Jansen et al. (2024) Pyrolysis and gasification of ...

Appendix A

Justification for the use of Equation 4

The transient local temperature in a solid may be computed by solution of Fourier II, i.e.,

$$
\begin{equation*}
C_{P} \rho \frac{\partial T}{\partial t}=\kappa \nabla^{2} T-\sum S_{i} \tag{A.1}
\end{equation*}
$$

The S values are heat sources or sinks. For pyrolysis, when we use a single endothermic enthalpy sink and in 1D, A. 1 becomes

$$
\begin{equation*}
\frac{d T}{d t}=\frac{\kappa d^{2} T}{C_{P} \rho_{d x^{2}}}-\frac{\Delta H_{r x n}^{\circ} d \alpha}{C_{P} d t}=\alpha_{T} \frac{d^{2} T}{d x^{2}}-\frac{\Delta H_{r x n}^{\circ}}{C_{P}} f(\alpha) k(T) \tag{A.2}
\end{equation*}
$$

Using the fact that if, for any given control volume the reaction is complete, then $f(\alpha)=1$, along with the rough approximations

$$
\begin{equation*}
\frac{d^{2} T}{d x^{2}} \approx \frac{2 \delta T}{(\delta t)^{2}} \text { and } \frac{d T}{d t} \approx \frac{\delta T}{\delta t} \tag{A.3}
\end{equation*}
$$

one may make the substitution

$$
\begin{equation*}
\frac{\delta T}{\delta t} \approx \alpha_{T} \frac{2 \delta T}{(\delta x)^{2}}-\delta T k(T) \tag{A.4}
\end{equation*}
$$

Cancelling the $\delta T s$, and using $\tau=\delta t$ as the characteristic time for the full reaction, and $L_{c}=\delta x$ as the characteristic length - typically the radius for a spherical object - one has

$$
\begin{equation*}
\frac{1}{\tau} \approx \frac{2 \alpha_{T}}{L_{c}^{2}}-k(T) \tag{A.5}
\end{equation*}
$$

Multiplying through by the denominators and rearranging, one arrives at

$$
\begin{equation*}
\tau \approx \frac{L_{c}^{2}}{2 \alpha_{T}}+\frac{L_{c}^{2}}{2 \alpha_{T}} \tau k(T) \tag{A.6}
\end{equation*}
$$

Using the approximation

$$
\begin{equation*}
L_{c}^{2} \approx 2 \alpha_{T} \tau \tag{A.7}
\end{equation*}
$$

for the second term on the RHS, one arrives at the quadratic

$$
\begin{equation*}
\tau \approx \frac{L_{c}^{2}}{2 \alpha_{T}}+\tau^{2} k(T) \underset{\text { or }}{\tau^{2} k(T)-\tau+\frac{L_{c}^{2}}{2 \alpha_{T}} \approx 0} \tag{A.8}
\end{equation*}
$$

Completing the square

$$
\begin{equation*}
\tau \approx \frac{1 \pm \sqrt{1-4 k(T) \frac{L_{c}^{2}}{2 \alpha_{T}}}}{2 k(T)} \tag{A.9}
\end{equation*}
$$

For very small object sizes, ${ }^{L}$ approximates zero, the second term in the discriminant becomes zero and, taking only the positive value for the square root as physical, the characteristic time for the reaction approximates

$$
\begin{equation*}
\tau_{0} \approx \frac{2}{2 k(T)}=\frac{1}{k(T)} \tag{A.10}
\end{equation*}
$$

I.e., the reaction time is independent of heat-transfer effects, and is simply the inverse of the inherent reaction constant. The subscript zero indicates negligible sample size. Substituting A. 10 back into A.8, and using the subscript pyrolysis for the full process, one obtains

$$
\begin{equation*}
\tau_{\text {pyrolysis }}=\frac{L_{c}^{2}}{2 \alpha_{T}}+\tau_{0}^{2} k(T)=\frac{L_{c}^{2}}{2 \alpha_{T}}+\tau_{0} \frac{k(T)}{k(T)}=\tau_{0}+\frac{L_{c}^{2}}{2 \alpha_{T}} \tag{A.11}
\end{equation*}
$$

or more simply

$$
\begin{equation*}
\tau_{\text {pyrolysis }}=\tau_{0}+\tau_{H T} \tag{A.12}
\end{equation*}
$$

splitting the pyrolysis time into the sum an intrinsic kinetic and a heat-transfer component.

