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Table S1: Literature reports on glycerol oxidation to lactic acid process.

Catalysts T 

(oC)

P (bar) Gas 

Medium

time 

(hr)

base base/gly  

(mol/mol)

gly/ metal 

(mol/mol)

conversion

(%)

L.A. 

selectivity

(%)

Ref

1.9Pt-4.7Ru/C 200 40 H2 5 NaOH 0.8 700 100 37 1

1Au-1Pd/TiO2 160 10 O2 2 BF - 2500 29.7 58.5 2

1.5Pt/Sn-MFI 100 6.2 O2 24 BF - 350 89.8 80.5 3

1Au-1Pt/TiO2 90 1 O2 1 NaOH 4 8000 30 86 4

0.4Au-

0.3Pt/CeO2

100 5 O2 0.5 NaOH 4 680 99 80 5

1Pt-1Co/CeO2 200 10 N2 4 NaOH 1 720 85 87.7 6

0.5Au-

0.5Pt/Al2O3

85 6

(mlpm)

O2 - NaOH 4 - >90 40 7

0.5%Cu-

1.0%Pt/AC
90 100 

(mlpm)

O2 4 LiOH 1.5 - 80 69.3 8

10%Ni-

1Co/CeO2

160 20 N2 6.5 NaOH 1.5 58.82 97 95.88 9

1.39Pt-

0.5Co/CeO2

200 10 N2 4 NaOH 1 - 98 54 10

1Au-0.5Ru/CZ 50 3 O2 0.25 NaOH 1 1000 28 22 11
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Figure S1: EDX spectrum of the 1Pt-1V/AC bimetallic catalyst.
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Figure S2: (a) XRD patterns (b) N2 sorption isotherms of various activated carbon supported Pt-

V bimetallic catalysts, synthesized in this study. The data for bare activated carbon support also 

included for the comparison.
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Figure S3: Effect of base type on glycerol to lactic acid conversion over 1Pt-1V/AC bimetallic 

catalyst: (a) 3 h and (b) 12 h . The other reaction conditions: 200 °C temperature, 5 bar air 

pressure, 1:1 base (KOH or NaOH) to glycerol molar ratio, and 0.05 g catalyst (8800 glycerol to 

metal molar ratio).
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Figure S4: Effect of oxidant type on glycerol to lactic acid conversion over 1Pt-11V/AC 

bimetallic catalyst. (Reaction conditions: 200°C temperature, 5 bar air pressure, 12 h reaction 

time, 1:1 base (KOH) to glycerol molar ratio, and 0.1 g catalyst.)
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Figure S5: Glycerol to lactic acid conversion over 1Pt-1V/AC bimetallic catalyst: Effect of (a) 

reaction time (with NaOH as a base). The other reaction conditions: 200°C temperature, 5 bar air 

pressure, 1:1 base (NaOH) to glycerol molar ratio, and 0.1 g catalyst.

With the increase of catalyst loading from 0 to 0.05 (8800 mol/mol glycerol to metal molar ratio) 

and 0.1 g (4400 mol/mol), the GL conversion and the LA yield was significantly enhanced from 

27 to 62.5 and 79.2% and from 5.5 to 31.0 and 41.0%, respectively (Figure. S6). Further, with an 

increase in the reaction time of 3 to 12 h, the GL conversion and LA yields were increased from 

78.7 to 90.0% and 47.7 to 57.7%, respectively (Figure. S7).  However, there is no formation of 

byproducts with a bare (0.0 g) catalyst, which means the process is a hydrothermal conversion. A 

considerable amount (8.23%) of 1,2-PDO was formed with an increasing catalyst amount to 0.05 

and further increasing to 0.1 g; there is no change in 1,2-PDO yield. However, an increase in 

reaction time from 3 to 12 h showed a slight decrease in 1,2-PDO yield. 
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Figure S6: Effect of catalyst loading on glycerol to lactic acid conversion over 1Pt-1V/AC 

bimetallic catalyst (Reaction conditions: 200°C temperature, 5 bar air pressure, 3 h reaction time, 

and 1:1 base (KOH) to glycerol molar ratio).
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Figure S7: Effect of catalyst loading on glycerol to lactic acid conversion over 1Pt-1 V/AC 

bimetallic catalyst. (Reaction conditions: 200°C temperature, 5 bar air pressure, 12 h reaction 

time, and 1:1 base (KOH) to glycerol molar ratio.
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Table S2: Carbon balance at various process conditions.
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