Supporting information

A Generalized Strategy for the Ultrafast Encapsulation of Metal Oxide Nanoclusters into Zeolites

Tao Yu, Yundong Wang, Jianhong Xu* and Zhendong Liu*

The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Haidian District, Beijing 100084

> Correspondence: xujianhong@tsinghua.edu.cn (J.X.) liuzd@tsinghua.edu.cn (Z.L.)

Table of Content

Figure S1 XRD patterns of the silicalite-1 synthesized at 210 °C for
different times
Figure S2 UV-visible spectrum of CuO@silicalite-13
Figure S3 The elements distribution in CoO@silicalite-14
Figure S4 Evolution of crystallinity of CuO@silicalite-1 synthesized at
different temperatures over times4
Figure S5 Evolution of crystallinity of CuO@silicalite-1 synthesized after
different aging periods5
Figure S6 XRD patterns of the CuO@silicalite-1 synthesized at 210 °C
for 5 min with different TPA ⁺ /Si ratio
Figure S7 XRD patterns of the CuO@silicalite-1 synthesized at 210 °C
for 5 min with different EDA/Si ratio6
Figure S8 Catalytic performance of the CuO@silicalite-1 zeolites
synthesized via impregnation in the dehydrogenation of ethanol to
acetaldehyde6
Figure S9 XRD patterns of the CuO@silicalite-1 synthesized via
continuous-flow encapsulation7

Supplementary Figures

Figure S1 | XRD patterns of the silicalite-1 synthesized at 210 °C for different times.

Figure S2 | UV-visible spectrum of CuO@silicalite-1.

Figure S3 | The elements distribution in CoO@silicalite-1.

(a) HAADF-STEM image of CoO@silicalite-1. (b) and (c) EDX mapping of Si element and Co element, respectively.

Figure S4 | Evolution of crystallinity of CuO@silicalite-1 synthesized at different temperatures over times.

(a) to (d) XRD patterns of samples synthesized over different times under 150 °C, 170 °C, 190 °C and 210 °C, respectively. (The synthesis precursor had the following molar composition: 5 NaOH: 30 SiO₂: 2 TPAOH: 690 H₂O: 1.2 Cu(NO₃)₂: 3.75 EDA.)

Figure S5 | Evolution of crystallinity of CuO@silicalite-1 synthesized after different aging periods.

(a) to (c) XRD patterns of samples synthesized after aging for 8 h, 16 h and 24 h, respectively. (The synthesis precursor had the following molar composition: 5 NaOH: 30 SiO₂: 2 TPAOH: 690 H₂O: 1.2 Cu(NO₃)₂: 3.75 EDA.)

Figure S6 | XRD patterns of the CuO@silicalite-1 synthesized at 210 °C for 5 min with different TPA⁺/Si ratio.

Figure S7 | XRD patterns of the CuO@silicalite-1 synthesized at 210 °C for 5 min with different EDA/Si ratio.

Figure S8 | Catalytic performance of the CuO@silicalite-1 zeolites synthesized via impregnation in the dehydrogenation of ethanol to acetaldehyde.

(a) and (b) Conversion and selectivity of the sample in the reaction, respectively. (c) HAADF-STEM image of CuO@silicalite-1 synthesized via impregnation after 80 h of catalytic reaction. The CuO content in the catalyst was 2.4 wt%.

Figure S9 | XRD patterns of the CuO@silicalite-1 synthesized via continuous-flow encapsulation.