Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2023

Supporting information

Encapsulation of Ti_xFe_yLa_mO_z nanoparticle into NH₂-MIL-125(Ti) to fabricate a promising photocatalyst for C-N coupling reaction

Yahya Absalan^{a*}, Mohammad Rafsanjani Dehghazi^b, Reza Samavati^c, Kambiz Souri^d, and Mostafa Gholizadeh^b

^aDepartment of Chemistry, Georgia University, Athens, Georgia30602, United States

^b Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Islamic Republic of Iran

°RUDN University, 6 Miklukho-Maklaya St., Moscow 117198, Russia

^dDepartment of Mechanical and Instrumental Engineering, Academy of Engineering, RUDN University, 6 Miklukho-Maklaya Street, Moscow117198, Russia

Figure S 1 The color of the different samples	3
Figure S 2 Photocatalytic C-N cross-coupling reaction	4
Figure S 3 PXRD pattern of (a) TixFeyOz, and (b) TixFeyLamOz	5
Figure S 4 PXRD pattern of (a) pristine MOF, (b) La@MOF and (c) Fe@MOF	6
Figure S 5 FT-IR spectroscopy of Fe@MOF	7
Figure S 6 FESEM image of (a) TixFeyOz, (b) Fe@MOF	7
Figure S 7 EDX analysis of La(1)@MOF	8
Figure S 8 EDX analysis of La(1.1)@MOF	8
Figure S 9 EDX analysis of La(1.15)@MOF	9
Figure S 10 Photocurrent transient response of TixFeyOz, and TixFeyLamOz nanoparticles und	der
visible light irradiation	.10
Figure S 11 (a) Diffuse reflectance spectra of TixFeyOz, and TixFeyLamOz nanoparticles; (b) U	V-
Vis Spectra of the TixFeyOz, and TixFeyLamOz nanoparticles; (c) the energy bandgap of the	
TixFeyOz, and TixFeyLamOz nanoparticles under the indirect transition assumption	10
Figure S 12 (a) CV analysis of TixFeyOz, nanoparticle and (b) TixFeyLamOz nanoparticle ¹	11
Figure S 13 Mass Spectroscopy of 2.4-dinitro-N-phenylaniline	.12
Figure S 14 FT-IR spectra of 2.4-dinitro-N-phenylaniline	.12
Figure S 15 H-NMR spectra of 2.4-dinitro-N-phenylaniline	.13
Figure S 16 C-NMR spectra of 2.4-dinitro-N-phenylaniline	.14
Figure S 17 Mass spectroscopy of N-(4-Bromophenyl)-2,4-dinitroaniline	.15
Figure S 18 FT-IR spectra of N-(4-Bromophenyl)-2,4-dinitroaniline	.15
Figure S 19 H-NMR spectra of N-(4-Bromophenyl)-2,4-dinitroaniline	.16
Figure S 20 C-NMR spectra of N-(4-Bromophenyl)-2,4-dinitroaniline	.17
Figure S 21 Mass Spectroscopy of N-(2-Bromophenyl)-2,4-dinitroaniline	.18
Figure S 22 FT-IR spectra of N-(2-Bromophenyl)-2,4-dinitroaniline	.18
Figure S 23 H-NMR spectra of N-(2-Bromophenyl)-2,4-dinitroaniline	.19
Figure S 24 C-NMR spectra of N-(2-Bromophenyl)-2,4-dinitroaniline	.20
Figure S 25 Mass spectroscopy of N-(3-Bromophenyl)-2,4-dinitroaniline	.21
Figure S 26 FT-IR Spectra of N-(3-Bromophenyl)-2,4-dinitroaniline	.21
Figure S 27 H-NMR spectra of N-(3-Bromophenyl)-2,4-dinitroaniline	.22
Figure S 28 C-NMR spectra of N-(3-Bromophenyl)-2,4-dinitroaniline	.23
Figure S 29 Mass Spectroscopy of N-(3,4-dimethylphenyl)-2,4-dinitroaniline	24
Figure S 30 FT-IR Spectra of N-(3,4-dimethylphenyl)-2,4-dinitroaniline	.24
Figure S 31 H-NMR Spectra of N-(3,4-dimethylphenyl)-2,4-dinitroaniline	.25
Figure S 32 C-NMR Spectra of N-(3,4-dimethylphenyl)-2,4-dinitroaniline	26
Figure S 33 Mass spectroscopy of 2.4-dinitro-N-(p-tolyl)	.27
Figure S 34 FT-IR Spectroscopy of 2.4-dinitro-N-(p-tolyl)	.27
Figure S 35 H-NMR Spectra 2.4-dinitro-N-(p-tolyl)	.28
Figure S 36 C-NMR spectra of 2.4-dinitro-N-(p-tolyl)	.29
Figure S 37 Mass Spectroscopy of N-(4-methoxyphenyl)-2,4-dinitroaniline	.30
Figure S 38 FT-IR Spectroscopy of N-(4-methoxyphenyl)-2,4-dinitroaniline	.30
Figure S 39 H-NMR Spectra of N-(4-methoxyphenyl)-2,4-dinitroaniline	.31
Figure S 40 C-NMR spectra of N-(4-methoxyphenyl)-2,4-dinitroaniline	.32

Figure S 41 Mass Spectroscopy of N-(4-chlorophenyl)-2,4-dinitroaniline	33
Figure S 42 FT-IR spectra of N-(4-chlorophenyl)-2,4-dinitroaniline	33
Figure S 43 H-NMR Spectra of N-(4-chlorophenyl)-2,4-dinitroaniline	34
Figure S 44 C-NMR Spectra of N-(4-chlorophenyl)-2,4-dinitroaniline	35
Figure S 45 Mass Spectroscopy of N-(3-chlorophenyl)-2,4-dinitroaniline	36
Figure S 46 FT-IR Spectra of N-(3-chlorophenyl)-2,4-dinitroaniline	36
Figure S 47 H-NMR Spectra of N-(3-chlorophenyl)-2,4-dinitroaniline	37
Figure S 48 C-NMR Spectra of N-(3-chlorophenyl)-2,4-dinitroaniline	
Table 5.1 The data for Le@MOC with different leadings of TivEaulamOz papapartials	2

Table S 1 The data for	La@IVIOF with differe	nt loadings of Tix	(FeyLamOz nanoparticie	3
Table S 2 Chemical-Phy	ysical Features of the	Samples		5

Table S 1 The data for La@MOF with different loadings of TixFeyLamOz nanoparticle

Catalyst	Titanium butoxide (^µ mol)	2-amino terephthalic acid (mL)	Nanoparticle (^µ mol)
La(1)@MOF	10	15.8	10
La(1.05)@MOF	10	15.8	10.5
La(1.1)@MOF	10	15.8	11
La(1.15)@MOF	10	15.8	11.5

Figure S 1 The color of the different samples

Table S 2 Chemical-Physica	l Features of the Samples
----------------------------	---------------------------

sample	JCPDS	crystal system	d value (anatase peak, 25.29Åã) (nm)	crystallite size (nm)
TixFeyOz	96-152-0849	tetragonal	0.88	16.3
TixFeyLamOz	96-900-9087	tetragonal	0.75	14.36

Figure S 5 FT-IR spectroscopy of Fe@MOF

Figure S 6 FESEM image of (a) TixFeyOz, (b) Fe@MOF

Figure S 7 EDX analysis of La(1)@MOF

Figure S 8 EDX analysis of La(1.1)@MOF

Figure S 9 EDX analysis of La(1.15)@MOF

Figure S 10 Photocurrent transient response of TixFeyOz, and TixFeyLamOz nanoparticles under visible light irradiation

Figure S 11 (a) Diffuse reflectance spectra of TixFeyOz, and TixFeyLamOz nanoparticles; (b) UV-Vis Spectra of the TixFeyOz, and TixFeyLamOz nanoparticles; (c) the energy bandgap of the TixFeyOz, and TixFeyLamOz nanoparticles under the indirect transition assumption

Figure S 12 (a) CV analysis of TixFeyOz, nanoparticle and (b) TixFeyLamOz nanoparticle¹

Synthesis 2.4-dinitro-N-phenylaniline: 0.25mmol of Aniline was dissolved in the mix of H₂O and ethanol (2cc / 1:1), after obtaining a uniform solution, 0.3mmol of 2.4dinitrochlorobenzene was added and allowed them to be uniform. Finally, photocatalyst was added and the mixture was exposed to sunlight (Mashhad. Iran on oct18-2022, 22^oC). The control of the reaction was carried out by TLC each 15 min. The reaction was carried out for 60 min. The product was filtered and the precipitate was washed with ethyl acetate. Then the liquid was kept under the hood to evaporate the solvent. Before full evaporation, the obtained precipitate was filtered again by filter paper and recrystallized by ethyl acetate and then it was dried at the room temperature. M.P: 159 °C; FT-IR: 1620,1597,1583,1338,1270,1146,927,845; MS m/z: 259.06; 1H NMR (301 MHz, DMSO) δ 10.18 (s, 1H), 8.90 (d, J = 2.8 Hz, 1H), 8.24 (dd, J = 9.6, 2.8 Hz, 2H), 7.54 (dd, J = 8.5, 7.0 Hz, 2H), 7.45 – 7.33 (m, 3H), 7.12 (d, J = 9.6 Hz, 1H).13C NMR (76 MHz, DMSO) δ 147.1 (C8), 138.1 (C10), 136.8 (C6), 131.67(C11), 130.3 (C9), 130.3 (C2,4), 127.4 (C12), 126.2 (C1,5), 123.9 (C3), 117.3 (C13)..

Figure S 13 Mass Spectroscopy of 2.4-dinitro-N-phenylaniline

Figure S 14 FT-IR spectra of 2.4-dinitro-N-phenylaniline

Figure S 16 C-NMR spectra of 2.4-dinitro-N-phenylaniline

Synthesis N-(4-Bromophenyl)-2,4-dinitroaniline: 0.25mmol of 4-bromoaniline was dissolved in the mix of H₂O and ethanol (2cc / 1:1), after obtaining a uniform solution, 0.3mmol of 2.4-dinitrochlorobenzene was added and allowed them to be uniform. Finally, photocatalyst was added and the mixture was exposed to sunlight. The control of the reaction was carried out by TLC each 15 min. The reaction was carried out for 60 min. The product was filtered and the precipitate was washed with ethyl acetate. Then the liquid was kept under the hood to evaporate the solvent. Before full evaporation, the obtained precipitate was filtered again by filter paper and recrystallized by ethyl acetate and then it was dried at the room temperature. M.P:158 °C; Ft-IR : 1617, 1593, 1518, 1338, 1289, 1221, 926, 833, 637,498 ; MS m/z : 338 ; ¹H NMR (301 MHz, DMSO) δ 10.12 (s, 1H), 8.89 (d, *J* = 2.8 Hz, 1H), 8.23 (dd, *J* = 9.6, 2.8 Hz, 2H), 7.75 – 7.64 (m, 1H), 7.42 – 7.31 (m, 3H), 7.15 (d, *J* = 9.6 Hz, 1H). ¹³C NMR (76 MHz, DMSO) δ 146.5 (C8), 137.3 (C6), 132.3 (C2,4), 132.0 (C11), 129.7 (C12), 128.7 (C9), 125.0 (C1,5), 121.5 (C10), 117.8 (C13), 116.0 (C3).

Figure S 17 Mass spectroscopy of N-(4-Bromophenyl)-2,4-dinitroaniline

Figure S 18 FT-IR spectra of N-(4-Bromophenyl)-2,4-dinitroaniline

Synthesis N-(2-Bromophenyl)-2,4-dinitroaniline: 0.25mmol of 2-bromoaniline was dissolved in the mix of H₂O and ethanol (2cc / 1:1), after obtaining a uniform solution, 0.3mmol of 2.4-dinitrochlorobenzene was added and allowed them to be uniform. Finally, photocatalyst was added and the mixture was exposed to sunlight. The control of the reaction was carried out by TLC each 15 min. The reaction was carried out for 60 min. The product was filtered and the precipitate was washed with ethyl acetate. Then the liquid was kept under the hood to evaporate the solvent. Before full evaporation, the obtained precipitate was filtered again by filter paper and recrystallized by ethyl acetate and then it was dried at the room temperature. M.P: 175-178°C; Ft-IR: 1607, 1538, 1395, 1289, 1154, 932, 834, 647, 528; MS m/z : 338; Hz, 2H), 8.22 (d, J = 2.8 Hz, 1H), 7.74 – 7.67 (m, 3H), 7.42 – 7.34 (m, 3H). ¹³C NMR (76 MHz, DMSO) δ 146.7 (C8), 137.8 (C6), 133.5 (C4), 133.1 (C9), 132.1 (C11), 130.2 (C12), 129.7 (C2), 128.2 (C3), 123.8 (C1), 121.5 (C10), 119.6 (C13), 117.6 (C5).

Figure S 21 Mass Spectroscopy of N-(2-Bromophenyl)-2,4-dinitroaniline

Figure S 22 FT-IR spectra of N-(2-Bromophenyl)-2,4-dinitroaniline

Figure S 24 C-NMR spectra of N-(2-Bromophenyl)-2,4-dinitroaniline

Synthesis N-(3-Bromophenyl)-2,4-dinitroaniline: 0.25mmol of 3-bromoaniline was dissolved in the mix of H₂O and ethanol (2cc / 1:1), after obtaining a uniform solution, 0.3mmol of 2.4-dinitrochlorobenzene was added and allowed them to be uniform. Finally, photocatalyst was added and the mixture was exposed to sunlight. The control of the reaction was carried out by TLC each 15 min. The reaction was carried out for 60 min. The product was filtered and the precipitate was washed with ethyl acetate. Then the liquid was kept under the hood to evaporate the solvent. Before full evaporation, the obtained precipitate was filtered again by filter paper and recrystallized by ethyl acetate and then it was dried at the room temperature M.P: 174° C; Ft-IR: 1614, 1525, 1494, 1346, 1290, 1154, 933, 835, 649 ; MS m/z : 338 ; 1H NMR (301 MHz, DMSO) δ 10.14 (s, 1H), 8.89 (d, *J* = 2.7 Hz, 1H), 8.26 (dd, *J* = 9.5, 2.8 Hz, 2H), 7.68 – 7.36 (m, 3H), 7.19 (d, *J* = 9.5 Hz, 1H). 13C NMR (76 MHz, DMSO) δ 138.1 (C6), 136.8 (C8), 132.0 (C9), 130.3 (C2), 128.7

(C12), 126.2 (C3), 125.0 (C5), 123.9 (C4), 121.5 (C1), 117.3 (C17), 116.1 (C13)⁻

Figure S 25 Mass spectroscopy of N-(3-Bromophenyl)-2,4-dinitroaniline

Figure S 26 FT-IR Spectra of N-(3-Bromophenyl)-2,4-dinitroaniline

Figure S 27 H-NMR spectra of N-(3-Bromophenyl)-2,4-dinitroaniline

Synthesis N-(3,4-dimethylphenyl)-2,4-dinitroaniline : 0.25mmol of 3,4-dimethylaniline was dissolved in the mix of H₂O and ethanol (2cc / 1:1), after obtaining a uniform solution, 0.3mmol of 2.4-dinitrochlorobenzene was added and allowed them to be uniform. Finally, photocatalyst was added and the mixture was exposed to sunlight. The control of the reaction was carried out by TLC each 15 min. The reaction was carried out for 60 min. The product was filtered and the precipitate was washed with ethyl acetate. Then the liquid was kept under the hood to evaporate the solvent. Before full evaporation, the obtained precipitate was filtered again by filter paper and recrystallized by ethyl acetate and then it was dried at the room temperature. M.P: $154-155^{\circ C}$;FT-IR: 2945, 2920, 1609, 1542, 1516, 1338, 1287, 1138, 918, 832; MS m/z(M+) : 289 ; 1H NMR (301 MHz, DMSO) δ 10.10 (s, 1H), 8.88 (d, *J* = 2.8 Hz, 1H), 8.20 (dd, *J* = 9.6, 3.4 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 1H), 7.17 (d, *J* = 2.3 Hz, 1H), 7.13 – 7.02 (m, 3H), 2.27 (d, *J* = 2.5 Hz, 1H). 13C NMR (76 MHz, DMSO) δ 147.5 (C8), 138.4 (C4), 135.8 (C6), 133.5 (C3), 131.2 (C9), 131.1 (C11), 130.2 (C2), 127.3 (s,C12), 123.7 (C5), 121.5 (C10), 117.3 (C13,1), 19.8 (C14), 19.4 (C15).

Figure S 29 Mass Spectroscopy of N-(3,4-dimethylphenyl)-2,4-dinitroaniline

Figure S 30 FT-IR Spectra of N-(3,4-dimethylphenyl)-2,4-dinitroaniline

Synthesis 2.4-dinitro-N-(p-tolyl): 0.25mmol of p-tolylaniline was dissolved in the mix of H₂O and ethanol (2cc / 1:1), after obtaining a uniform solution, 0.3mmol of 2.4-dinitrochlorobenzene was added and allowed them to be uniform. Finally, photocatalyst was added and the mixture was exposed to sunlight. The control of the reaction was carried out by TLC each 15 min. The reaction was carried out for 60 min. The product was filtered and the precipitate was washed with ethyl acetate. Then the liquid was kept under the hood to evaporate the solvent. Before full evaporation, the obtained precipitate was filtered again by filter paper and recrystallized by ethyl acetate and then it was dried at the room temperature M.P:141-142°C; Ft-IR: 2921, 1621, 1581, 1518, 1336, 1284, 1220, 1141, 918, 803; MS m/z(M+): 274; 1H NMR (301 MHz, DMSO) δ 10.11 (s, 1H), 8.90 (d, *J* = 2.8 Hz, 1H), 8.22 (dd, *J* = 9.6, 2.8 Hz, 2H), 8.11 (d, *J* = 8.9 Hz, 0H), 7.29 (d, *J* = 8.0 Hz, 1H), 7.21 – 7.01 (m, 3H), 2.27 (s, 1H). 13C NMR (76 MHz, DMSO) δ 148.0 (C8), 136.3 (C6), 133.5 (C3), 131.0 (C11), 130.6 (C2,4), 130.2 (C12), 128.2 (C9), 123.9 (C1,5), 121.5 (C10), 117.1 (C13), 55.8 (C14).

Figure S 33 Mass spectroscopy of 2.4-dinitro-N-(p-tolyl)

Figure S 34 FT-IR Spectroscopy of 2.4-dinitro-N-(p-tolyl)

Figure S 36 C-NMR spectra of 2.4-dinitro-N-(p-tolyl)

Synthesis N-(4-methoxyphenyl)-2,4-dinitroaniline: 0.25mmol of 4-methoxyaniline was dissolved in the mix of H₂O and ethanol (2cc / 1:1), after obtaining a uniform solution, 0.3mmol of 2.4-dinitrochlorobenzene was added and allowed them to be uniform. Finally, photocatalyst was added and the mixture was exposed to sunlight. The control of the reaction was carried out by TLC each 15 min. The reaction was carried out for 60 min. The product was filtered and the precipitate was washed with ethyl acetate. Then the liquid was kept under the hood to evaporate the solvent. Before full evaporation, the obtained precipitate was filtered again by filter paper and recrystallized by ethyl acetate and then it was dried at the room temperature M.P: 143-145°C : Ft-IR : 3329, 3309, 1619, 1593, 1512, 1336, 1247, 9278, 833; MS m/z: 289.25; 1H NMR (301 MHz, DMSO) δ 10.12 (s, 1H), 8.89 (d, *J* = 2.7 Hz, 1H), 8.20 (dd, *J* = 9.6, 2.8 Hz, 2H), 7.36 – 7.28 (m, 3H), 7.13 – 7.04 (m, 3H), 3.82 (s, 1H). 13C NMR (76 MHz, DMSO) δ 146.8 (C8), 131.4 (C11), 130.2 (C6), 130.1 (C9), 129.7 (C12), 128.5 (C3), 128.0 (C1,5), 121.5 (C10), 117.5 (C13), 116.0 (C2,4) , 14.5 (C21).

Figure S 37 Mass Spectroscopy of N-(4-methoxyphenyl)-2,4-dinitroaniline

Figure S 38 FT-IR Spectroscopy of N-(4-methoxyphenyl)-2,4-dinitroaniline

Figure S 40 C-NMR spectra of N-(4-methoxyphenyl)-2,4-dinitroaniline

• Synthesis N-(4-chlorophenyl)-2,4-dinitroaniline: 0.25mmol of 4-chloroaniline was dissolved in the mix of H₂O and ethanol (2cc / 1:1), after obtaining a uniform solution, 0.3mmol of 2.4-dinitrochlorobenzene was added and allowed them to be uniform. Finally, photocatalyst was added and the mixture was exposed to sunlight. The control of the reaction was carried out by TLC each 15 min. The reaction was carried out for 60 min. The product was filtered and the precipitate was washed with ethyl acetate. Then the liquid was kept under the hood to evaporate the solvent. Before full evaporation, the obtained precipitate was filtered again by filter paper and recrystallized by ethyl acetate and then it was dried at the room temperature .M.P: 166-169°C; Ft-IR : 1619, 1608, 1519, 1341, 1286, 1141, 918, 833, 741; MS m/z :293.66; ¹H NMR (301 MHz, DMSO) δ 10.15 (s, 1H), 8.90 (d, *J* = 2.8 Hz, 1H), 8.53 (dd, *J* = 8.9, 2.7 Hz, 2H), 8.22 (d, *J* = 2.8 Hz, 1H), 7.64 – 7.53 (m, 3H), 7.44 (d, *J* = 8.7 Hz, 1H). ¹³C NMR (76 MHz, DMSO) δ 146.8 (C8), 137.3 (C6), 131.4 (C11), 130.2 (C9), 130.1 (C2,4), 129.7 (C12), 128.5 (C3), 128.0 (C1,5), 121.5 (C10), 116.1 (C13).

Figure S 41 Mass Spectroscopy of N-(4-chlorophenyl)-2,4-dinitroaniline

Figure S 42 FT-IR spectra of N-(4-chlorophenyl)-2,4-dinitroaniline

Synthesis N-(3-chlorophenyl)-2,4-dinitroaniline : 0.25mmol of 3-chloroaniline was dissolved in the mix of H₂O and ethanol (2cc / 1:1), after obtaining a uniform solution, 0.3mmol of 2.4-dinitrochlorobenzene was added and allowed them to be uniform. Finally, photocatalyst was added and the mixture was exposed to sunlight. The control of the reaction was carried out by TLC each 15 min. The reaction was carried out for 60 min. The product was filtered and the precipitate was washed with ethyl acetate. Then the liquid was kept under the hood to evaporate the solvent. Before full evaporation, the obtained precipitate was filtered again by filter paper and recrystallized by ethyl acetate and then it was dried at the room temperature M.P: 182-183°C; Ft-IR : 1618, 1519, 1492, 1338, 1292, 1143, 927, 802, 742; MS m/z :293.66; ¹H NMR (301 MHz, DMSO) δ 10.13 (s, 1H), 8.91 (dd, *J* = 9.3, 2.7 Hz, 2H), 8.52 (d, *J* = 8.9, 2.7 Hz, 1H), 8.26 (dd, *J* = 9.5, 2.8 Hz, 2H), 7.58 – 7.49 (m, 2H), 7.46 – 7.35 (m, 2H). ¹³C NMR (76 MHz, DMSO) δ 138.4 (C6), 136.4 (C8), 135.8 (C4), 131.2 (C9), 131.1 (C11), 130.2 (C12), 128.5 (C2), 127.3 (C5), 123.7 (C3), 121.5 (C10), 117.3 (C1,13).

Figure S 45 Mass Spectroscopy of N-(3-chlorophenyl)-2,4-dinitroaniline

Figure S 46 FT-IR Spectra of N-(3-chlorophenyl)-2,4-dinitroaniline

 Rafsanjani Dehghazi, M.; Absalan, Y.; Gholizadeh, M.; Razavi, M.; Souri, K. Noble-Free Nanophotocatalyst of Ti x Fe y La m O z for Efficient Photocatalytic C–N Cross-Coupling Reactions under Visible Light. ACS Appl. Nano Mater. 2023, 6 (2), 1106– 1118. https://doi.org/10.1021/acsanm.2c04617.