Electronic Supplementary Material (ESI) for Chemistry Education Research and Practice. This journal is © The Royal Society of Chemistry 2023

Organic Chemistry Students' Use of Stability in Mental Models on Acid and Base Strength

Supporting Information

Interview Protocols	p. 2
Correct Responses for Case Comparison Tasks	p. 5
Codebook for Granularity	p. 7
Granularity Analysis for Stability	p. 9
Granularity Analysis for Acidity	p. 11
Granularity Analysis for Basicity	p. 13

Interview Protocols

Protocol A

Section 1:

Prompt 1: Structures of phenolate ($C_6H_5O^-$) and cyclohexanolate ($C_6H_{11}O^-$) ions are given below.

Considering the structures, compare the stability of phenolate ($C_6H_5O^-$) and cyclohexanolate ($C_6H_{11}O^-$) ions.

1.1. Which ion (phenolate (C₆H₅O⁻) and cyclohexanolate (C₆H₁₁O⁻)) is more stable?

1.2. Using molecular structures, explain <u>why</u> you made such a stability order for phenolate ($C_6H_5O^-$) and cyclohexanolate ($C_6H_{11}O^-$).

Prompt 2: Structures of acetate ion (CH₃COO⁻) and structure of ethoxide ion (CH₃CH₂O⁻) are given below.

Considering the structures, compare the acidity of acetic acid (CH₃COOH) and ethanol (CH₃CH₂OH) in water.

 $CH_3COOH(aq) + H_2O(I) \implies CH_3COO^{-}(aq) + H_3O^{+}(aq)$

 $CH_{3}CH_{2}OH(aq) + H_{2}O(I) \rightleftharpoons CH_{3}CH_{2}O^{-}(aq) + H_{3}O^{+}(aq)$

2.1 Which one (acetic acid (CH₃COOH) and ethanol (CH₃CH₂OH)) is more acidic?

2.2. Using molecular structures, explain <u>why</u> you made such an acidity order for acetic acid (CH₃COOH) and ethanol (CH₃CH₂OH)?

Prompt 3: Structure of acetamide (CH₃CONH₂) and structure of ethylamine (CH₃CH₂NH₂) molecules are given below.

Considering the structures, compare the basicity of acetamide (CH₃CONH₂) and ethylamine (CH₃CH₂NH₂) in water.

```
3.1. Which one (acetamide (CH<sub>3</sub>CONH<sub>2</sub>) and ethylamine (CH<sub>3</sub>CH<sub>2</sub>NH<sub>2</sub>)) is more basic?
```

3.2. Using molecular structures, explain why you made such a basicity order for acetamide (CH₃CONH₂)

and ethylamine (CH₃CH₂NH₂)?

Section 2:

Prompt 1. Structures of Ion A and Ion B are given below. Compare the stability of following ions.

Considering the structures, compare the stability of ion A and ion B.

- 1.1 Which ion (Ion A and Ion B) is more stable?
- 1.2. Using molecular structures, explain <u>why</u> you made such a stability order for ion A and ion B.

Prompt 2: Structure of an acid is given below. Compare the acidity of hydrogen atoms.

Considering the structure, compare the acidity of hydrogens?

2.1. Which hydrogen (red and blue) is more acidic?

2.2. Using molecular structure, explain why you made such an acidity order for hydrogens (red and blue).

Prompt 3: Structures of propene-1-olate and propoxide are given below. Compare the basicity of following ions.

Considering the structures, compare the basicity of propene-1-olate and propoxide in water.

3.2. Which one (propene-1-olate and propoxide) is more basic?

3.2. Using molecular structures, explain <u>why</u> you made such a basicity order for propene-1-olate and propoxide.

Protocol B

Section 1:

Prompt 1: Prompt is the same with the prompt 1 in section 1 in protocol A.

Prompt 2: Structure of acetate ion (CH₃COO⁻) and structure of ethoxide ion (CH₃CH₂O⁻) are given below.

Acetate ion (CH ₃ COO ⁻)	Ethoxide ion (CH ₃ CH ₂ O ⁻)
$H_{3C} \xrightarrow{C} \delta^{-}$	СН₃—СН₂——Ö҉

Considering the structures, compare the acidity of acetic acid (CH₃COOH) and ethanol (CH₃CH₂OH) in water.

 $CH_3COOH(aq) + H_2O(I) \rightleftharpoons CH_3COO^{-}(aq) + H_3O^{+}(aq)$

 $CH_{3}CH_{2}OH(aq) + H_{2}O(I) \rightleftharpoons CH_{3}CH_{2}O^{-}(aq) + H_{3}O^{+}(aq)$

2.1. <u>Which one (acetic acid (CH₃COOH) and ethanol (CH₃CH₂OH)) is more acidic?</u>

2.2. Using molecular structures, explain <u>why</u> you made such an acidity order for acetic acid (CH₃COOH) and ethanol (CH₃CH₂OH)?

Prompt 3: Structures of acetamide (CH₃CONH₂) and structure of ethylamine (CH₃CH₂NH₂) molecules are given below.

Considering the structures, compare the basicity of acetamide (CH_3CONH_2) and ethylamine ($CH_3CH_2NH_2$) in water.

3.1. <u>Which one</u> (acetamide (CH₃CONH₂) and ethyl amine (CH₃CH₂NH₂)) is more basic?

3.2. Using molecular structures, explain <u>why</u> you made such a basicity order for acetamide (CH₃CONH₂) and ethylamine (CH₃CH₂NH₂)?

Section 2:

Prompts in this section in protocol B is the same with the prompts in section 2 in protocol A.

Correct Responses for the Case Comparison Tasks in Interviews

<u>Stability 1</u>

Phenolate is more stable than cyclohexanolate. When comparing the stability of phenolate vs cyclohexanolate, the relevant factors are;

- Atom is the same therefore size and electronegativity not relevant
- Resonance/delocalization spreading charge lowers free energy of phenolate
- Inductive effect Through induction sp² carbon groups are electron withdrawing through sigma bonds whereas sp³ carbon groups are electron donating through sigma bonds. Phenyl group is electron withdrawing which further stabilizes the phenolate ion (by spreading the charge of the anion across a larger area). Cyclo group is electron donating which destabilizes the cyclohexanolate ion (by concentrating negative charge on the oxygen).
- Orbital The oxygen on phenolate is sp² whereas the oxygen on cyclohexanolate is sp³. The larger s-character on the oxygen on phenolate stabilizes the negative charge on that oxygen relative to the oxygen on the cyclohexanolate.

Stability 2

Ion A is more stable than ion B. When comparing the stability of ion A and ion B, the relevant factors are;

- Atom is the same therefore size and electronegativity are not relevant
- Resonance/delocalization spreading the charge lowers free energy of Ion A
- Inductive effect Through induction sp² carbon groups are electron withdrawing through sigma bonds whereas sp³ carbon groups are electron donating through sigma bonds. On the left structure the next-door sp² carbon is electron withdrawing which destabilizes the carbocation through induction (by concentrating more positive charge at the carbocation). On the right structure the next-door sp³ carbon is electron donating which stabilizes that carbocation (by spreading the charge of the carbocation across a larger area). Therefore, induction decreases the stability of ion A. That is, this is opposite from the overall stability of these two ions because resonance has a larger effect than induction.
- Orbital is not relevant.

Acidity 1

Acetic acid is more acidic than ethanol. When comparing the acidity of acetic acid (CH₃COOH) and ethanol (CH₃CH₂OH) in water, relevant factors are;

- Atom is the same therefore size and electronegativity not relevant.
- Resonance/delocalization spreading charge lowers free energy and increases stability for conjugate base of acidic acid, which in turn increases the acidity of acetic acid.
- Inductive effect electron withdrawing of carbonyl group (-C=O) stabilize the acetate ion through polarization of sigma bonds of molecule. Therefore, induction increases stability for conjugate base of acidic acid, which in turn increases the acidity of acetic acid.
- Orbital The oxygen on acetic acid is sp2 whereas the oxygen on ethanol is sp³. The larger s-character on the oxygen on acetic acid stabilizes the negative charge on the oxygen of acetate relative to the oxygen of ethoxide. Therefore, induction increases stability for conjugate base of acidic acid, which in turn increases the acidity of acetic acid.

Acidity 2

- Blue (amide) hydrogen is more acidic than red (amine) hydrogen. When comparing the acidity of blue (amide) and red (amine) and hydrogen, relevant factors are;
- Atom is the same therefore size and electronegativity are not relevant.
- Resonance/delocalization spreading charge lowers free energy and increases stability for conjugate base of blue (amide) hydrogen, which in turn increases the acidity of blue hydrogen.

- Inductive effect electron withdrawing of carbonyl group (-C=O) stabilize the ion formed after donating blue (amide) hydrogen through polarization of sigma bonds of molecule. Therefore, induction increases stability for conjugate base of blue (amide) hydrogen, which in turn increases the acidity of blue (amide) hydrogen.
- Orbital The nitrogen bonded to blue hydrogen (amide) is sp² whereas the nitrogen bonded to red hydrogen (amine) is sp³. The larger s-character of nitrogen bonded to blue hydrogen (amide) stabilizes the negative charge on the nitrogen of the conjugate base formed after donation of blue hydrogen (amide) relative to the negative charge on nitrogen of the conjugate base formed after donation of the red hydrogen (amine). Therefore, orbital increases stability of conjugate base formed after donation of blue (amide) hydrogen, which in turn increases the acidity of blue (amide) hydrogen.

Basicity 1

Ethylamine is more basic than acetamide. When comparing the basicity of acetamide (CH₃CONH₂) and ethyl amine (CH₃CH₂NH₂) in water, relevant factors are;

- Atom is the same therefore size and electronegativity are not relevant.
- Resonance/delocalization delocalization lowers free energy and hence increases stability of acetamide. Delocalizing the lone pair on nitrogen and giving the nitrogen atom a partial positive charge and makes it less available for bonding a proton for acetamide.
- Inductive effect electron withdrawing of carbonyl group (-C=O) stabilize the acetamide through polarization of sigma bonds of molecule. Therefore, induction increases stability for acetamide, which in turn decreases the basicity of acetamide.
- Orbital The nitrogen on acetamide is sp² whereas the nitrogen on ethylamine is sp³. The lone pair on the amide is in a p-orbital, whereas the lone pair on the amine is sp³. The larger s-character of the lone pair on nitrogen on ethylamine (sp³) is more stabilizing than on nitrogen on acetamide (p orbital). Therefore, orbital decreases the stability of acetamide, which in turn increases the basicity. That is, this is opposite of the overall effect since delocalization through resonance is a more important factor making the acetamide more stable and thus less basic.

Basicity 2

Propene-1-olate is more basic (less stable) than proposide. Propanal pKa~17 and propanol pKa~16. When comparing the basicity of propene-1-olate and proposide in water, relevant factors are;

- Atom Most important factor in determining basicity. On the propene-1-olate, the negative charge is on both the oxygen and the carbon. The resonance structure drawn contributes more to the overall structure but the other structure does place a decent amount of partial negative charge on the carbon. Negative charge on a less electronegative atom (C) is less stable making the propene-1-olate more basic.
- Resonance/delocalization making propene-1-olate less basic. Spreading charge lowers free energy and hence increases stability of propene-1-olate. Delocalizing the lone pair on oxygen and giving the oxygen atom less of a negative charge and makes it less available for bonding a proton for propene-1-olate
- Inductive effect Through induction sp² carbon groups are electron withdrawing through sigma bonds whereas sp³ carbon groups are electron donating through sigma bonds. On propene-1-olate, the next-door sp² carbon is electron withdrawing which stabilizes the ion (by spreading the charge of the anion across a larger area). On propoxide, structure the next-door sp³ carbon is electron donating which destabilizes the anion (by concentrating negative charge on the oxygen). Therefore, propene-1-olate is less basic. Orbital - The oxygen on propene-1-olate is sp² whereas the oxygen on propoxide is sp³. The larger s-character on the oxygen on propene-1-olate stabilizes the negative charge on that oxygen relative to the oxygen on propoxide. Therefore, propene-1-olate is less basic.

Codebook for Granularity

Category	Code	Definition and criteria for inclusion	Examples
Structural	Atom identity	Participants refer to a particular atom(s) by stating the name (e.g., oxygen) and/or symbol (e.g., O, N, C, and H) of the atom(s).	"Because oxygen is electronegative atom. And that makes the whole like, molecule become more electronegative, electronegative" (S6)
	Atom count	Participants refer to number of particular atom(s) by counting or stating total number.	"there's two oxygen atoms and one of them has an electronegative charge, there is only one oxygen here" (S1)
	Functional group identity	Participants refer to particular functional group(s) by stating the name (e.g., aromatic ring, amine, amide, carboxyl, carbonyl, hydroxyl, six membered ring with three double bond, carbon ring, benzylic ring, the ring, phenol, phenyl etc.) or formula (e.g., -NH ₂ , -CONH ₂ , -C=O) of that functional group(s).	"Um, for me, it was the presence of the carbonyl" (S8)
	Bond type	Participants refer to bond(s) by stating type of bond (e.g., sigma bond/single bond, pi bond/double bond/alkene, single bond has sp ³ , double bond has sp ²).	"the only difference is the double bond, so I'd assume the bond would be more strength and then in other one single bond be weaker, which would be more basic." (S4)
	Bond count	Participants refer to number of particular bond(s) by counting (e.g., sigma and pi bond) or stating total number or making inference about hybridization (e.g., sp3, sp2, and sp) based on number of sigma and double bonds.	"acid ion it has. This is 1, 2, 1, 2, 3 bonds" (S6)
	Connectivity of atoms, ions, and functional groups	Participants refer to how atoms, ions, and functional groups are connected either explicitly (e.g., atom, ions, and functional groups are next to or adjacent to or in close proximity or connected to or attached to or bonded to other atoms, ions, and functional groups, a lone pair adjacent to C+,) or implicitly (e.g., Allylic lone pair, Allylic carbocation, lone pair on the atom because the pi bond is just right there, sp ² is/being closer to CH ₂ plus, sp ² but it's one extra carbon away).	"I know it makes it less stable. I'm not sure as much as to why it makes it less stable. I mostly focused on allylic, but I do know on that greater than flow chart I was talking about vynyllic was like negative below primary." (S11)
	Electron count	Participants refer to number of electron either explicitly by counting or implicitly (e.g., atom with complete/incomplete octet based on number of electrons, lone pairs, valance shell).	"And it has the amine and the amine is here with the complete octet, I think, is a very big indicator to me that it's a more it's more basic compared to that of an Acetamide." (S1)
	Charge	Participants refer to partial or negative charge on the structures explicitly featured.	"Um, for that I looked at I saw in structures two and three, they both had negative charge on the oxygen, but the first one didn't" (S8)
	Resonance specific	Participants refer to explicit features (e.g.,	"the dash, the dash is showing that

	representational feature	double headed arrow, dashed/dotted lines, delta) of structures peculiar to resonance.	the bonds can be formed or broken? And it's basically simultaneous" (S9)
Electronic	Electron withdrawal	Participants refer to electron withdrawal by describing this using various verbs and nouns (e.g., atom withdraws electrons, pull of electrons, pull on the atom, electron withdrawing).	"Yeah. the pull on the on the carbon would be greater than that on the one with the one oxygen and the carbon" (S3)
	Bearing charge	Participants refer to the capacity of bearing charge (e.g., charge is strongly attached to more electronegative atom and atom can hold negative charge better than the other atom).	"Carbon is I mean, they can hold negative charges, but they don't hold them as well as oxygen to. So that's why I would go to Blue hydrogen" (S7)
	Spreading charge	Participants refers to spreading of charge either by explicitly stating how charge is spread (e.g., convert negative charge to a neutral charge, balance out negative charge, neutralize negative charge, charge can be evenly distributed, pull negative charge, resonate charges that can jump around, charge can not really move from the atom over, positive charge would leave that atom then positive charge would be on that atom) and/or the use of a drawing indicating charge separation from formal negative charge on one atom to partial negatives on multiple atoms.	"Oh, and no, I was just saying that the resonance allows it to move the negative charge around and be, and stabilize while the ethoxide, it can't perform resonance" (S2)
	Delocalization of electrons	Participants refer to delocalization of electrons by explicitly stating how electrons are delocalized (e.g., electrons to move around, pi/double bond/s can move, pi bonds can move interchangeably, pi bond can move over here/there and that/this one can move over here/there or that/this one can move up/down, move lone pairs down/up/here/there, change where the electrons are, electrons can shift, delocalization/delocalized electrons, free movement of electrons, do resonance, resonate down, resonance can keep going, how much room the electron could take up and the different positions that it could exist in) and/or the use of a drawing indicating delocalization of electrons.	"Like the double bond could go up to the O and that this could make a pi bond which would then make the nitrogen positive and then that wants to accept" (S12).

Granularity Analysis- Stability

Interviewee	Granularity	Coding for Stability 1	Coding for Stability 2
	Structural	Atom identity	Connectivity
S1		Connectivity	
	Electronic	Delocalization of electrons	
	Structurel	Spreading charge	Connectivity
\$2	Electronic	Delocalization of electrons	Connectivity
52	Liectionic	Spreading charge	
	Structural	Atom identity	Atom count
		Connectivity	Bond count
S3		Charge	Connectivity
	Electronic	Delocalization of electrons	Spreading of charge
			Delocalization of electron
	Structural	Bond type	Atom count
S4		Charge	Bond count
	Electronic		
	Electronic		
	Structural	Atom identity	Bond type
S5	Electronic	Bond type	Bond count
	Electronic		
	Structural	Atom identity	Connectivity
		Atom count	Electron count
		Functional group identity	Charge
S6		Charge	
	Electronic	Delocalization of electron	Spreading of charge
	Structural	Connectivity	Connectivity
	Structurar	Functional group identity	Electron count
7		Charge	Charge
87	Electronic	Spreading of charge	Delocalization of electron
		Delocalization of electron	
		Electron withdrawal	
	Structural	Atom count	Connectivity
C 0		Charge	
88		Charge	
	Electronic	Spreading of charge	Spreading of charge
	Stars strang1	Delocalization of electron	Delocalization of electron
S9	Electronic	Bolid type	Connectivity
	Electronic		
	Structural	Connectivity	Connectivity
G10		Bond count	
\$10		Dona count	
	Electronic	Delocalization of electron	Spreading of charge
	Church travel	Dandaarrit	Delocalization of electrons
S11	Structural	Atom count	Connectivity
	Flectronic	Spreading of charge	
	Electronic	Delocalization of electron	
	Structural	Bond type	Bond type
		Atom identity	Connectivity
\$12		Atom count	
	Electronic		Delocalization of electrons
C12	Structural	Connectivity	Atom identity
515			Bond count

			Connectivity
	Electronic	Spreading of charge	Spreading of charge
		Delocalization of electron	Delocalization of electron
	Structural	Bond type	Charge
		Electron count	
S14		Charge	
	Electronic	Spreading of charge	Spreading of charge
		Delocalization of electron	Delocalization of electron

Granularity Analysis- Acidity

Interviewee	Granularity	Coding for Acidity 1	Coding for Acidity 2
	Structural	Atom identity	Atom identity
		Atom count	Connectivity of atoms, ions, and functional
		Bond type	groups
S1		Charge Resonance specific representational feature	
	Electronic	Delocalization of electrons	Electron withdrawal
	Structural	Atom identity	Connectivity of atoms ions and functional
	Structurur	Charge	groups
S2		Resonance specific representational feature	6 1
	Electronic	Delocalization of electrons	Delocalization of electrons
		Spreading charge	Spreading charge
	Structural	Atom identity	Atom identity
		Atom count	Connectivity of atoms, ions, and functional
		Charge	groups
S3		Resonance specific representational feature	
	Electronic	Delocalization of electrons	Delocalization of electrons
		Spreading of charge	Electron withdrawal
	Structural	Bond type	Atom count
	Structural	Bond count	Bond type
		Charge	Connectivity of atoms, ions, and functional
S4		Electron count	groups
		Functional group identity	
	Electronic		
	Structural	Resonance specific representational feature	Atom identity
S5			Connectivity of atoms, ions, and functional
	Electronic	Delocalization of electrons	groups Flectron withdrawal
	Structural	Atom identity	Atom identity
		Atom count	Connectivity of atoms, ions, and functional
		Bond count	groups
\$6		Bond type	Electron count
50		Connectivity of atoms, ions, and functional	
		groups	
	Electronic	Electron withdrawal	Delocalization of electrons
	Structural	Functional group identity	Connectivity of atoms ions and
	Structurur	Resonance specific representational feature	functional groups
			Atom identity
S7			Functional group identity
	Electronic	Delocalization of electrons	Bearing charge
			Delocalization of electrons
	Structural	Atom identity	Spreading charge
58	Structural	Charge	Functional group identity
		Resonance specific representational feature	
50	Flectronic	Delocalization of electrons	Delocalization of electrons
	Biccuollic	Spreading charge	Spreading charge
	Structural	Atom identity	Atom identity
60		Atom count	Connectivity of atoms, ions, and functional
S9		Charge	groups
	Electronic		
S10	Structural	Atom identity	Connectivity of atoms, ions, and functional

		Charge	groups
		Resonance specific representational feature	
	Electronic	Delocalization of electrons	Delocalization of electrons
	Structural	Charge	Connectivity of atoms, ions, and functional
S11		Resonance specific representational feature	groups
	Electronic	Delocalization of electrons	Delocalization of electrons
	Structural	Atom identity	Connectivity of atoms, ions, and functional
		Atom count	groups
S12		Charge	
	Electronic		Delocalization of electrons
			Electron withdrawal
	Structural	Charge	Connectivity of atoms, ions, and functional
\$13		Resonance specific representational feature	groups
515	Electronic	Delocalization of electrons	Delocalization of electrons
		Spreading charge	
	Structural	Charge	Connectivity of atoms, ions, and functional
S14		Resonance specific representational feature	groups
514	Electronic	Delocalization of electrons	Delocalization of electrons
		Spreading charge	

Granularity Analysis- Basicity

Interviewee	Granularity	Coding for Basicity 1	Coding for Basicity 2
S1	Structural	Charge Electron count Functional group identity	Bond type
61	Electronic		Delocalization of electrons
	Structural	Atom identity	Connectivity of atoms ions and functional
S2	Structural	Charge Electron count	groups
	Electronic		Delocalization of electrons Spreading charge
S3	Structural	Atom identity Charge Electron count Resonance specific representational feature	Connectivity of atoms, ions, and functional groups
	Electronic	Delocalization of electrons Polarization	Delocalization of electrons
S4	Structural	Atom identity Bond type Bond count Charge Functional group identity	Atom identity Atom count Bond type Charge
S5	Structural	Charge Electron count Functional group identity	Bond type
	Electronic		
S6	Structural	Atom identity Atom count Electron count Functional group identity	Atom count Electron count
	Electronic		Delocalization of electrons
S7	Structural	Atom identity Charge Resonance specific representational feature	Bond type Charge Connectivity of atoms, ions, and functional groups
	Electronic		Delocalization of electrons Spreading charge
S8	Structural	Atom identity Charge Electron count Resonance specific representational feature	Bond type
	Electronic	Delocalization of electrons Spreading charge	Delocalization of electrons
S9	Structural	Atom identity Bond type Charge Electron count Resonance specific representational feature	Connectivity of atoms, ions, and functional groups
	Electronic	Delocalization of electrons	
S10	Structural	Charge Resonance specific representational feature	Bond type
	Electronic	Delocalization of electrons	

		Spreading charge Electron withdrawal	
	Structural	Atom identity	Bond count
		Charge	Charge
S11		Electron count	Electron count
	Electronic	Delocalization of electrons	Delocalization of electrons
		Spreading charge	
	Structural	Bond type	Connectivity of atoms, ions, and functional
\$12		Resonance specific representational feature	groups
512	Electronic	Delocalization of electrons	Delocalization of electrons
		Spreading charge	
	Structural	Atom identity	Bond type
S13	Electronic	Bearing charge	Delocalization of electrons
		Delocalization of electrons	
	Structural	Charge	Bond type
S14		Functional group identity	
		Electron count	
	Electronic		