Synthesis of hollow sphere structured TiO₂ loaded with Ag₂O and its photocatalytic activity

Hejin Liu¹, Ying Liu^{†,1}, Xueqin Wang^{*,1,2}, Peng Qiao¹, Wenyi Wang³, Mei Zhang¹, Yanxiu Liu^{*,1},

Hua Song^{1,2}

1 College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, P.R. of China

2 Provincial Key Laboratory of Oil & Gas Chemical Technology, Northeast Petroleum University, Daqing 163318,

P.R. of China

3 Heilongjiang Provincial Key Laboratory of Oilfield Applied Chemistry and Technology, School of Chemical

Engineering, Daqing Normal University, Daqing 163712, P. R. China

d.Provincial Key Laboratory of Oil & Gas Chemical Technology, Northeast Petroleum University, Daqing 163318,

P.R. of China.

† Same contribution as first author

*Corresponding Author: wangji624@163.com

1. Chemical composition of Ag₂O/TiO₂ samples (EDS)

Samples –	Content (at.%)				
	С	О	Ti	Ag	Ti:Ag
TiO ₂	20.06	54.16	25.78	-	-
Ag ₂ O/TiO ₂ -	4.05	59.19	20.52	16.24	1:0.79
Ag ₂ O/TiO ₂ -	7.13	51.40	18.27	23.20	1:1.27
Ag ₂ O/TiO ₂ -	5.50	35.28	12.40	46.81	1:3.78
Ag ₂ O/TiO ₂ -	4.65	27.15	5.94	62.25	1:10.48

Table S1. The EDS results of Ag₂O/TiO₂ samples

2. Photodegradation of Phenol

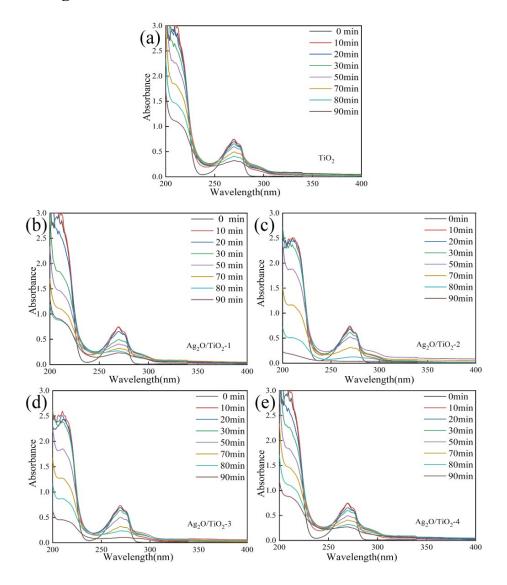


Fig. S1. UV-vis absorption spectra of phenol and reaction intermediates during degradation of Ag₂O/TiO₂ with different amounts of AgNO₃: (a) TiO₂, (b) Ag₂O/TiO₂-1, (c) Ag₂O/TiO₂-2, (d) Ag₂O/TiO₂-3, (e)

$$Ag_2O/TiO_2-4$$
.

Ultraviolet-visible absorption spectra were obtained at different irradiation intervals, as shown in Fig. S1. As can be seen from the figure, with the extension of illumination time, the characteristic peak intensity of phenol gradually decreased, indicating that phenol was gradually degraded under the action of catalyst. Meanwhile, new characteristic peaks were found at the wavelengths of 246 nm, 275 nm and 289 nm, and the peak intensity showed a trend of first increasing and then decreasing with the extension of illumination time. Under catalytic action, phenol is not directly degraded into CO_2 and H_2O , but into intermediates *p*-Benzoquinone (246 nm), Catechol (275 nm) and Hydroquinone (289 nm).

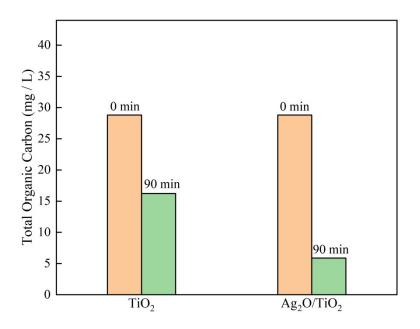


Fig. S2. Total organic carbon of phenol treated by TiO₂ and Ag₂O@TiO₂

The TOC of phenol solution has been determined using TiO₂ and Ag₂O/TiO₂-2 as catalysts, respectively. The results were shown in Fig. S2 in the supporting information. At the beginning, the TOC value of the initial phenol solution was 28.8 mg/L. After 90 min of irradiation, the TOC value decreased to 16.2 mg/L when using TiO₂ as catalyst. When using Ag₂O/TiO₂-2 as the catalyst, the TOC value decreased to 5.9 mg/L. The total organic carbon degradation rate was 43.6% and 79.6%,

respectively.

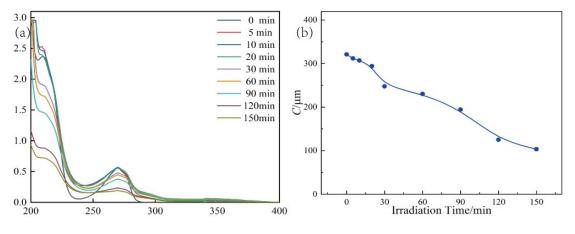


Fig. S3. Degradation of phenol by Ag₂O/TiO₂-2 in visible light

We have conducted the photodegradation of phenol under visible light using Ag_2O/TiO_2 -2 as catalyst, as shown in Fig. S3. The photodegradation rate of phenol reached 39.5%, which was much lower than that of phenol under UV light irradiation.