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1 General Information

2 Experimental conditions and configuration
Full details regarding the experimental conditions, flow configuration and analysis are reported in part 1 of

this contribution.!

3 Residence time distribution (RTD) analysis

The data points collected by the NMR and FT-IR analysis were obtained as concentration values. The
equations used to characterize the reactor and the system were described by Levenspiel.? The analysis
assumed that the injected plug was a perfect pulse at the inlet, because the concentration was not measured

before the reactor.

The concentration data points over time were numerically integrated to obtain the area under the curve:

A= ZCi-At (1)

Where A is the area inside the curve, C; is the concentration in one point, At is the difference of time between

two points.

Subsequently, the concentration of each measurement was divided by the area to obtain the exit-age

distributed function:
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Where E(t) is the exit-age distribution depending on time, f is the mean residence time, 6 is the
dimensionless normalized time and Eg is the exit-age distribution depending on 0. The dimensionless

normalized time, 0, was calculated by dividing time by the mean residence time:
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Where t; is time at a particular instant in time.

And:

Where t is the mean is residence time.



E(©) was obtained by multiplying E(t) by the mean residence time:
E,=E®)1 (5)

The variance, o2, represents the spread of the distribution as it passes the vessel exit and has units of time:

Therefore the normalized variance is calculated using the following equation:

[\S}

(7

w[\l)lq

The axial dispersion coefficient divided by the longitude and the flow speed is the vessel dispersion number:

D\ % ®
(E) 2

Where the parameter D, called the longitudinal or axial dispersion coefficient, characterizes the degree of
back mixing during flow. L is the system longitude and u is the flow speed. If the vessel dispersion number

tends to zero, then there is negligible dispersion, hence it is plug flow. On the other hand, if the dispersion

number tends to infinite, then there is large dispersion, hence mixed flow.

The Bodenstein (Bo) number was also calculated using the experimental data. The Bodenstein number is

calculated by multiplying the mean residence time by two and dividing it by the variance:

2t
Bo=— (9)
)

A Bodenstein number higher than 100 indicates plug flow behavior. A value below 100 indicates there is

some axial dispersion presence and indicates more CSTR-like behavior.

The axial dispersion (Dax) number can then be calculated:

_ u-L (10)
" Bo

ax

Where U represents the flow velocity and L is the length of the reactor.
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Figure S1. Assessment of residence time distribution within the reactor system using inline FTIR. Reactor

temperature at 100 °C. Model corresponds to sigmoidal fitting of the data points at each flow rate.

Overall, the calculated values from the FTIR analysis show that the system can be considered as plug flow

with a flat velocity profile. Thus, the influence of dispersion on the measured rate parameters will be very

small.



4 Flowsheet modeling
A flowsheet was created, see Scheme 2 in the main manuscript, and the experimental conditions were

inputted. The stoichiometry was defined based on Scheme 1 within the manuscript. The reaction was

simulated using dynamic conditions.

= PFR_one e gFP PFR_one_phase | gFp
Mode of operation = Dynamic 4
Equipment and operation Equipment specification
Numerics +| Length 2.60 m v
Liquid phases Specify area or diameter Area ~
Energy balance Cross-sectional area 0.785 mm?
. . s
e e e Inaccessible volume fraction 0 m>/m
Material flow
Reaction power law
Axial dispersion specification = Fixed v
Reaction equilibrium constants e F e =
Auxial dispersion coefficient 0.0051 mé/s
Reaction custom Nimber ot tibes ;
Pressure drop
Initial conditions
Initial conditions: Liquid
Cancel Reset all Help

Figure S2. Equipment and operation input values for the digital twin.




== PFR_one_phase_liquid_gFP001 (PFR_one_phase_liquid_gFP) X

Maode of operation = Dynamic v

Equipment and operation

Reaction calculations Active v
Numerics General definitions
Liquid phases ¥} Reaction names N1_addition =
N4_addition
Energy balance
Reaction configuration
Reaction power law
Species Selected species ~
Reaction equilibrium constants .
| Species 1,2 4-triazole-1-propanenitrile = =
Reaction custom 4H-1,24-triazole-4-propanenitrile
B 4 acrylonitrile
ressure drop DIPEA
Initial conditions
Initial conditions: Liquid ¥| Stoichiometry N1_addition N4_addition
1,2 4-triazole -1 -1
1,2,4-triazole-1-propanenitrile 1 0
4H-1,2 4-triazole-4-propanenitril... 0 1
acrylonitrile -1 -1
DIPEA 0 0
Heat of reaction Specified here v
[ oK I Cancel Reset all Help

Figure S3. Reaction configuration inputted for the final model fit.

5 Kinetic fitting
The kinetic fitting was achieved by using a modified form of the Arrhenius expression for parameter

estimation and optimization with a reference temperature:

k=exp

Eafl 1
log (ATO)_?(T_T_)] €R)
0

A linear variance model was applied since it is appropriate for datasets that include small values as is the

case for the isomer product. A linear variance model was applied for the fitting:
o=laZ+ B (12)

o is the standard deviation applied, a is a constant relative term applied (a value of 1 corresponds to 100%
of the measured value), £ is a constant term and z is the model prediction of the measured quantity. In this

study: a = 0.02 and = 0.001 mol/L.

The confidence limit was based on the assumption of a normal distribution for the errors, with 95%

corresponding to 1.96 times the standard error of the parameter fit.



The maximum likelihood goal was captured through the following objective function:

NEg NV NM . )
N 1 Vo R GTRE)
b= Eln (2m) + Emmg Z Z Z In (0;3) + — (13)
i=1j=1k=1 Oijk

Where N is the total number of measurements, 6 is the set of model parameters to be estimated, NE is the

number of experiments performed, NV; is the number of variables measured in the i experiment, NMj; is

2
the number of measurements of the j* variable in the i experiment, Zijkis the variance of the k*

measurement of variable j in experiment 7, Zijk is the k" measured value of variable j in experiment i, and

z; is the k" model-predicted value of variable j in experiment i.

Table S1 Correlation matrix for the fitted parameters given in Table 1 in the main manuscript.

1 2 3 4
EA (product formation) 1 1.0000 0.3338 0.0702 0.1785
E4 (isomer formation) 2 0.3338 1.0000 0.1835 -0.2245
log A (product formation) 3 0.0702 0.1835 1.0000 0.2938
log A (isomer formation) 4 0.1785 -0.2245 0.2938 1.0000
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Figure S4. Parity plots for the reaction components 1, 4 and 5. Plot shows every 10" data point. Average
R2=0.974.



Table S2. Kinetic parameter estimates and standard errors (SE) based on 95% confidence level when the

acrylonitrile (3) concentration values were included for the fitting. Logarithmic form of the pre-exponential

log (A
factors, o8 TO), are given at 7, = 120 °C.
log (A; )
¢ +£SE E, + SE (kJ-mol ")
(mol-m3-s)
N1 Addition -9.26 £0.001 68.5+0.1
N4 Addition —11.4+£0.002 67.1+0.2
6 Model Validation

Table S3. Summary of flow ramp condition ranges. Experiment 3 was used for the fitting of the kinetic

models. Experiments 2,4 and 5 were used for the model validation.

tres [S] T [°C] 1 conc. [M] 3eq 2eq

3a | 120 120 1.5 ramp: 2-0.8 0.1

3b | 80 120 ramp: 0.75-1.5 1.5 0.1

3c | 70 140 1.5 2 ramp: 0-0.1
3d | 120 ramp: 140-100-140-100 | 1.5 ramp: 2-0.8-2 | 0.1

3e | 80 ramp: 140-100-140-100 | ramp: 0.75-1.5-0.75 | 1.5 0.1

2a | 60 ramp: 140-100-140-100 | 1.5 2 0.1

2b | 52 ramp: 140-100-140-100 | 0.65 2 0.2

2¢ | 60 ramp: 140-100-140-100 | 1 1.1 0.075

4 | ramp: 180-30-180-30 120 1.5 ramp: 2-0.8-2 | 0.1

5 | ramp: 180-30-180-30 ramp: 120-140-100-120 | 1.5 ramp: 2-0.8-2 | 0.1




a) Dynamic experiment conditions
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b} Model fitted to experimental data
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Figure S5. a) Conditions explored in a flow ramp used for model validation; b) Model trajectory and
measured data for dynamic experiment using parameter values obtained in Table 1. Lines show fitted

concentration; points show experimental data.
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Figure S6. a) Conditions explored in a flow ramp used for model validation; b) Model trajectory and

measured data for dynamic experiment using parameter values obtained in Table 1. Lines show fitted

concentration; points show experimental data.



a) Dynamic experiment conditions
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b} Model fitted to experimental data
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Figure S7. a) Conditions explored in a flow ramp used for model validation; b) Model trajectory and
measured data for dynamic experiment using parameter values obtained in Table 1. Lines show fitted

concentration; points show experimental data.



7 Self-optimization

a) Mass balance (1+4+5)
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Figure S8. Model trajectory and measured data for the self-optimization using parameter values obtained

in Table 1. Lines show fitted concentration; points show experimental data.



8 Disturbances
a) NMR measurements compared to simulated
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Figure S9. Simulated trajectories and experimental data for disturbance tests using parameter values
obtained in Tablel in the manuscript: i) compared to online NMR data; ii) compared to inline FTIR
data. Lines show simulated concentration; points show experimental data. The times given on the figure

refer to the length of time for which the acrylonitrile pump was switched off.
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