.4531 0.2032 0.1503 0.1021 0.0783 0.0637 0.0626 0.0563 0.0448 0.0306 0.0198
OH-OH	TS	0.4549 0.1881 0.1673 0.1026 0.0799 0.0709 0.0632 0.0534 0.0368 0.0231 0.0180
N-N	TS	0.0716 0.0702 0.0537 0.0474 0.0228
N-O	TS	0.0722 0.0613 0.0525 0.0299 0.0287
N-NO	TS	0.2166 0.0731 0.0574 0.0515 0.0367 0.0339 0.0159 0.0060

4 Training Times

Figure S1 Median training times of the neural networks predicting CO source terms with the latent hyperbolic sine transformation strategy. Measured using three threads of a Intel[®] Xeon[®] Platinum 9242 Processor each.

5 Comparing Relative Error and MATE

So far, we applied the inverse hyperbolic sine transformation in a latent way. To investigate the effects of the latent approach, we also applied the inverse hyperbolic sine transformation in the conventional way. This means data are transformed in a preprocessing step and the transformed values are used as targets to be learned by a conventional neural network. As shown in table S4, the conventional approach leads to relative prediction errors above 1000%, while the latent approach achieves 15%. This can be attributed to the fact that instead of the relative error, the conventional approach minimizes an error measure defined in terms of the transformed values asinh(\dot{s}) which we call MATE. This error measure, however, is not relevant for reactor simulations.

Table S4 Prediction errors of lightweight neural networks with 40 nodes in a single hidden layer (\approx 320 parameters) modeling the CO source terms *s* with two different approaches: Latent transformation minimizes the relative error during training resulting in an average accuracy of 15%. Conventional transformation minimizes the error of transformed values MATE instead.¹ Therefore, its predictions are two orders of magnitude less accurate, as measured by the relative error. Because MATE is not a relevant measure for the application in reactor simulations, the slightly better MATE score of the conventional approach poses no considerable advantage over the latent approach. The equations show how the errors are computed using the neural network predictions *h*

error measure	equation	latent (this work)	conventional
relative error	$\left \frac{\dot{s}-h(\dot{s})}{\dot{s}}\right $	15 %	>1000 %
MATE	$ \operatorname{asinh}(\dot{s}) - h(\operatorname{asinh}(\dot{s})) $	120 %	110 %

Figure S2 shows the relative error and the mean absolute transformed error MATE as a function of the predicted value. The exact value is arbitrarily chosen to be one. Both error measures share the same minimum and show similar asymptotic behavior for underestimations. Because of the logarithmic x-axis, the relative error grows exponentially for overestimations while MATE grows linearly. This leads to much more significant overestimations occuring in models trained with the conventional transformation approach as opposed to the latent approach.

¹Actually, both approaches minimize the root mean square of the term shown in the respective equation, not the mean absolute which is reported in table S4. As the root mean square is more sensitive to outliers it is well suited for model training but not an intuitive indicator of the model quality.

Figure S2 Comparison between the relative error and the mean absolute transformed error MATE (y-axis) for different predicted values (x-axis) assuming an exact solution of one.

6 Comparing Conventional and Latent Transformation Results

Figure S3 shows the prediction accuracy gain when using latent inverse hyperbolic sine transformation instead of the conventional approach modeling steady state CO source terms from test case one. The numbers shown are computed by dividing the relative prediction error obtained with the conventional approach by the error of the latent approach.

Figure S3 The accuracy gain of latent over conventional data transformation is shown as the quotient between relative prediction errors of models with identical complexity modeling steady state CO source terms. Results are shown for different numbers of hidden layers as a function of the number of model parameters.

7 Inference Time

Source term prediction time t_{predict} for 100 000 reaction conditions is averaged over 1000 runs with the models used for the preferential oxidation plug-flow reactor simulations. Results are shown in table S5 using an AMD Ryzen 7 5800X CPU and a GEFORCE RTX 3070 GPU. Computing the exact solution on the same machine takes 800 s resulting in a speed-up of 45 700 on the CPU and 95 200 on the GPU.

Table S5 Neural network prediction times t_{predict} for 100 000 reaction conditions averaged over 1000 measurements with the same models as used for the preferential oxidation plug-flow reactor simulations

Hardware	$t_{\text{predict}}(O_2) / \text{ms}$	t _{predict} (CO) / ms
CPU: AMD Ryzen 7 5800X	5.5	12
GPU: GEFORCE RTX 3070	3.0	5.4

8 Comparing to our Previous Work Using Mechanistic Insights

Figure S4 Relative prediction error of CO source terms dependent of the total number of learnable parameters in a neural network compared between different modeling strategies. Our previous work¹ performs best but requires a reaction path analysis and therefore cannot be used with experimental data or highly complex computational models.

9 Alternatives to the Hyperbolic Sine

Figure S5 Comparing the prediction accuracy of different transformation functions as a function of trainable model parameters in a single hidden layer for ...

References

[1] F. A. Döppel and M. Votsmeier, Chemical Engineering Science, 2022, 262, 117964.

[2] W. Hauptmann, M. Votsmeier, H. Vogel and D. G. Vlachos, Applied Catalysis A: General, 2011, 397, 174–182.