Supporting Information for

Selective catalytic oxidation of humins to carboxylic acids using the $H_4[PVMo_{11}O_{40}]$ Keggin-type polyoxometalate enhanced by alcohol doping and solubilizer

Tobias Esser^a, André Wassenberg^a, Dorothea Voß^a and Jakob Albert^{a*}

^a Institute of Technical and Macromolecular Chemistry, Universität Hamburg, Bundesstraße 45, 20146 Hamburg, Germany

*e-mail: jakob.albert@uni-hamburg.de

This document contains 1 Table and 15 Figures on 10 pages.

SCO of humins using the H₄[PVMo₁₁O₄₀] Keggin-type polyoxometalate

Figure S1: Exemplary ¹H-NMR spectra (600 MHz, D₂O) for the liquid product phase of the selective catalytic oxidation of humin using H_4 [PVMo₁₁O₄₀] catalyst (HPA-1) in aqueous phase. *Experimental conditions:* 3-fold reaction system, 90 °C, 30 bar O₂, 30 h, 1000 rpm, 830 mmol of vanadium (V) for substitution in 30 mL water.

Figure S2: Exemplary ¹³C-NMR spectra (600 MHz, D₂O) for the liquid product phase of the selective catalytic oxidation of humin using HPA-1 as catalyst in aqueous phase. *Experimental conditions:* 3-fold reaction system, 90 °C, 30 bar O₂, 30 h, 1000 rpm, 83 mmol of vanadium (V) for substitution in 30 mL water.

Figure S3: Exemplary HSQC spectra (600 MHz, D_2O) for the liquid product phase of the selective catalytic oxidation of humin using HPA-1 as catalyst in aqueous phase. *Experimental conditions:* 3-fold reaction system, 90 °C, 30 bar O_2 , 30 h, 1000 rpm, 83 mmol of vanadium (V) for substitution in 30 mL water.

Figure S4: Exemplary HMBC spectra (600 MHz, D_2O) for the liquid product phase of the selective catalytic oxidation of humin using HPA-1 as catalyst in aqueous phase. *Experimental conditions:* 3-fold reaction system, 90 °C, 30 bar O_2 , 30 h, 1000 rpm, 83 mmol of vanadium (V) for substitution in 30 mL water.

Table S1: Comparison of quantification via	¹ H-NMR and HPLC for the selective catalytic oxidation of
humins using HPA-1 as catalyst in aqueous	phase.

Entry	Catalyst	Total Yield / %		Combined Yield / % (FA + AA)	
		¹ H-NMR ^b	HPLC℃	¹ H-NMR ^b	HPLC℃
1 ^a	Blank	11.2	11.3	3.2	3.3
2 ^a	$H_4[PVMo_{11}O_{40}]$	30.1	29.8	10.9	10.6

Experimental Conditions: a) 3-fold reaction system, 90 °C, 30 bar O₂, 30 h, 1000 rpm, 300 mg solid humin (16.20 mmol carbon), 0.83 mmol of vanadium (V) for substitution (20 mol_{Carbon} mol⁻¹_V) in 30 mL water, b) determined with quantitative ¹H-NMR and tert.-butanol as standard, c) determined with HPLC according to the corresponding section of the experimental part.

Selection of a suitable additive for the suppression of CO₂ formation in SCO of humins

Figure S5: ¹H-NMR spectra (600 MHz, D₂O) for the liquid product phase of the additive stability experiments using HPA-1 as catalyst in alcohol-doped aqueous phase. *Experimental conditions:* 3-fold reaction system, 90 °C, 30 bar O₂, 30 h, 1000 rpm, 83 mmol of vanadium (V) for substitution in 30 mL of 10-vol.% aqueous solution of the respective alcohol.

Figure S6: Chromatograms for the liquid product phase of the additive stability experiments using HPA-1 as catalyst in alcohol-doped aqueous phase. *Experimental conditions:* 3-fold reaction system, 90 °C, 30 bar O_2 , 30 h, 1000 rpm, 0.83 mmol of vanadium (V) for substitution in 30 mL of 10-vol.% aqueous solution of the respective alcohol.

The effect of para-toluene sulfonic acid as solubilizer on the SCO of humins

Figure S7: ¹H-NMR spectra (600 MHz, D_2O) for the liquid product phase of the pTSA stability experiment using HPA-1 as catalyst in aqueous phase. *Experimental conditions:* 3-fold reaction system, 90 °C, 30 bar O_2 , 30 h, 1000 rpm, 0.83 mmol of vanadium (V) for substitution and 3.0 mmol pTSA in 30 mL aqueous phase.

Figure S8: Chromatogram for the liquid product phase of the pTSA stability experiment using HPA-1 as catalyst in aqueous phase. *Experimental conditions:* 3-fold reaction system, 90 °C, 30 bar O₂, 30 h, 1000 rpm, 0.83 mmol of vanadium (V) for substitution and 3.0 mmol pTSA in 30 mL aqueous phase.

Figure S9: ⁵¹V-NMR spectra (600 MHz, D₂O) for the reduced HPA-1 catalyst in aqueous phase.

Figure S 10: ¹H-NMR spectra (600 MHz, D₂O) for the liquid product phase of the pTSA stability experiment using fully reduced HPA-1 blue as catalyst in aqueous phase. *Experimental conditions:* 3-fold reaction system, 90 °C, 30 bar O₂, 30 h, 1000 rpm, 0.83 mmol of vanadium (V) for substitution and 3.0 mmol pTSA in 30 mL aqueous phase.

Figure S 11: Chromatogram for the liquid product phase of the pTSA stability experiment using fully reduced HPA-1 blue as catalyst in aqueous phase. *Experimental conditions:* 3-fold reaction system, 90 °C, 30 bar O_2 , 30 h, 1000 rpm, 0.83 mmol of vanadium (V) for substitution and 3.0 mmol pTSA in 30 mL aqueous phase.

Optimization of SCO of humins by synergetic combination of MeOH and pTSA

Figure S12: Reproduction for selective catalytic oxidation of humin using HPA-1 as catalyst in aqueous methanol solution with pTSA (combined system). *Experimental conditions:* 3-fold reaction system, 120 °C, 30 bar O₂, 30 h, 1000 rpm, 300 mg solid solid humin (16.20 mmol carbon), 0.83 mmol of vanadium (V) for substitution (20 mol_{Carbon} mol⁻¹_V) in 5 vol.-% methanol with 1.5 mmol pTSA.

Catalyst characterization

Figure S13: FT-IR (ATR) spectrum of the H_4 [PVMo₁₁O₄₀] POM-catalyst. Vibration modes: 1055 cm⁻¹ (P-O), 958 cm⁻¹ (M=O_t), 877 cm⁻¹ ((M-O-M)_{vertex}), 756 cm⁻¹ ((M-O-M)_{edge}).¹

Figure S14: ⁵¹V NMR spectrum of the H_4 [PVMo₁₁O₄₀] POM-catalyst in a mixture of 90 % H_2 O (pH 1) and 10 % acetone-*d*6. NaVO₃ was used as external standard.

Figure S15: ³¹P NMR spectrum of the H₄[PVMo₁₁O₄₀] POM-catalyst in a mixture of 90 % H₂O (pH 1) and 10 % acetone-*d*6. 85 % H₃PO₄ was used as external standard.

References

1 J. K. Lee, J. Melsheimer, S. Berndt, G. Mestl, R. Schlögl and K. Köhler, *Applied Catalysis A: General*, 2001, **214**, 125–148.