An investigation on WO₃/MoO_{3-x} heterojunction photocatalyst for excellent photocatalytic performance and enhanced molecular oxygen activation ability

Yuxuan Shao,^a Dan You,^{a*} Yuqi Wan,^{a,b} Qingrong Cheng,^{a*} and Zhiquan Pan^a ^a Engineering Research Center of Phosphorous Development and Utilization of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, PR China.

^b The Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong

Kong, 999077, PR China.

Fig.S1 The TEM image of WOM_{83%}.

Fig.S2 O, Mo and W SEM EDX mapping of WOM_{83%}.

Fig. S3 XPS spectra of WO₃, MoO_{3-x} and $WOM_{83\%}$.

Fig.S4 VB-XPS spectra of WO₃ and MoO_{3-x}.

Fig. S5 Photocatalytic H_2 production activity over WOM_{83%} for 4 consecutive cycles in every 4h time interval.

Fig.S6 Variations in the relative intensity of intermediate products of RhB with

different reaction time, as obtained in the LC-MS spectra.

Catalyst / mg	V (mL) / C ₋₃₀ (mg·L ⁻¹)	Light source	Time (min)	Result (%)	TOF	Ref			
WO ₃ /MoO _{3-x} /10	50/30	Sun light	40	98%	3.675	This work			
WO ₃ /g-C ₃ N ₄ /100	100/10	Sun light	50	95.5%	0.191	[1]			
WO ₃ / UiO-66 /30	100/20	Sun light	100	96.6%	0.644	[2]			
AC/WO ₃ /10	100/10	Sun light	120	70%	0.583	[3]			
WO3/Bi5O7I/10	50/10	Sun light	80	99.6%	0.6225	[4]			
MWCNT/WO ₃ /10	50/5	Sun light	150	92%	0.153	[5]			

Table.S1 Comparison of WO3 based heterojunction for photocatalytic RhB degradation

 $TOF = \frac{C_{-30} \times V_{RhB} \times Degradation \, rate}{m_{photocatalyst} \times t}$

Photocatalysts/mg	Light source	H ₂ generation rate µmol·g ⁻¹ h ⁻¹	Ref
WO ₃ /MoO _{3-x} /30	Sun light	4214.2	This work
WO ₃ /rGO/Pt/50	Sun light	825.8	[6]
Au/WO _{3/} 100	Sun light	472.71	[7]

Table.S2 Comparison of WO₃ Based heterojunction for photocatalytic H₂ evolution.

References

[1] Q. Zhao, S. Liu, S. Chen, B. Ren, Y. Zhang, X. Luo, Y. Sun, Facile ball-milling synthesis of WO3/g-C3N4 heterojunction for photocatalytic degradation of Rhodamine B, Chemical Physics

Letters, 805 (2022).

[2] F. Zhang, W. Cheng, Z. Yu, S. Ge, Q. Shao, D. Pan, B. Liu, X. Wang, Z. Guo, Microwave hydrothermally synthesized WO3/UiO-66 nanocomposites toward enhanced photocatalytic degradation of rhodamine B, Advanced Composites and Hybrid Materials, 4 (2021) 1330-1342.

[3] M.B. Tahir, M. Ashraf, M. Rafique, M. Ijaz, S. Firman, I. Mubeen, Activated carbon doped WO3 for photocatalytic degradation of rhodamine-B, Applied Nanoscience, 10 (2019) 869-877.

[4] Y. Zhang, H. Liu, J. Peng, J. Guo, B. Wang, L. Ding, X. Cao, Y. Chang, G. Liu, Synthesis of 2D/2D direct Z-scheme WO3/Bi5O7I heterojunctions for decomposition and detoxification of organic compounds under simulated sunlight, Applied Surface Science, 614 (2023).

[5] T.A. Saleh, V.K. Gupta, Functionalization of tungsten oxide into MWCNT and its application for sunlight-induced degradation of rhodamine B, J Colloid Interface Sci, 362 (2011) 337-344.

[6] A.A. Yadav, Y.M. Hunge, S.-W. Kang, Porous nanoplate-like tungsten trioxide/reduced graphene oxide catalyst for sonocatalytic degradation and photocatalytic hydrogen production, Surfaces and Interfaces, 24 (2021).

[7] J.C. Durán-Álvarez, R. Del Angel, D. Ramírez-Ortega, D. Guerrero-Araque, R. Zanella, An alternative method for the synthesis of functional Au/WO3 materials and their use in the photocatalytic production of hydrogen, Catalysis Today, 341 (2020) 49-58.