Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2024

Development of a surrogate artificial neural network for microkinetic modeling: case study with the methanol synthesis

Bruno Lacerda de Oliveira Campos^a, Esly Ferreira da Costa Junior^{b*}, Karla Herrera Delgado^{a*}, Andréa Oliveira Souza da Costa^b, Stephan Pitter^a, and Jörg Sauer^a

a. Institute for Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. karla.herrera@kit.edu

b. Chemical Engineering Department, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos 6627, Pampulha 31270-901, Belo Horizonte (MG), Brazil. esly@deq.ufmg.br

Electronic Supplementary Information (ESI)

S1. Microkinetic model

Table S1. Three-site field extended reaction mechanism for the methanol synthesis and the water-gas shift reaction over Cu (211) and Cu/Zn (211), thermodynamically consistent. (a): Cu (211), (b): Cu/Zn (211), (c): special Cu (211) site for hydrogen and water adsorption. Reproduced with permission from Campos et al.¹ Copyright 2021 Royal Society of Chemistry.

		Forward reaction		Reverse reaction			
No.	Reaction	<i>∆S</i> ^{≠,+} · 10 ³	E_A^+	$oldsymbol{eta}^+$	<i>∆S</i> ^{≠,−} • 10 ³	E_A^-	β-
		[kJ·(mol·K) ⁻¹]	[kJ·mol ⁻¹]	[-]	[kJ·(mol·K) ⁻¹]	[kJ·mol⁻¹]	[-]
R1	$H_{2(g)} + 2 \cdot (c) \rightleftharpoons 2 \cdot H_{(c)}$	-119.24	69.57	0.000	1.72	93.01	0.000
R2	$CO_{(g)} + (a) \rightleftharpoons CO_{(a)}$	-158.23	0.00	0.000	0.00	58.37	0.000
R3	$CO_{(g)} + (b) \rightleftharpoons CO_{(b)}$	-151.60	8.90	-0.119	-6.64	0.00	0.119
R4	$CO_{2(g)} + (a) \rightleftharpoons CO_{2(a)}$	-144.74	0.00	-0.129	-7.22	52.29	0.129
R5	$CO_{2(g)} + (b) \rightleftharpoons CO_{2(b)}$	-138.11	0.00	-0.249	-13.86	51.59	0.249
R6	$H_3CO_{(a)} + H_{(c)} \rightleftharpoons CH_3OH_{(g)} + (a) + (c)$	56.99	81.22	-0.547	-181.26	32.93	0.547
R7	$H_3CO_{(b)} + H_{(c)} \rightleftarrows CH_3OH_{(g)} + (b) + (c)$	47.03	92.56	-0.368	-171.30	23.61	0.368
R8	$\mathrm{H_2O}_{(g)} + (c) \rightleftarrows \mathrm{H_2O}_{(c)}$	-177.19	0.00	0.378	21.08	31.21	-0.378
R9	$\mathrm{H}_{2}\mathrm{O}_{(\mathrm{c})} + (\mathrm{c}) \rightleftarrows \mathrm{OH}_{(\mathrm{c})} + \mathrm{H}_{(\mathrm{c})}$	5.99	79.84	0.140	21.60	105.17	-0.140
R10	$CO_{(a)} + H_{(c)} \rightleftharpoons HCO_{(a)} + (c)$	25.38	84.62	-0.299	-21.90	20.55	0.299
R11	$\mathrm{HCO}_{(a)} + \mathrm{H}_{(c)} \rightleftarrows \mathrm{H}_{2}\mathrm{CO}_{(a)} + (c)$	15.73	56.26	-0.299	-8.10	92.81	0.299
R12	$CO_{2(a)} + H_{(c)} \rightleftharpoons HCOO_{(a)} + (c)$	36.44	77.74	-0.249	8.72	109.64	0.249
R13	$CO_{2(b)} + H_{(c)} \rightleftharpoons HCOO_{(b)} + (c)$	43.07	60.24	-0.368	2.08	105.43	0.368
R14	$HCOO_{(a)} + H_{(c)} \rightleftharpoons HCOOH_{(a)} + (c)$	10.42	128.23	0.000	-153.70	29.81	0.000
R15	$HCOO_{(b)} + H_{(c)} \rightleftharpoons HCOOH_{(b)} + (c)$	10.42	136.53	0.000	-153.70	7.72	0.000
R16	$\text{HCOOH}_{(a)} + \text{H}_{(c)} \rightleftarrows \text{H}_2\text{COOH}_{(a)} + (c)$	-150.42	46.89	0.000	-25.96	62.43	0.000
R17	$HCOOH_{(b)} + H_{(c)} \rightleftarrows H_2COOH_{(b)} + (c)$	-150.42	1.54	0.000	-25.96	48.92	0.000
R18	$H_2COOH_{(a)} + (c) \rightleftharpoons H_2CO_{(a)} + OH_{(c)}$	-20.59	20.52	-0.249	-15.21	38.77	0.249
R19	$H_2COOH_{(b)} + (c) \rightleftharpoons H_2CO_{(b)} + OH_{(c)}$	-13.95	11.22	-0.368	-21.85	9.96	0.368
R20	$\mathrm{H}_{2}\mathrm{CO}_{(a)} + \mathrm{H}_{(c)} \rightleftarrows \mathrm{H}_{3}\mathrm{CO}_{(a)} + (c)$	42.42	52.66	-0.547	-13.47	107.12	0.547
R21	$\mathrm{H}_{2}\mathrm{CO}_{(b)} + \mathrm{H}_{(c)} \rightleftarrows \mathrm{H}_{3}\mathrm{CO}_{(b)} + (c)$	32.46	51.46	-0.368	-3.51	132.06	0.368
R22	$CO_{(a)} + OH_{(c)} \rightleftharpoons COOH_{(a)} + (c)$	-11.31	79.90	-0.119	-3.74	16.05	0.119
R23	$CO_{(b)} + OH_{(c)} \rightleftharpoons COOH_{(b)} + (c)$	-11.31	13.33	-0.119	-3.74	16.05	0.119
R24	$\text{COOH}_{(a)} + \text{OH}_{(c)} \rightleftarrows \text{CO}_{2(a)} + \text{H}_2\text{O}_{(c)}$	9.92	17.09	-0.119	-22.36	60.82	0.119
R25	$\text{COOH}_{(b)} + \text{OH}_{(c)} \rightleftarrows \text{CO}_{2(b)} + \text{H}_2\text{O}_{(c)}$	9.92	17.09	-0.119	-22.37	60.82	0.119
	If the CO_2/CO_x ratio in feed is higher t	han 0.65, the ac	tivation ener	gies of react	ions 24 and 25 a	re adjusted:	
R24	$\text{COOH}_{(a)} + \text{OH}_{(c)} \rightleftarrows \text{CO}_{2(a)} + \text{H}_2\text{O}_{(c)}$	9.92	32.53	-0.119	-22.36	76.22	0.119
R25	$\text{COOH}_{(b)} + \text{OH}_{(c)} \rightleftarrows \text{CO}_{2(b)} + \text{H}_2\text{O}_{(c)}$	9.92	32.53	-0.119	-22.37	76.22	0.119

Figure S1. Initial guess method: Finding an educated initial guess to calculate the coverages. Reproduced with permission from Campos et al.¹ Copyright 2021 Royal Society of Chemistry.

Figure S2. Parity plot of the methanol output concentration (% v/v) from steady-state experiments of the methanol synthesis performed in a PFR¹ and in a CSTR.² MKM simulations vs. experimental data.

S2. Expliciting the kinetic and thermodynamic terms in a microkinetic model

To develop the artificial neural network (ANN) in this work, one of the main assumptions was that the rate of a global reaction (r) consists in a kinetic term (r^K) and a thermodynamic term (r^T) which are multiplying each other. That is:

$$r = r^K \cdot r^T \tag{S1}$$

While in formal kinetic models these terms are easily identified in the equations, they can also be separated in microkinetic models containing a single global reaction. Let's take a hypothetical system as an example: A adsorbs (R1), forms B (R2), which forms C (R3), and desorbs (R4).

$$A_{(g)} + * \stackrel{\text{R1}}{\rightleftharpoons} A^* \stackrel{\text{R2}}{\rightleftharpoons} B^* \stackrel{\text{R3}}{\rightleftharpoons} C^* \stackrel{\text{R4}}{\rightleftharpoons} C_{(g)} + *$$
(S2)

Where * denotes a free active site.

The following rate equations can be written:

$$r_1 = k_1^+ \cdot f_A \cdot \theta_* - k_1^- \cdot \theta_{A*} \tag{S3}$$

$$r_2 = k_2^+ \cdot \theta_{A*} - k_2^- \cdot \theta_{B*} \tag{S4}$$

$$r_3 = k_3^+ \cdot \theta_{B*} - k_3^- \cdot \theta_{C*}$$
(S5)

$$r_4 = k_4^+ \cdot \theta_{C*} - k_4^- \cdot f_C \cdot \theta_* \tag{S6}$$

Here, k is the reaction constant, f_j is the fugacity of gas species j (in bar), θ_i is the coverage of surface species i, and the superscripts + and – refer to forward and reverse reaction, respectively.

The equilibrium constant of an elementary step (K) is defined as follows:

$$K = \frac{k^+}{k^-} \longrightarrow k^- = \frac{k^+}{K} \tag{S7}$$

Considering that the catalyst surface is in steady-state, all four elementary steps must have the same rate. That is:

$$r_1 = r_2 = r_3 = r_4 = r \tag{S8}$$

Substituting Eq. (S7) and (S8) into Eqs. (S3-S6):

$$r = k_1^+ \cdot f_A \cdot \theta_* - \frac{k_1^+}{K_1} \cdot \theta_{A*}$$
(S9)

$$r = k_2^+ \cdot \theta_{A*} - \frac{k_2^+}{K_2} \cdot \theta_{B*}$$
(S10)

$$r = k_3^+ \cdot \theta_{B*} - \frac{k_3^+}{K_3} \cdot \theta_{C*}$$
(S11)

$$r = k_4^+ \cdot \theta_{C*} - \frac{k_4^+}{K_4} \cdot f_C \cdot \theta_*$$
(S12)

Isolating θ_{A*} from Eq. (S9):

$$\theta_{A*} = K_1 \cdot f_A \cdot \theta_* - \frac{K_1}{k_1^+} \cdot r \tag{S13}$$

Isolating θ_{B*} from Eq. (S10) and substituting θ_{A*} from Eq. (S13):

$$\theta_{B*} = K_1 \cdot K_2 \cdot f_A \cdot \theta_* - r \cdot \left(\frac{K_1 \cdot K_2}{k_1^+} + \frac{K_2}{k_2^+}\right)$$
(S14)

Isolating θ_{C*} from Eq. (S11) and substituting θ_{B*} from Eq. (S14):

$$\theta_{C*} = K_1 \cdot K_2 \cdot K_3 \cdot f_A \cdot \theta_* - r \cdot \left(\frac{K_1 \cdot K_2 \cdot K_3}{k_1^+} + \frac{K_2 \cdot K_3}{k_2^+} + \frac{K_3}{k_3^+}\right)$$
(S15)

Substituting Eq. (S15) in Eq. (S12):

$$r = k_4^+ \cdot \left[K_1 \cdot K_2 \cdot K_3 \cdot f_A \cdot \theta_* - r \cdot \left(\frac{K_1 \cdot K_2 \cdot K_3}{k_1^+} + \frac{K_2 \cdot K_3}{k_2^+} + \frac{K_3}{k_3^+} \right) \right] - \frac{k_4^+}{K_4} \cdot f_C \cdot \theta_*$$
(S16)

Multiplying both sides by K_4/k_4^+ and grouping the terms with *r* on the left side:

$$r \cdot \left(\frac{K_1 \cdot K_2 \cdot K_3 \cdot K_4}{k_1^+} + \frac{K_2 \cdot K_3 \cdot K_4}{k_2^+} + \frac{K_3 \cdot K_4}{k_3^+} + \frac{K_4}{k_4^+}\right) = K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot f_A \cdot \theta_* - f_C \cdot \theta_*$$
(S17)

The equilibrium constant of the global reaction $A \rightleftharpoons C(K_P^0)$ is the product of the elementary equilibrium constants:

$$K_P^0 = K_1 \cdot K_2 \cdot K_3 \cdot K_4 \tag{S18}$$

Substituting Eq. (S18) in Eq. (S17):

$$r \cdot \left(\frac{K_P^0}{k_1^+} + \frac{K_2 \cdot K_3 \cdot K_4}{k_2^+} + \frac{K_3 \cdot K_4}{k_3^+} + \frac{K_4}{k_4^+}\right) = K_P^0 \cdot f_A \cdot \theta_* - f_C \cdot \theta_*$$
(S19)

Isolating r and reorganizing:

$$r = \frac{K_P^0 \cdot f_A \cdot \theta_*}{\left(\frac{K_P^0}{k_1^+} + \frac{K_2 \cdot K_3 \cdot K_4}{k_2^+} + \frac{K_3 \cdot K_4}{k_3^+} + \frac{K_4}{k_4^+}\right)} \cdot \left(1 - \frac{f_C}{f_A \cdot K_P^0}\right)$$
(S20)

Here, we can define k as the effective global reaction constant:

$$k = \frac{K_P^0}{\left(\frac{K_P^0}{k_1^+} + \frac{K_2 \cdot K_3 \cdot K_4}{k_2^+} + \frac{K_3 \cdot K_4}{k_3^+} + \frac{K_4}{k_4^+}\right)}$$
(S21)

Finally, substituting Eq. (S21) in Eq. (S20):

$$r = [k \cdot f_A \cdot \theta_*] \cdot \left(1 - \frac{f_C}{f_A \cdot K_P^0}\right)$$
(S22)

In Eq. (S22), the kinetic term (r^{K}) and thermodynamic term (r^{T}) are now identifiable:

$$r^{K} = \begin{bmatrix} k \cdot f_{A} \cdot \theta_{*} \end{bmatrix}$$
(S23)

$$r^{T} = \left(1 - \frac{f_{C}}{f_{A} \cdot K_{P}^{0}}\right) \tag{S24}$$

The majority of the reactive systems have multiple global reactions, in which this explicit separation of r^{K} and r^{T} is not possible, as an algebraic system with multiple variables would be reached. Still, the concept of Eq. (S1) should still be true, and one can calculate the kinetic term indirectly by dividing the reaction rate with the thermodynamic part, i.e.:

$$r^{K} = \frac{r}{r^{T}}$$
(S25)

S3. Calculation of the hydrogen equilibrium conversion

At chemical equilibrium in the methanol synthesis, the following equations must hold:^{1, 3-4}

$$K_{P,CO\ hyd.}^{0} = T^{-3.384} \cdot \exp(10092.4 \cdot T^{-1} - 4.200) = \frac{f_{CH_3OH}}{f_{H_2}^2 \cdot f_{CO}}$$
(S26)

$$K_{P,CO_2 \ hyd.}^0 = T^{-4.481} \cdot \exp(4755.7 \cdot T^{-1} + 8.369) = \frac{f_{CH_3OH} \cdot f_{H_2O}}{f_{H_2}^3 \cdot f_{CO_2}}$$
(S27)

$$K_{P,rWGSR}^{0} = T^{-1.097} \cdot \exp(-5337.4 \cdot T^{-1} + 12.569) = \frac{f_{CO} \cdot f_{H_2O}}{f_{H_2} \cdot f_{CO_2}}$$
(S28)

Since this system of reactions has only two degrees of freedom, two reactions are sufficient to describe it. To calculate H₂ equilibrium conversion, we chose the hydrogenation of CO and the hydrogenation of CO₂. The reaction extensions are defined as follows, with CO and CO₂ as references (X_{CO} and X_{CO_2}):

$$X_{CO} = \frac{\dot{n}_{CO}^{in} - \dot{n}_{CO}}{\dot{n}_{CO}^{in}}$$
(S29)

$$X_{CO_2} = \frac{\dot{n}_{CO_2}^{in} - \dot{n}_{CO_2}}{\dot{n}_{CO_2}^{in}}$$
(S30)

Where \dot{n}_{CO}^{in} and $\dot{n}_{CO_2}^{in}$ are the inlet mole flow of CO and CO₂, respectively, and \dot{n}_{CO_2} and \dot{n}_{CO_2} are the mole flow of CO and CO₂ after the reaction.

The mole flow of each component after the reaction is calculated according to its respective stoichiometric coefficients and the reaction extensions, as follows:

$$\dot{n}_{H_2} = \dot{n}_{H_2}^{in} - 2 \cdot X_{CO} \cdot \dot{n}_{CO}^{in} - 3 \cdot X_{CO_2} \cdot \dot{n}_{CO_2}^{in}$$
(S31)

$$\dot{n}_{CO} = \dot{n}_{CO}^{in} \cdot (1 - X_{CO}) \tag{S32}$$

$$\dot{n}_{CO_2} = \dot{n}_{CO_2}^{in} \cdot (1 - X_{CO_2}) \tag{S33}$$

$$\dot{n}_{CH_3OH} = \dot{n}_{CH_3OH}^{in} + X_{CO} \cdot \dot{n}_{CO}^{in} + X_{CO_2} \cdot \dot{n}_{CO_2}^{in}$$
(S34)

$$\dot{n}_{H_20} = \dot{n}_{H_20}^{in} + X_{CO_2} \cdot \dot{n}_{CO_2}^{in} \tag{S35}$$

The mole fraction of each component (y_i) after the reaction is calculated as follows:

$$y_j = \frac{\dot{n}_j}{\dot{n}} \tag{S36}$$

$$\dot{n} = \sum_{j=1}^{5} \dot{n}_j \tag{S37}$$

Here, \dot{n} is the total mole flow after the reaction.

With the information of the total pressure, the reaction temperature, and the mole fractions, the fugacity of the components (f_j) were estimated with the Peng-Robinson equation of state.⁵ Binary interaction parameters and other necessary information were taken from literature,⁶⁻⁷ including an effective hydrogen acentric factor of -0.05.⁸

The aforementioned equations (Eqs. S26-S27, S29-S37, and the Peng-Robinson equations) form a non-linear algebraic system with two variables (X_{CO} , X_{CO_2}). This system is solved with the Matlab function *fsolve*, with the function and step tolerances set to 10⁻⁶. With the final $X_{CO,eq}$ and $X_{CO_2,eq}$, the equilibrium H₂ conversion ($X_{H_2,eq}$) is calculated as follows:

$$X_{H_2,eq} = \frac{\left(\dot{n}_{H_2}^{in} - 2 \cdot X_{CO,eq} \cdot \dot{n}_{CO}^{in} - 3 \cdot X_{CO_2,eq} \cdot \dot{n}_{CO_2}^{in}\right)}{\dot{n}_{H_2}^{in}}$$
(S38)

S4. Parameters of the developed ANNs

Table S2. ANN₁₀ parameters of the hidden layer (p_{wj}) . *w* refers to the cell index while *j* refers to the input index.

p_{wj}	<i>j</i> = 0	<i>j</i> = 1	<i>j</i> = 2	<i>j</i> = 3	<i>j</i> = 4	<i>j</i> = 5	<i>j</i> = 6
<i>w</i> = 1	-0.9716898	0.0041664	-0.0061756	0.0100854	-0.0101530	0.0003118	-0.2135094
<i>w</i> = 2	-0.9959330	0.0240174	0.0051838	-0.0024755	-0.3549400	0.0002915	-0.0028441
<i>w</i> = 3	-0.9748353	0.0192092	0.0140785	-0.0291657	-0.0107911	0.0007449	-0.0138335
<i>w</i> = 4	-0.9605484	0.0259080	0.0053966	0.0075902	-0.0970261	0.0068462	-0.0081281
<i>w</i> = 5	0.9384540	-0.0468252	-0.0046727	-0.0112876	0.1626274	-0.0126964	0.0115955
<i>w</i> = 6	0.8449822	-0.0413623	0.0264285	-0.0291187	0.0202620	0.0017597	-0.3306908
<i>w</i> = 7	-1.0459629	0.0638154	0.0261562	-0.0030565	0.0170041	-0.0035466	-0.0047106
<i>w</i> = 8	0.8054555	-0.0534534	0.0582256	0.5045525	-0.0113396	-0.0154450	-0.9923904
<i>w</i> = 9	0.9736794	-0.0229409	0.0358447	-0.0001882	-0.0047470	0.0027775	-0.0288284
<i>w</i> = 10	0.9566228	-0.0345442	-0.0065016	-0.0005030	0.0005019	0.0001845	0.0061815

Table S3. ANN₁₀ parameters of the output layer (\hat{p}_{nw}). *n* refers to the output index while *w* refers to the cell index. The table was transposed because of space.

\widehat{p}_{nw}'	n = 1	<i>n</i> = 2	<i>n</i> = 3
w = 0	11068.3626	-94142.7103	-29624.1371
w = 1	709.9192	-282.5021	-56164.3427
w = 2	649.2352	-101175.0807	4744.4682
w = 3	-15995.9726	-3.6427	1353.2367
w = 4	34472.1413	5405.3482	18589.0573
w = 5	5102.2267	998.5848	2790.5874
<i>w</i> = 6	-4.3013	2.0209	-152.1544
w = 7	577.4606	11890.9206	1277.1276
w = 8	0.7117	-0.2048	13.0161
<i>w</i> = 9	7507.0901	12992.4854	-5848.5115
w = 10	-3262.2452	-4016.0001	2619.7030

p_{wj}	<i>j</i> = 0	<i>j</i> = 1	<i>j</i> = 2	<i>j</i> = 3	<i>j</i> = 4	<i>j</i> = 5	<i>j</i> = 6
<i>w</i> = 1	0.4107634	-0.3476371	-0.0343069	-0.4910167	0.3421876	0.0587555	0.3425156
w = 2	0.4788869	-0.5265364	-0.0705651	0.0468037	-0.0430378	0.0112581	0.0226196
<i>w</i> = 3	0.5235582	-0.0012607	0.1937560	0.4779385	0.1020426	-0.0414237	-1.3779806
<i>w</i> = 4	-0.4101937	0.0879208	-0.1416665	-0.0958177	1.1418159	-0.0091950	0.0577283
<i>w</i> = 5	1.0299699	-0.0610526	-0.0215066	0.0006823	-0.0074083	-0.0004268	0.0119220
<i>w</i> = 6	-0.0667126	-0.0922277	-0.1715939	-0.0862231	0.5347287	-0.0446638	0.9247602
<i>w</i> = 7	0.4684067	-0.0953478	0.1615514	0.1012457	-1.3064510	0.0100775	-0.0753646
<i>w</i> = 8	-0.9865289	0.0214754	0.0044386	-0.0040830	-0.8306544	-0.0012574	0.0120926
<i>w</i> = 9	0.1672123	-0.1619341	0.0224200	0.0914151	-0.1196893	0.0058689	0.0063903
w = 10	0.1316965	-0.5871169	0.6962471	0.1545037	-1.0756671	0.1769251	-0.2042572
<i>w</i> = 11	-0.9663492	0.0023345	-0.0048524	0.0006847	-0.0033376	0.0003150	-0.6501090
<i>w</i> = 12	0.2377170	-0.1813779	0.0092137	-0.3371499	0.2234223	0.0387758	0.1925004
<i>w</i> = 13	-0.9496994	0.0345588	-0.0588820	-0.0009962	-0.0107111	0.0057568	0.0347929
<i>w</i> = 14	-0.0548285	-0.0008430	0.1472877	-0.1680355	0.0992056	0.0230020	-0.6062469
<i>w</i> = 15	-0.2002659	0.0226395	0.0513328	0.2348420	0.0364116	-0.0330605	-1.0627367
<i>w</i> = 16	-1.0033942	0.0376572	0.0057459	0.0014855	-0.1792533	0.0078282	-0.0097843
<i>w</i> = 17	-0.1562959	0.0498811	0.0054537	0.0517360	0.0080279	-0.0135540	-0.9118531
<i>w</i> = 18	0.0752436	0.0109804	0.0557756	-0.2336342	0.0568813	0.0205622	-0.1238210
<i>w</i> = 19	0.9272197	0.0160861	0.0387003	-0.0102710	0.0799524	-0.0009957	-0.1313046
w = 20	0.2602767	-0.0104805	-0.0757907	-0.3215158	-0.0402635	0.0363001	1.0610396

Table S4. ANN₂₀ parameters of the hidden layer (p_{wj}) . *w* refers to the cell index while *j* refers to the input index.

\widehat{p}_{nw}'	<i>n</i> = 1	<i>n</i> = 2	<i>n</i> = 3
w = 0	-3192.6495	-48814.6635	-23609.9722
w = 1	19.1794	0.3520	5.1972
w = 2	-5.9923	-1.8207	-1.2544
w = 3	-9.7435	-0.3226	-37.5713
w = 4	64.1003	3.1109	20.3288
w = 5	-4512.9794	-11740.4489	1189.2378
<i>w</i> = 6	0.2324	0.0888	-5.9175
<i>w</i> = 7	42.6292	2.2433	12.4537
<i>w</i> = 8	236.6448	-35073.4100	1479.1315
<i>w</i> = 9	80.5643	5.2245	6.9051
w = 10	0.2542	-0.0543	0.3699
<i>w</i> = 11	275.8564	206.0867	-19976.7228
<i>w</i> = 12	-80.8444	-1.8040	-22.7775
<i>w</i> = 13	-1658.9701	-1800.4704	-1332.2755
w = 14	0.6853	-0.0314	129.9186
<i>w</i> = 15	102.0798	1.5156	460.0508
<i>w</i> = 16	-4947.7715	-23877.7532	2314.5123
<i>w</i> = 17	-24.5357	0.5622	-133.4187
<i>w</i> = 18	61.3209	1.8288	-202.0073
<i>w</i> = 19	1608.1333	9.3080	4925.4788
<i>w</i> = 20	96.7751	2.1706	411.3621

Table S5. ANN₂₀ parameters of the output layer (\hat{p}_{nw}) . *n* refers to the output index while *w* refers to the cell index. The table was transposed because of space.

Table S6. ANN₃₀ parameters of the hidden layer (p_{wj}) . *w* refers to the cell index while *j* refers to the input index.

p_{wj}	<i>j</i> = 0	<i>j</i> = 1	<i>j</i> = 2	<i>j</i> = 3	<i>j</i> = 4	<i>j</i> = 5	<i>j</i> = 6
<i>w</i> = 1	0.9210260	0.0144556	-0.0055219	-0.0254152	0.0265035	0.0012437	0.7429898
<i>w</i> = 2	-0.9764701	0.0370388	-0.0669420	-0.0983673	0.0187385	0.0166996	0.1093835
<i>w</i> = 3	-0.9514059	0.0003606	-0.0140501	-0.1407724	-0.0163624	0.0081432	0.0657403
w = 4	-0.9676759	0.0011831	-0.0200063	0.0013056	-0.0232506	0.0025903	-1.0061496
<i>w</i> = 5	-0.9860803	0.0153332	0.0020657	-0.0040916	-0.7942445	-0.0006715	0.0210091
<i>w</i> = 6	-1.0314882	0.0454929	0.0179973	-0.0002921	0.0078623	-0.0008390	-0.0048101
<i>w</i> = 7	0.9484849	0.0042774	-0.0191207	-0.0020081	0.0181528	0.0001254	-0.0308138
<i>w</i> = 8	-0.9820565	-0.0081976	0.0098745	0.0063298	-0.1588040	-0.0018979	0.0043109
<i>w</i> = 9	0.9800557	-0.0200801	0.0256699	-0.0011864	0.0120047	-0.0036895	-0.0071408
<i>w</i> = 10	-1.0237492	0.1225330	0.0721624	0.0169683	-0.8349192	0.0280220	-0.1447876
<i>w</i> = 11	-0.2962458	-0.0197919	0.1882503	-0.0428655	-0.0017384	0.0123888	-1.0239027
<i>w</i> = 12	-0.8529406	-0.0309410	0.0117282	0.0510897	-0.0522445	-0.0022420	-1.3906473
<i>w</i> = 13	-0.0412349	-0.0239703	-0.0166151	-0.0425768	0.2393774	-0.0089242	0.0314645
<i>w</i> = 14	-1.0136615	0.0805500	0.0448732	0.0104937	-0.5435348	0.0179463	-0.0907573
<i>w</i> = 15	0.0630118	0.1521816	0.1063422	0.0638993	-0.1034713	0.0127883	-0.2630422
<i>w</i> = 16	-0.0208821	-0.0524536	0.0550701	0.0802684	0.0609775	0.0010868	0.0847652
<i>w</i> = 17	-0.1048916	-0.0497711	-0.0234816	0.1069471	0.0761395	0.0004229	0.1142789
<i>w</i> = 18	0.3777372	-0.0152203	-0.0987326	-0.2421954	-0.0604080	-0.0216252	0.8987170
<i>w</i> = 19	0.8877308	-0.5220655	0.1144222	0.1379238	-0.2481600	0.0105050	0.5708149
w = 20	0.0315558	0.0517333	-0.0794345	0.0396991	-0.1372819	0.0049044	-0.0271347
w = 21	0.5344184	-0.5093209	-0.0224921	0.3218643	0.5777068	-0.0424688	-0.1385745
<i>w</i> = 22	0.9566903	-0.2122409	-0.2471810	-0.4637741	-0.1823084	-0.0257392	-0.3850709
<i>w</i> = 23	-0.7326411	-0.0041719	-0.0927623	-0.7648524	-0.0931389	0.0395052	0.3862078
<i>w</i> = 24	0.8701789	-0.0895655	-0.2855420	-0.5321962	-0.1703353	-0.0436570	0.9563571
<i>w</i> = 25	0.9039345	0.1360256	-0.8335025	-0.0212982	0.2684881	0.0329665	0.8461650
<i>w</i> = 26	-0.9189061	-0.1482228	0.8775237	0.0217204	-0.2768904	-0.0450017	-0.7943776
<i>w</i> = 27	0.3367264	0.6245309	-0.1381385	-0.2949816	-0.3098113	0.0680996	-1.1056290
<i>w</i> = 28	0.9425932	-0.1788266	-0.2369277	-0.4742727	-0.1979102	-0.0250730	-0.3491069
<i>w</i> = 29	-0.0055630	0.2531751	-0.1584149	-0.0627589	0.2618731	-0.0104989	-0.1385452
w = 30	-0.9658869	0.0534001	-0.0954103	-0.1401058	0.0273488	-0.0006017	0.1378509

\widehat{p}_{nw}'	n = 1	<i>n</i> = 2	<i>n</i> = 3
w = 0	5014.6684	-67218.7139	-24640.1621
w = 1	-141.8928	-356.0612	12208.2237
<i>w</i> = 2	-4537.3650	-1618.7976	-33857.4346
<i>w</i> = 3	-15669.8679	-2035.7802	-34751.8883
w = 4	-1698.7260	74.0943	-23834.3334
<i>w</i> = 5	-2897.8441	-67366.3029	2648.7725
<i>w</i> = 6	-4253.7984	51194.8479	1622.2464
<i>w</i> = 7	1738.9680	3965.0607	-25216.0578
<i>w</i> = 8	47509.0643	-3933.6909	21278.2679
<i>w</i> = 9	11449.9315	31428.3834	-17823.7016
<i>w</i> = 10	316.2938	2112.2209	-587.5362
<i>w</i> = 11	2.5557	-0.6271	54.5921
<i>w</i> = 12	-10.0019	-33.2223	1099.8649
<i>w</i> = 13	105.3360	-24.9122	54.2074
<i>w</i> = 14	-1602.1186	-10959.1007	2929.0181
<i>w</i> = 15	-40.8261	-6.9090	5.7855
<i>w</i> = 16	314.5280	-1.1459	126.6244
<i>w</i> = 17	-255.9859	5.5620	6.4420
<i>w</i> = 18	-4.4710	-2.1267	62.6596
<i>w</i> = 19	-1.5361	-1.6503	-1.2003
w = 20	217.8041	-22.7268	131.8603
<i>w</i> = 21	-1.2949	-0.3805	-0.9806
<i>w</i> = 22	32.6347	-3.2432	-3.7043
<i>w</i> = 23	23.2024	3.1948	59.0229
<i>w</i> = 24	3.6723	0.6332	-11.5088
<i>w</i> = 25	4.3456	2.7947	24.1452
w = 26	3.9460	2.6198	19.2900
<i>w</i> = 27	1.2927	0.3668	1.5258
<i>w</i> = 28	-36.7011	2.8556	9.0313
<i>w</i> = 29	2.1071	6.4978	5.4788
<i>w</i> = 30	917.3079	377.9798	7931.9928

Table S7. ANN₃₀ parameters of the output layer (\hat{p}_{nw}) . *n* refers to the output index while *w* refers to the cell index. The table was transposed because of space.

j = 2*j* = 3 *j* = 4 $\mathbf{j} = \mathbf{5}$ **j** = **0** *j* = 1 *j* = 6 p_{wj} w = 10.9200367 0.0076764 -0.0009857 -0.0165760 0.0175379 0.0036085 1.1262685 w = 2-0.9827898 0.0496525 -0.1002516 -0.0668408 0.0047046 0.0415199 0.1402700 w = 3-0.9308891 -0.0001035 -0.0269745 -0.4010498 -0.0368052 0.0032319 0.1173029 w = 4-0.9687155 -0.0009855 -0.0243023 0.0029107 -0.0203690 0.0033600 -1.3451289 w = 5-0.9852336 0.0142400 0.0014441 -0.0031647 -0.8427927 0.0003946 0.0189562 w = 6-1.0577440 0.0645960 0.0225978 -0.0035011 0.0133353 -0.0033700 -0.0141970 w = 70.9672956 -0.0006928 -0.0020129 0.0020031 0.0492340 0.0005421 -0.0786190 w = 8-0.9820317 0.0063725 -0.1994111 -0.0094197 0.0094059 -0.0020577 0.0111338 w = 90.9335614 -0.0199485 0.0194790 -0.0012524 0.0097728 -0.0032763 -0.0050180 w = 10-1.0206142 0.1171118 0.0694301 0.0106954 -0.9272709 0.0216159 -0.0984454 w = 11-0.2021453 -0.0663709 0.3816407 -0.0399833 -0.0261569 -0.0198502 -1.1507226 w = 12-0.8642980 -0.0142196 0.0024998 0.0284852 -0.0300141 -0.0066122 -1.9375957 w = 13-0.3665186 -0.0618812 -0.0245794 -0.0813862 0.2434990 -0.0155301 0.0221331 w = 14-1.01056440.0696289 0.0058528 -0.5436944 0.0388431 0.0125731 -0.0555272 w = 150.1173194 0.1951941 -0.1354525 0.0246064 -0.1158351 0.0259153 0.0048485 w = 16-0.0292299 -0.0397383 0.0363245 0.0751064 0.0140031 0.0035132 0.0213155 w = 170.0129362 -0.1151793 -0.0272537 -0.0379548 0.1299361 0.0044727 0.0567924 w = 180.2381513 0.0069968 -0.0690950 -0.3235856 0.0025524 -0.0123455 0.9082660 w = 190.6764443 -0.3708194 0.0610742 -0.0138102 -0.0098356 -0.0233576 0.0042944 w = 200.1776015 -0.0705152 0.0920699 -0.1000310 0.0430449 0.0447696 0.0024711 w = 210.4755637 -0.3271537 -0.0750362 0.3348838 0.6578049 -0.0353007 -0.0507947 w = 220.8001454 -0.2364633 -0.0887444 -0.3893658 0.0442344 0.0264606 -0.2680961 w = 23-0.8155336 -0.0009335 -0.0734646 -1.0857503 -0.1055481 0.0064367 0.3174450 w = 240.7063370 -0.0240587 -0.2451499 -0.9691192 0.0643380 -0.0601396 2.2032006 w = 250.6289627 0.3954138 -1.2483782 0.0063962 0.1141701 0.1673217 1.5710404 w = 26-0.6302366 -0.3982644 1.2502565 -0.0051650 -0.1157481 -0.1688652 -1.5453826 w = 270.4735275 0.2978224 -0.1135825 -0.0780181-0.4178516 0.0576710 -0.2308728 w = 280.8221592 -0.1029569 0.0060872 -0.5483422-0.0782219 0.0694359 -1.4717670 w = 29-0.1644704 0.1976783 0.1352859 0.1493739 -0.0052121 0.0194770 0.0758168 w = 30-0.9755096 0.0670431 -0.1349110 -0.0906471 0.0062291 0.0325506 0.1668614 w = 311.6862808 -0.6694639 -1.2833303 -1.0903861 2.3292406 -0.0465565 1.2805244

Table S8. ANN₄₀ parameters of the hidden layer (p_{wj}) . *w* refers to the cell index while *j* refers to the input index.

<i>w</i> = 32	-0.4655295	-0.1729073	0.0404600	-0.3131722	0.2125989	-0.0497864	1.9471693
<i>w</i> = 33	0.5020775	-0.2096806	0.0905325	-0.0383210	0.5208753	-0.0528558	0.2703349
<i>w</i> = 34	0.2849129	0.0954594	-0.0380159	0.5053490	0.1045337	-0.0474973	0.0986259
w = 35	0.8222148	-0.7026919	-0.1287898	-0.0123962	-0.0646418	-0.0159605	0.0724903
<i>w</i> = 36	-0.0989402	-0.0397708	-0.5586013	-0.0453288	0.0873285	0.0487099	0.2711086
<i>w</i> = 37	0.2411174	0.0070856	0.0771951	-0.0647974	0.0479239	-0.0473074	1.5814832
<i>w</i> = 38	-0.5713111	0.1007126	0.1058824	-0.0806702	-0.4140267	0.0331325	-0.4111302
<i>w</i> = 39	-0.3920248	-0.1036485	-0.0980156	0.1339449	0.2666204	-0.0394928	1.0521331
<i>w</i> = 40	0.4839421	-0.1284074	-0.0375403	-0.0579197	0.5687728	-0.0458338	0.2178815

\widehat{p}_{nw}'	<i>n</i> = 1	<i>n</i> = 2	<i>n</i> = 3
<i>w</i> = 0	9507.3185	-66056.0886	-26159.9740
w = 1	1522.8483	-103.7176	14027.6114
w = 2	-8147.1965	-1610.6743	-33520.0646
<i>w</i> = 3	-8364.9046	110.7577	-35273.7378
<i>w</i> = 4	-432.1208	328.3294	-25438.0037
<i>w</i> = 5	-2605.5484	-67054.3050	3217.6946
<i>w</i> = 6	-6243.7633	48481.3382	1503.8741
<i>w</i> = 7	-2631.4782	1147.4086	-24189.5422
w = 8	43947.8750	-4943.5291	17180.0172
<i>w</i> = 9	12730.2588	26530.2238	-20943.9385
w = 10	-55.7499	2112.2702	-391.8940
<i>w</i> = 11	6.4570	1.9100	57.3262
<i>w</i> = 12	207.1185	-14.2433	1791.6267
<i>w</i> = 13	146.7510	-22.4728	70.4588
<i>w</i> = 14	246.3041	-16426.9455	2902.5883
<i>w</i> = 15	-40.3999	-14.6354	2.5303
<i>w</i> = 16	353.2149	-30.2512	159.6581
<i>w</i> = 17	-257.6934	15.8314	3.7484
<i>w</i> = 18	4.6366	-0.2838	67.7121
<i>w</i> = 19	-15.4434	-17.1775	-0.1232
w = 20	283.2293	-11.2045	161.0353
<i>w</i> = 21	-3.5059	-0.8316	-2.6006
<i>w</i> = 22	12.4337	0.1920	-0.1678
<i>w</i> = 23	185.8430	-3.1862	824.5165
w = 24	-0.1302	0.0448	-2.4149
w = 25	15.7102	10.2271	101.9132
w = 26	15.5747	10.2622	99.8888
<i>w</i> = 27	35.0183	1.8037	18.6600
<i>w</i> = 28	-1.8163	-0.3499	7.8325
<i>w</i> = 29	14.1689	10.2108	15.5896
w = 30	2433.1696	529.2693	9965.6195

Table S9. ANN₄₀ parameters of the output layer (\hat{p}_{nw}) . *n* refers to the output index while *w* refers to the cell index. The table was transposed because of space.

<i>w</i> = 31	0.0477	-0.0012	0.0022
<i>w</i> = 32	-0.8329	0.1420	-7.9189
<i>w</i> = 33	-50.2144	-3.2071	-15.8676
w = 34	-9.2777	0.4421	-12.1313
w = 35	0.9162	2.7283	-0.3383
<i>w</i> = 36	2.9042	2.4056	-1.2588
<i>w</i> = 37	0.9017	0.4573	-11.5757
<i>w</i> = 38	4.5984	-8.1404	-30.9170
<i>w</i> = 39	1.8114	1.1330	28.8090
w = 40	48.5507	-5.4538	4.9950

References

1. Lacerda de Oliveira Campos, B.; Herrera Delgado, K.; Wild, S.; Studt, F.; Pitter, S.; Sauer, J., Surface reaction kinetics of the methanol synthesis and the water gas shift reaction on Cu/ZnO/Al2O3. *Reaction Chemistry & Engineering* **2021**, *6* (5), 868-887.

2. Seidel, C.; Jörke, A.; Vollbrecht, B.; Seidel-Morgenstern, A.; Kienle, A., Kinetic modeling of methanol synthesis from renewable resources. *Chemical Engineering Science* **2018**, *175*, 130-138.

3. Goos, E.; Burcat, A.; Ruscic, B. New NASA thermodynamic polynomials database. Available at: <u>http://garfield.chem.elte.hu/Burcat/THERM.DAT</u> (Acess in Mar. 2022).

4. Lacerda de Oliveira Campos, B.; Herrera Delgado, K.; Pitter, S.; Sauer, J., Development of Consistent Kinetic Models Derived from a Microkinetic Model of the Methanol Synthesis. *Industrial & Engineering Chemistry Research* **2021**.

5. Peng, D.-Y.; Robinson, D. B., A New Two-Constant Equation of State. *Industrial & Engineering Chemistry Fundamentals* **1976**, *15* (1), 59-64.

6. Meng, L.; Duan, Y.-Y., Prediction of the second cross virial coefficients of nonpolar binary mixtures. *Fluid Phase Equilibria* **2005**, *238* (2), 229-238.

7. Meng, L.; Duan, Y.-Y.; Wang, X.-D., Binary interaction parameter kij for calculating the second crossvirial coefficients of mixtures. *Fluid Phase Equilibria* **2007**, *260* (2), 354-358.

8. Deiters, U. K., Comments on the modeling of hydrogen and hydrogen-containing mixtures with cubic equations of state. *Fluid Phase Equilibria* **2013**, *352*, 93-96.