The selective aerobic oxidative C-C bond cleavage with the high-entropy

oxide (HEO)-derived multimetallic catalyst

Shaoyuan Guo¹, Xinli Tong^{1,*}, Jipeng Wang¹, and Hang Tang¹

¹Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of

Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R.

China; Tel: (+86)-22-60214259; E-mail address: tongxinli@tju.edu.cn; tongxli@sohu.com.

Supplementary Information

1. The characterization of catalysts

Figure S1. The XRD patterns and SEM images of the catalysts (a. XRD patterns of the catalysts with different treatments; b. XRD patterns of the catalysts with different calcination temperatures; c. PDF cards corresponding to the different elements of MgCuMnFeCo-R Catalyst; d. XRD patterns of the catalysts with different calcination times; e. XRD patterns of the catalysts with different elements; f. SEM images of the CuFeCoMnMg-R catalysts)

Catalyst	Surface Area (m ² /g)	Pore Volume (cm ³ /g)	Pore Size (nm)
MgCuMnFeCo-300R	28	0.05	4.1
MgCuMnFeCo-R	80	0.09	3.5
MgCuMnFeCo-500R	52	0.11	4.2

 Table S1.
 The BET results of the catalysts

Figure S2. Energy dispersive X-ray spectroscopy (EDX) patterns of catalyst

Figure S3. The TEM images and element mapping (Cu, Fe, Co, Mn, Mg, C, N, O) of the MgCuMnFeCo-R catalyst

Figure S4. The result for H₂-TPR experiment of MgCuMnFeCo-P catalyst

Figure S5. The SEM images of CuFeCoMnMg-O_X (left) and CuFeCoMnMg-O_X-R (right) catalyst

Figure S6. The IR spectra of catalysts calcined at different temperatures

Figure S7. The XRD patterns of the fresh and reused catalysts

2. The effect of reaction solvent on the oxidative cleavage process

Figure S8. Effect of different solvents on oxidative cleavage process of 1 with molecular oxygen

3. The reaction mechanism of oxidation of 1 with O₂

Scheme S1. The possible mechanism for the oxidative cleavage process of 1 with O₂

4. The GC and GC-MS spectra for the selective oxidative cleavage processes

Figure S9. The GC and GC-MS spectra for reaction of 1-phenyl-1,2-ethanediol in the methanol

Figure S10. GC and GC-MS spectra of reaction of 1-phenyl-1,2-ethanediol in the ethylene glycol

Figure S11. The GC and GC-MS spectra for the reaction of 1-(2-chlorophenyl) ethane-1, 2- diol

Figure S12. The GC and GC-MS spectra for the reaction of (S,S)-(-)-hydrobenzoin with O₂

Figure S13. The GC and GC-MS spectra for reaction of 1,2-bis(4-fluorophenyl)ethane-1,2-diol

Figure S14. The GC and GC-MS spectra of reaction of 1,2-bis(4-chlorophenyl)ethane-1,2-diol

Figure S15. The GC and GC-MS spectra for reaction of 1,2-bis(4-bromophenyl)ethane-1,2-diol

Figure S16. The GC and GC-MS spectra for reaction of 1,2-bis(4-bromophenyl)ethane-1,2-diol

Figure S17. The GC and GC-MS spectra for the reaction of 1,2-bis(2-furanyl)ethane-1,2-diol

Figure S18. The GC and GC-MS spectra of reaction of 2-phenoxy-1-phenylacetophenone with O2