Improvement of DERA activity and stability in the synthesis of statin precursors by immobilization on magnetic nanoparticles

Dino Skendrović,^a Anera Švarc,^b Tonči Rezić,^c Andrey Chernev,^d Aleksandra Rađenović^d and Ana Vrsalović Presečki*

Supplementary material

S-1. TEM particle size distributions for a) Fe_3O_4 and b) $Fe_3O_4@SiO_2$.

S-2. STEM EDX spectroscopy mappings of $Fe_3O_4@SiO_2$ nanoparticles (top) and the material distribution profile across the nanoparticle (bottom).

S-3. DLS size distribution of Fe_3O_4 (a) and Fe_3O_4 @SiO₂ (b).

S-4. Kinetics of DERA immobilized on MNP/APTES/15 mM succinic anhydride in the reaction of first (a, b) and second (c, d) aldol addition. The influence of: A -acetaldehyde ($c_{chloroacetaldehyde}$ = 140 mM), B - chloroacetaldehyde ($c_{acetaldehyde}$ = 100 mM), C - acetaldehyde ($c_{4-chloro-3-hydroxybutanal}$ = 40 mM) and D - 4- chloro-3-hydroxybutanal ($c_{acetaldehyde}$ = 50 mM) concentration on the initial reaction rate (0.1 M phosphate buffer pH 6, 25 °C, γ_{DERA} = 1 mg cm⁻³).

S-5. Kinetics of free DERA in the reaction of first aldol addition. The influence of: a - acetaldehyde ($c_{chloroacetaldehyde} = 100 \text{ mM}$) and b - chloroacetaldehyde ($c_{acetaldehyde} = 200 \text{ mM}$) concentration on the initial reaction rate (0.1 M phosphate buffer pH 6, 25 °C, $\gamma_{DERA} = 1 \text{ mg cm}^{-3}$).