Supporting Information for Investigating Evidence in Support of Validity and Reliability for Data Collected with the Meaningful Learning in the Laboratory Instrument (MLLI)

Elizabeth B. Vaughan, A. Montoya-Cowan, and Jack Barbera* Department of Chemistry, Portland State University, Portland Oregon, 97207-0751, United States

*Corresponding author: jack.barbera@pdx.edu

Table of Contents

Demographics	. 2
Item Descriptive Statisitics	. 3
Factor Loadings	. 7
MLLIv2 Post-Course Items	9
	,

Demographics

Table S1. Se	lf-report	ted demographic	es data of s	students w	ho comp	leted the	pre-course	MLLI and
consented to	particip	ate in this study	•					

	Percentage of Students	
	(n=869)	
Gender Identity		
Man	36.02	
Woman	59.72	
Other Identity	2.99	
Prefer Not to Share	1.27	
Race/Ethnicity		
Non-URM	63.06	
URM	34.64	
Prefer Not to Share	2.30	
Age Bracket		
18-22 (Traditional)	86.42	
23+ (Nontraditional)	13.58	
Major		
Biology	36.25	
Chemistry	3.57	
Biochemistry	5.29	
Engineering	15.19	
Other Science	31.88	
Non-Science	6.33	
Undecided	1.50	
University Status		
Postbaccalaureate	3.11	
Undergraduate	96.32	
Other	0.58	
Transfer Status		
Transfer from 2-Year College	20.37	
First Generation Status		
First Generation Student	32.80	

Item Descriptive Statistics

Table S2. MLLI item descriptive statistics for the training data set (n=434). Assigned categories for items include Cognitive (C), Affective (A), and Cognitive/Affective (C/A). Item wording includes positively worded items (+) and negatively worded items (-).

Item		Assigned	Item	Mean	Standard	Skew	Kurtosis
		Category	Wording		Deviation		
1	to learn chemistry that will be useful in my life.	C/A	+	69.13	28.19	-0.66	1.35
2	to worry about finishing on time.	A	-	38.04	31.11	0.39	1.49
3	to make decisions about what data to collect.	C	+	74.06	23.22	-0.75	1.11
4	to feel unsure about the purpose of the procedures.	C/A	-	60.40	29.56	-0.44	1.42
5	to experience moments of insight.	C	+	76.66	22.52	-0.96	1.08
6	to be confused about how the instruments work.	C	-	60.42	29.47	-0.47	1.41
7	to learn critical thinking skills.	C	+	81.24	21.45	-1.35	1.03
8	to be excited to do chemistry.	A	+	73.64	26.32	-0.92	1.26
9	to be nervous about making mistakes.	A	-	41.55	31.11	0.24	1.49
10	to consider if my data makes sense.	С	+	80.22	21.74	-1.29	1.04
11	to think about what the molecules are doing.	С	+	72.53	24.29	-0.74	1.17
12	to feel disorganized.	C/A	-	68.94	28.05	-0.80	1.35
13	to develop confidence in the laboratory.	Α	+	80.97	21.56	-1.36	1.03
14	to worry about getting good data.	C/A	-	36.57	28.33	0.48	1.36
15	the procedures to be simple to do.	С	-	58.68	25.56	-0.39	1.23
16	to be confused about the underlying concepts.	С	-	56.26	29.53	-0.34	1.42
17	to "get stuck" but keep trying.	С	+	72.51	25.77	-0.80	1.24
17	17 to be nervous when handling chemicals.		-	57.19	31.11	-0.33	1.49
19 to think about chemistry I already know.		С	+	70.77	27.18	-0.74	1.30
20	20 to worry about the quality of my data.		-	37.55	29.39	0.46	1.41
21	to be frustrated.	A	-	49.35	32.58	-0.13	1.56
22	to interpret my data beyond only doing calculations.	С	+	73.90	24.31	-1.03	1.17
23	Check Item.						
24	to focus on procedures, not concepts.	С	-	53.87	25.85	-0.07	1.24
25	to use my observations to understand the behavior of atoms and	C	1	78.08	21.71	-1.03	1.04
	molecules.	C					
26	to make mistakes and try again.	C	+	82.01	22.08	-1.36	1.06
27	to be intrigued by the instruments.	C/A	+	68.93	26.05	-0.63	1.25
28	to feel intimidated.	A	-	55.18	31.76	-0.23	1.52
29	to be confused about what my data mean.	C	-	56.19	28.53	-0.31	1.37
30	to be confident when using equipment.	A	+	71.69	22.57	-0.63	1.08
31	to learn problem solving skills.	C	+	82.17	20.77	-1.47	1.00

Factor Loadings

Table S3. Standardized factor loadings for Model A (30 items) and Mod	del A2 (20 items) using
the training data set $(n = 434)$. Three dashes () indicate that an item v	vas not included in the
model.	

Standardized Factor Loadings				
	Model A	Model A2		
Cognitive Items				
3	0.499	0.461		
5	0.634	0.612		
6	0.217	0.355		
7	0.777	0.766		
10	0.469			
11	0.655	0.622		
15	-0.061			
16	0.279	0.422		
17	0.260			
19	0.465			
22	0.579	0.518		
24	0.204			
25	0.726	0.672		
26	0.317			
29	0.242	0.376		
31	0.746	0.755		
Affective Items				
2	0.644			
8	0.427	0.732		
9	0.714	0.345		
13	0.379	0.699		
18	0.505			
21	0.740	0.514		
28	0.725	0.441		
30	0.423	0.566		
Cognitive and Affective Items				
1	0.288	0.531		
4	0.694	0.428		
12	0.680	0.484		
14	0.627			
20	0.642			
27	0.108	0.424		

Standardized Factor Loadings			
	Model B	Model B2	Model B3
Positive Items			
1	0.580	0.590	0.606
3	0.495	0.479	0.475
5	0.647	0.646	0.653
7	0.792	0.795	
8	0.722	0.731	0.745
10	0.448		
11	0.649	0.644	
13	0.720	0.726	0.720
17			
19	0.454		
22	0.556	0.538	0.526
25	0.686	0.672	0.661
26	0.303		
27	0.524	0.519	0.526
30	0.533	0.541	
31	0.768	0.772	0.750
Negative Items			
2	0.603		
4	0.719	0.717	0.721
6	0.752	0.763	0.762
9	0.690	0.644	
12	0.692	0.709	0.717
14	0.580		
15			
16	0.769	0.792	0.799
18	0.542		
20	0.611		
21	0.742	0.747	0.739
24	0.426		
28	0.718	0.717	0.695
29	0.757	0.777	0.784

Table S4. Standardized factor loadings for Model B (28 items), Model B2 (20 items), and Model B3 (16 items) using the training data set (n = 434). Three dashes (---) indicate that an item was not included in the model.

Standardized Factor Loadings				
	Model C	Negative Method Factor		
Cognitive Items				
3	0.485			
5	0.648			
6	0.001	0.771		
7	0.795			
11	0.666			
16	0.072	0.780		
22	0.564			
25	0.702			
29	0.021	0.779		
31	0.755			
Affective Items				
8	0.627			
9	-0.030	0.661		
13	0.812			
21	0.116	0.718		
28	0.099	0.701		
30	0.615			
Cognitive and Affective Items				
1	0.323			
4	0.126	0.708		
12	0.170	0.692		
27	0.794			

Table S5. Standardized factor loadings for Model C (20 items) using the training data set (n = 434). Three dashes (---) indicate that an item was not included in the model.

	Standardized Factor Loadings						
	Training Testing Post-Course						
Pos	itive Items						
1	to learn chemistry that will be useful in my life.	0.606	0.609	0.665			
2	to make decisions about what data to collect.	0.475	0.541	0.427			
3	to experience moments of insight.	0.653	0.677	0.677			
4	to be excited to do chemistry.	0.745	0.700	0.763			
5	to develop confidence in the laboratory.	0.720	0.694	0.730			
6	to interpret my data beyond only doing calculations.	0.526	0.548	0.572			
7	to use my observations to understand the behavior of atoms and molecules.	0.661	0.729	0.616			
8	to be intrigued by the instruments.	0.526	0.600	0.521			
9	to learn chemistry that will be useful in my life.	0.750	0.750	0.674			
Negative Items							
10to feel unsure about the purpose of the procedures.0.7210.7350.670			0.670				
11to be confused about how the instruments work.0.7620.7640.699		0.699					
12 to feel disorganized. 0.717 0.675 0.697		0.697					
13to be confused about the underlying concepts.0.7990.8060.746		0.746					
14	to be frustrated.	0.739	0.700	0.717			
15	to feel intimidated.	0.695	0.670	0.693			
16	to be confused about what my data mean.	0.784	0.780	0.668			

Table S6. Standardized factor loadings for the MLLIv2 (Model B3, 16 items) using the training data set (n = 434), testing data set (n = 435), and post-course data set (n = 622).

Standardized Factor Loadings				
Po	ositive	Ne	gative	
1	0.605	10	0.718	
2	0.479	11	0.766	
3	0.660	12	0.712	
4	0.739	13	0.799	
5	0.714	14	0.736	
6	0.531	15	0.696	
7	0.661	16	0.788	
8	0.535			
9	0.749			

Table S7. Standardized factor loadings for each individual factor of the MLLIv2 using the training data (n=434).

MLLIv2 Post-Course Items

Table S8. MLLIv2	Post-Assessment	factors and	items.
------------------	-----------------	-------------	--------

Meaning	gful Learning in the Laboratory Instrument – Version 2 (MLLIv2)					
Post-Course Item Stem	When I performed experiments in my chemistry laboratory course, I					
Positive Items						
learned chemistr	y that will be useful in my life.					
made decisions a	about what data to collect.					
experienced mor	nents of insight.					
was excited to de	o chemistry.					
developed confid	dence in the laboratory.					
interpreted my d	ata beyond only doing calculations.					
used my observa	tions to understand the behavior of atoms and molecules.					
was intrigued by the instruments.						
learned problem solving skills.						
Negative Items						
felt unsure about	t the purpose of the procedures.					
was confused ab	was confused about how the instruments work.					
felt disorganized	felt disorganized.					
was confused about the underlying concepts.						
was frustrated.						
felt intimidated.						
was confused ab	out what my data mean.					