Supplementary Materials

Combining Photoredox Catalysis and Hydrogen Atom Transfer for Dearomative Functionalization of Electron Rich Heteroarenes

Peng Ji,¹ Xiang Meng,¹ Jing Chen,¹ Feng Gao,¹ Hang Xu,¹ and Wei Wang^{1,2,3*}

¹Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy ²Chemistry and Biochemistry, and ³University of Arizona Cancer Center University of Arizona, Tucson, AZ 85721-0207, USA

Table of Contents

1. General Information	
2. General Procedures and Optimization of Reaction Conditions	
3. Measurement of redox potential	
4. Compounds Characterization Data	S11
5. Spectral Data	
6. Single crystal X-ray diffraction data of 30	S171
7. References	S177

1. General Information

All commercially available reagents were purchased from Sigma Aldrich, Ark Pharm Inc., Matrix Chemical, Combi-Blocks, AKSci, Alfa Aesar, Acros, Ambeed or TCI America, and used as received unless otherwise noted. Merck 60 silica gel was used for chromatography, and Whatman silica gel plates with a fluorescence F254 indicator were used for thin-layer chromatography (TLC) analysis. ¹H and ¹³C NMR spectra were recorded on Bruker Avance 500 MHz or Varian 400 MHz. Chemical shifts in ¹H NMR spectra are reported in parts permillion (ppm) relative to residual chloroform (7.26 ppm) or dimethyl sulfoxide (2.50 ppm) as internal standards. ¹H NMR data are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, quint = quintet, sext = sextet, m = multiplet, br = broad), coupling constant in Hertz (Hz) and hydrogen numbers based on integration intensities. ¹³C NMR chemical shifts are reported in ppm relative to the central peak of CDCl₃ (77.16 ppm) or DMSO-d₆ (39.52 ppm) as internal standards. Highresolution mass spectrometry was performed in Analytical and Biological Mass Spectrometry Center. Both blue LED strip and 40 W Kessil Blue LEDs were purchased from Amazon. Cyclic voltammetry was performed at 25 °C on a CH Instrument CHI604xD electrochemical analyzer using a glassy carbon working electrode, a platinum wire counter electrode, and the Ag/AgCl reference electrode calibrated using ferrocene redox couple (4.8 V below vacuum). HPLC analyses with chiral stationary phase were carried out using a SHIMADZU HPLC system with SPD-20A detector. Samples are purified by flash column chromatography on Teledyne ISCO CombiFlash NextGen300+.

2. General Procedures and Optimization of Reaction Conditions

2.1 General procedure A (3-34)

To an oven-dried 20 mL-Schlenk tube equipped with a stir bar, was added nucleophiles (0.2 mmol), arenes (0.3 mmol), PhSeH (0.04 mmol), **Mes-Acr-4** (0.005 mmol), 2,6-lutidine (0.04 mmol) as the base, will be added. The tube was evacuated and back-filled with N₂ for three times, then sealed with rubber stopper and parafilm. Subsequently, the degassed dichloromethane (4 mL) was added. The reaction was irradiated by the two 40 W Kessil Blue LEDs, cooling by the electronic fan (Figure S1). After the completion of reactions, the resulted solution was purified by flash column chromatography on silica gel eluting with hexane/ethyl acetate or DCM/ethyl acetate in the indicated ratio.

2.2 General procedure B (36-73)

To an oven-dried 20 mL-Schlenk tube equipped with a stir bar, was added azoles (0.24 mmol), indole (0.2 mmol), PhSeH (0.04 mmol), **Mes-Acr-4** (0.005 mmol), 2,6-lutidine (0.04 mmol) as the base, will be added. The tube was evacuated and back-filled with N₂ for three times, then sealed with rubber stopper and parafilm. Subsequently, the degassed dichloromethane (4 mL) was added. The reaction was irradiated by the two 40 W Kessil Blue LEDs, cooling by the electronic fan (Figure S1). After the completion of reactions, the resulted solution was purified by flash column chromatography on silica gel eluting with hexane/ethyl acetate or DCM/ethyl acetate in the indicated ratio.

2.3 General procedure C (74-71, 88-91)

To an oven-dried 20 mL-Schlenk tube equipped with a stir bar, was added amine or $P(OEt)_3$ (0.4 mmol), indole (0.2 mmol), PhSeH (0.04 mmol), **Mes-Acr-4** (0.005 mmol), 2,6-lutidine (0.04 mmol) as the base, will be added. The tube was evacuated and back-filled with N₂ for three times, then sealed with rubber stopper and parafilm. Subsequently, the degassed dichloromethane (4 mL) was added. The reaction was irradiated by the two 40 W Kessil Blue LEDs, cooling by the electronic fan (Figure S1). After the completion of reactions, the resulted solution was purified by flash column chromatography on silica gel eluting with hexane/ethyl acetate or DCM/ethyl acetate in the indicated ratio.

2.4 General procedure D (78-87)

To an oven-dried 20 mL-Schlenk tube equipped with a stir bar, was added carboxylic acids (0.6 mmol) or acetic acid (5.0 equiv), indole (0.2 mmol), PhSeH (0.04 mmol), **Mes-Acr-4** (0.005 mmol), 2,6-lutidine (0.04 mmol) as the base, will be added. The tube was evacuated and back-filled with N₂ for three times, then sealed with rubber stopper and parafilm. Subsequently, the degassed dichloromethane (4 mL) was added. The reaction was irradiated by the two 40 W Kessil Blue LEDs, cooling by the electronic fan (Figure S1). After the completion of reactions, the resulted solution was purified by flash column chromatography on silica gel eluting with hexane/ethyl acetate or DCM/ethyl acetate in the indicated ratio.

2.5 General procedure E (85-87)

To an oven-dried 20 mL-Schlenk tube equipped with a stir bar, was added indole (0.2 mmol), PhSeH (0.04 mmol), **Mes-Acr-4** (0.005 mmol), TMSCN (0.4 mmol). The tube was evacuated and back-filled with N₂ for three times, then sealed with rubber stopper and parafilm. Subsequently, the degassed MeOH or EtOH (4 mL) was added. The reaction was irradiated by the two 40 W Kessil Blue LEDs for 48 hours, cooling by the electronic fan (Figure S1). After the completion of reactions, the resulted solution was purified by flash column chromatography on silica gel eluting with hexane/ethyl acetate or DCM/ethyl acetate in the indicated ratio.

2.6 Intramolecular reaction

To an oven-dried 20 mL-Schlenk tube equipped with a stir bar, was added indole acid (0.2 mmol), PhSeH (0.04 mmol), **Mes-Acr-4** (0.005 mmol), 2,6-lutidine (0.04 mmol). The tube was evacuated and back-filled with N₂ for three times, then sealed with rubber stopper and parafilm. Subsequently, the degassed DCM (4 mL) was added. The reaction was irradiated by the two 40 W Kessil Blue LEDs for 48 hours, cooling by the electronic fan (Figure S1). After the completion of reactions, the resulted solution was purified by flash column chromatography on silica gel eluting with hexane/ethyl acetate or DCM/ethyl acetate in the indicated ratio.

2.7 Large scale synthesis 36

To an oven-dried 20 mL-Schlenk tube equipped with a stir bar, was added pyrazole (349 mg, 5.13 mmol) (5.0 equiv), indole (1.1 g, 4.28 mmmol), PhSeH (91 uL, 0.86 mmol), **Mes-Acr-4** (61 mg, 0.11 mmol), 2,6-lutidine (66 uL, 0.11 mmol) as the base, will be added. The tube was evacuated and back-filled with N₂ for three times, then sealed with rubber stopper and parafilm. Subsequently, the degassed dichloromethane (4 mL) was added. The reaction was irradiated by the two 40 W Kessil Blue LEDs, cooling by the electronic fan. After the

completion of reactions, the resulted solution was purified by flash column chromatography on silica gel eluting with hexane/ethyl acetate (5:1) in the indicated ratio.

2.8 reaction conditions optimization

Table S1. Optimization of different photocatalyst.

PC (2.5 mol%)	Base (0.2 equiv)	HAT cat (0.2 equiv)	Solvent	Con (M)	Yield	Z/E
Mes-Acr2	2,6-lutidine	PhSeH	DCM	0.05	42	1:1
Mes-Acr4	2,6-lutidine	PhSeH	DCM	0.05	81	1:1
Mes-Acr3	2,6-lutidine	PhSeH	DCM	0.05	58	1:1

Mes-Acr1	2,6-lutidine	PhSeH	DCM	0.05	50	1:1
4CzIPN	2,6-lutidine	PhSeH	DCM	0.05	trace	-
DCA	2,6-lutidine	PhSeH	DCM	0.05	trace	-
ТРТ	2,6-lutidine	PhSeH	DCM	0.05	trace	-

Table S2. Optimization of HAT agents

	S	H PC (2. N HAT c	5 mol%) at			
	<u> </u>	N Base,	Solvent	• N ^{-N}	S ∥	
	1.5 equiv	1.0 equiv		Ū	^{سر} 0	Ме
PC (2.5	Base (0.2	HAT cat (0.2	Solvent	Con	Yield	E/Z
mol%)	equiv)	equiv)		(M)		
Mes-Acr4	2,6-lutidine	PhSeH	DCM	0.05	81	1:1
Mes-Acr4	2,6-lutidine	Ph ₃ SiSH	DCM	0.05	60	2:1
Mes-Acr4	2,6-lutidine	iPr ₃ SiSH	DCM	0.05	57	1.2:1
Mes-Acr4	2,6-lutidine	PhSH	DCM	0.05	56	2.7:1
Mes-Acr4	2,6-lutidine	TRIPSH	DCM	0.05	54	1:1
Mes-Acr4	2,6-lutidine	4-NO ₂ PhSH	DCM	0.05	38	6.6:1
Mes-Acr4	2,6-lutidine	4-MeOPhSH	DCM	0.05	63	1:1
Mes-Acr4	2,6-lutidine	Cysteine	DCM	0.05	55	1.6:1
Mes-Acr4	2,6-lutidine	3,6-diCl-1,2- PhSH	DCM	0.05	53	1.2:1
Mes-Acr4	2,6-lutidine	2-NH ₂ PhSe	DCM	0.05	33	2.9:1
Mes-Acr4	2,6-lutidine	SHCH ₂ COOMe	DCM	0.05	56	2.7:1
Mes-Acr4	2,6-lutidine	Adman-SH	DCM	0.05	63	1:1
Mes-Acr4	2,6-lutidine	PhCOSH	DCM	0.05	56	2.1:1

 Table S3. Optimization of Solvent.

	S -0 + 1.5 equiv	H N N Base 1.0 equiv	2.5 mol%) cat , Solvent	N-N	∫ S ∽ OMe
PC (2.5	Base (0.2	HAT cat (0.2	Solvent	Con	Yield
mol%)	equiv)	equiv)		(M)	
Mes-Acr4	2,6-lutidine	PhSeH	DCE	0.05	63
Mes-Acr4	2,6-lutidine	PhSeH	DMF	0.05	trace
Mes-Acr4	2,6-lutidine	PhSeH	ACN	0.05	16
Mes-Acr4	2,6-lutidine	PhSeH	PhCF ₃	0.05	57

PC (2.5 mol%)	Base (0.2 equiv)	HAT cat (0.2 eq)	Solvent	Con (M)	Yield	E/Z
Mes-Acr4	2,6-lutidine	PhSeH	DCM	0.05	81	1:1
Mes-Acr4	2,6-lutidine	PhSeH	DCM	0.1	60	3:1
Mes-Acr4	2,6-lutidine	PhSeH	DCM	0.2	30	2:1
Mes-Acr4	none	PhSeH	DCM	0.05	68	1:1.4
Mes-Acr4	2,6-lutidine	none	DCM	0.05	23	1:1
Mes-Acr4	2,6-lutidine	PhSeH	DCM	0.05	trace	No light
Mes-Acr4	2,6-lutidine	PhSeH	DCM	0.05	trace	No PC

3. Measurement of redox potential

Procedure for measurement of the redox potential:

Voltammetric measurements were recorded on a CH Instruments: Model 600E Series Electrochemical Analyzer using a standard three electrodes setup in dry and degassed MeCN (10 mL), with ferrocene as an internal reference ($E^{0}_{1/2} = + 0.40$ V vs SCE) and nBu_4NPF_6 as the electrolyte (0.10 mmol). Cyclic voltammograms were recorded at a scan rate of 0.2 V/s.

Figure S2. Redox potential of indole.

Figure S3. Redox potential of furan.

Figure S4. Redox potential of 2-methoxylthiophene.

Figure S5. Redox potential of 2,5-dimethoxylthiophene.

4. Compounds Characterization Data

O-methyl (E)-4-(1H-pyrazol-1-yl)but-3-enethioate (3): The title compound was prepared according to the general procedure A. The crude residue was purified by column chromatography on silica gel with an eluent of hexanes/ethyl acetate (2:1) to furnish the pure compound as a yellow oil in 76% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 1.8 Hz, 1H), 7.58 (d, J = 2.4 Hz, 1H), 6.94 (dt, J = 14.1, 1.4 Hz, 1H), 6.34 (t, J = 2.1 Hz, 1H), 6.25 (dt, J = 14.1, 7.6 Hz, 1H), 4.10 (s, 3H), 3.59 (dd, J = 7.6, 1.4 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 220.61, 140.85, 129.41, 127.56, 111.38, 107.00, 59.29, 46.68.

O-methyl (*Z*)-4-(1*H*-pyrazol-1-yl)but-3-enethioate (3):

¹**H NMR** (400 MHz, CDCl₃) δ 7.62 (d, J = 1.8 Hz, 1H), 7.56 (d, J = 2.6 Hz, 1H), 6.85 (dt, J = 9.4, 1.9 Hz, 1H), 6.33 (t, J = 2.1 Hz, 1H), 5.61 (dt, J = 9.4, 7.1 Hz, 1H), 4.12 (s, 3H), 4.09 (dd, J = 7.1, 1.8 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 221.55, 140.95, 130.53, 126.56, 113.79, 106.46, 59.32, 44.10.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₈H₁₀N₂OS: 183.0587, found 183.0585.

O-methyl (**Z**)-4-(4-iodo-1*H*-pyrazol-1-yl)but-3-enethioate (4): The title compound was prepared according to the general procedure A. The crude residue was purified by column chromatography on silica gel with an eluent of hexanes/ethyl acetate (2:1) to furnish the pure compound as a yellow oil in 76% yield.

¹**H NMR** (500 MHz, CDCl₃) δ 7.611 (s, 1H), 7.607 (s, 1H), 6.792 (dd, *J* = 9.3, 2.0 Hz, 1H), 5.647 (dt, *J* = 9.5, 7.2 Hz, 1H), 4.114 (s, 3H), 4.008 (dd, *J* = 7.2, 1.8 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 219.35, 145.80, 134.67, 125.97, 115.21, 59.36, 43.90, 29.55.

O-methyl (*E*)-4-(4-iodo-1*H*-pyrazol-1-yl)but-3-enethioate (4):

¹**H** NMR (500 MHz, CDCl₃) δ 7.65 (s, 2H), 7.58 (s, 1H), 6.88 (d, J = 14.1 Hz, 1H), 6.23 (dt, J = 14.1, 7.6 Hz, 2H), 4.10 (s, 5H), 3.57 (dd, J = 7.5, 1.4 Hz, 4H).

¹³C NMR (126 MHz, CDCl₃) δ 220.09, 145.64, 131.78, 128.80, 112.51, 59.29, 46.31, 29.70.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₈H₉IN₂OS: 308.9553, found 308.9552.

O-methyl (*Z*)-4-(4-bromo-1*H*-pyrazol-1-yl)but-3-enethioate (5):

¹H NMR (500 MHz, CDCl₃) δ 7.59 (s, 1H), 7.57 (s, 1H), 6.77 (dt, *J* = 9.4, 1.9 Hz, 1H), 5.66 (dt, *J* = 9.3, 7.2 Hz, 1H), 4.11 (s, 3H), 4.00 (dd, *J* = 7.2, 1.8 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 220.82, 141.37, 130.31, 126.16, 115.21, 59.39, 43.84, 29.85.

O-methyl (E)-4-(4-bromo-1H-pyrazol-1-yl)but-3-enethioate (5):

¹H NMR (500 MHz, CDCl₃) δ 7.63 (s, 1H), 7.54 (s, 1H), 6.97 – 6.71 (m, 1H), 6.22 (dt, *J* = 14.6, 7.6 Hz, 1H), 4.10 (s, 3H), 3.57 (dd, *J* = 7.6, 1.4 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 220.23, 141.38, 129.16, 127.54, 112.53, 59.46, 46.43, 29.85.

HRMS (ESI) m/z $[M + H]^+$ calculated for C₈H₉BrN₂OS: 260.9692, found 260.9690.

O-methyl (Z)-4-(4-chloro-1H-pyrazol-1-yl)but-3-enethioate (6):

¹H NMR (500 MHz, CDCl₃) δ 7.57 (s, 1H), 7.53 (s, 1H), 6.74 (d, *J* = 9.3 Hz, 1H), 5.66 (dt, *J* = 9.3, 7.2 Hz, 1H), 4.11 (s, 3H), 4.00 (dd, *J* = 7.2, 1.8 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 220.84, 139.31, 128.10, 126.26, 115.11, 59.39, 43.83, 33.28.

O-methyl (E)-4-(4-chloro-1H-pyrazol-1-yl)but-3-enethioate (6):

¹H NMR (500 MHz, CDCl₃) δ 7.60 (s, 1H), 7.51 (s, 1H), 6.84 (d, J = 14.2 Hz, 1H), 6.20 (dt, J = 14.1, 7.6 Hz, 1H), 4.10 (s, 4H), 3.56 (dd, J = 7.6, 1.4 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 220.25, 139.33, 129.31, 125.28, 112.40, 59.45, 46.43, 31.07.

HRMS (ESI) m/z $[M + H]^+$ calculated for C₈H₉ClN₂OS: 217.0197, found 217.0194.

O-methyl (*Z*)-4-(4-fluoro-1*H*-pyrazol-1-yl)but-3-enethioate (7):

¹H NMR (500 MHz, CDCl₃) δ 7.48 (d, *J* = 4.7 Hz, 1H), 7.47 (d, *J* = 3.8 Hz, 1H), 6.69 (dt, *J* = 9.4, 1.9 Hz, 1H), 5.63 (dt, *J* = 9.4, 7.2 Hz, 1H), 4.11 (s, 3H), 3.99 (dd, *J* = 7.2, 1.8 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 220.95, 150.26 (d, *J* = 248.2 Hz), 128.38 (d, *J* = 13.8 Hz), 126.74, 116.17 (d, *J* = 27.9 Hz), 114.49, 59.36, 43.79.

O-methyl (E)-4-(4-fluoro-1H-pyrazol-1-yl)but-3-enethioate (7):

¹H NMR (500 MHz, CDCl₃) δ 7.50 (d, J = 4.7 Hz, 1H), 7.44 (d, J = 4.1 Hz, 1H), 6.81 (dd, J = 14.3, 1.3 Hz, 1H), 6.11 (dt, J = 14.2, 7.5 Hz, 1H), 4.10 (s, 3H), 3.56 (dd, J = 7.5, 1.4 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 220.40, 150.67 (d, *J* = 249.2 Hz), 130.05, 128.38 (d, *J* = 13.8 Hz), 113.17 (d, *J* = 28.1 Hz), 111.52, 59.44, 46.43.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₈H₉ClN₂OS: 217.0197, found 217.0194.

O-methyl (*Z*)-4-(4-methyl-1*H*-pyrazol-1-yl)but-3-enethioate (8):

¹H NMR (500 MHz, CDCl₃) δ 7.42 (s, 1H), 7.32 (t, *J* = 0.9 Hz, 1H), 6.76 (dt, *J* = 9.4, 1.8 Hz, 1H), 5.51 (dt, *J* = 9.4, 7.1 Hz, 1H), 4.11 (s, 3H), 4.06 (dd, *J* = 7.2, 1.8 Hz, 2H), 2.12 - 1.91 (m, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 221.73, 141.70, 129.06, 126.61, 112.48, 59.29, 44.11, 31.06, 8.86.

O-methyl (E)-4-(4-methyl-1H-pyrazol-1-yl)but-3-enethioate (8):

¹H NMR (500 MHz, CDCl₃) δ 7.40 (s, 2H), 7.38 – 7.36 (m, 2H), 6.87 (d, J = 14.2 Hz, 1H), 6.11 (dt, J = 14.2, 7.6 Hz, 2H), 4.09 (s, 6H), 3.56 (dd, J = 7.5, 1.4 Hz, 4H), 2.08 (s, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 221.03, 141.69, 129.74, 126.09, 110.16, 59.40, 46.85, 29.84, 8.98.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₉H₁₂N₂OS: 197.0743, found 197.0743.

Ethyl (Z)-1-(4-methoxy-4-thioxobut-1-en-1-yl)-1*H*-pyrazole-4-carboxylate (9):

¹H NMR (500 MHz, CDCl₃) δ 7.99 (d, J = 14.3 Hz, 2H), 6.80 (dt, J = 9.4, 1.9 Hz, 1H), 5.77 (dt, J = 9.4, 7.1 Hz, 1H), 4.29 (q, J = 7.1 Hz, 2H), 4.10 (s, 3H), 4.03 (dd, J = 7.1, 1.9 Hz, 2H), 1.34 (t, J = 7.1 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 220.62, 162.77, 142.01, 133.47, 125.88, 116.80, 115.83, 60.51, 59.33, 43.79, 14.47.

EtOOC

Ethyl (E)-1-(4-methoxy-4-thioxobut-1-en-1-yl)-1H-pyrazole-4-carboxylate (9):

¹H NMR (500 MHz, CDCl₃) δ 8.04 (s, 1H), 7.97 (s, 1H), 6.89 (dt, *J* = 14.0, 1.5 Hz, 1H), 6.39 (dt, *J* = 14.1, 7.5 Hz, 1H), 4.30 (q, *J* = 7.1 Hz, 2H), 4.10 (s, 3H), 3.59 (dd, *J* = 7.6, 1.4 Hz, 2H), 1.34 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 219.88, 162.73, 142.13, 130.77, 128.79, 116.40, 114.58, 60.54, 59.45, 46.45, 14.48.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₁₁H₁₄N₂O₃S: 255.0798, found 255.0797.

O-methyl (*Z*)-4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-pyrazol-1-yl)but-3-enethioate (10):

¹H NMR (500 MHz, CDCl₃) δ 7.86 (s, 1H), 7.79 (s, 1H), 6.83 (d, *J* = 9.3 Hz, 1H), 5.89 – 5.51 (m, 1H), 4.11 (s, 3H), 4.09 (dd, *J* = 6.9, 2.0 Hz, 3H), 1.32 (s, 14H).

¹³C NMR (126 MHz, CDCl₃) δ 146.62, 137.39, 126.09, 114.84, 83.65, 59.30, 44.02, 24.93.

O-methyl (*E*)-4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-pyrazol-1-yl)but-3-enethioate (10):

¹H NMR (500 MHz, CDCl₃) δ 7.87 (s, 1H), 7.84 (s, 1H), 6.92 (d, J = 14.1 Hz, 1H), 6.30 (dt, J = 14.5, 7.6 Hz, 1H), 4.09 (s, 3H), 3.66 – 3.50 (m, 2H), 1.32 (s, 12H).

 $^{13}C NMR (126 MHz, CDCl_3) \\ \delta 220.51, 146.68, 134.64, 129.07, 112.72, 83.66, 59.42, 46.77, 24.93.$

HRMS (ESI) $m/z [M + H]^+$ calculated for $C_{14}H_{21}BN_2O_3S$: 309.1439, found 309.1439.

O-methyl (E)-4-(4-methoxy-1H-pyrazol-1-yl)but-3-enethioate (11):

¹H NMR (500 MHz, CDCl₃) δ 7.34 (s, 1H), 7.27 (s, 1H), 6.82 (dt, *J* = 14.2, 1.4 Hz, 2H), 6.00 (dt, *J* = 14.3, 7.5 Hz, 2H), 4.10 (s, 5H), 3.76 (s, 5H), 3.55 (dd, *J* = 7.5, 1.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 220.96, 148.12, 130.37, 129.33, 110.79, 109.41, 59.38, 58.88, 46.63.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₉H₁₂N₂O₂S: 213.0692, found 213.0692.

O-methyl (E)-4-(4-(trifluoromethyl)-1H-pyrazol-1-yl)but-3-enethioate (12):

¹H NMR (500 MHz, CDCl₃) δ 7.86 (s, 1H), 7.78 (s, 1H), 6.90 (dt, 1H), 6.39 (dt, J = 14.1, 7.6 Hz, 1H), 4.11 (s, 3H), 3.59 (dd, J = 7.6, 1.4 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 219.62, 137.97 (q, J = 2.7 Hz), 128.54, 126.80 (d, J = 3.9 Hz), 125.05 – 118.32 (m), 115.03, 114.76, 59.34, 46.18.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₉H₉F₃N₂OS: 251.0460, found 251.0460.

O-methyl (E)-4-(4-phenyl-1H-pyrazol-1-yl)but-3-enethioate (13):

¹H NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H), 7.82 (s, 1H), 7.48 (d, J = 6.5 Hz, 2H), 7.38 (d, J = 6.9 Hz, 2H), 7.25 (s, 1H), 6.86 (t, J = 7.2 Hz, 1H), 5.64 (t, J = 7.3 Hz, 1H), 4.44 - 3.98 (m, 5H).

¹³C NMR (101 MHz, CDCl₃) δ 221.38, 138.66, 131.90, 129.05, 127.04, 126.96, 126.49, 125.82, 123.69, 113.99, 59.38, 44.04.

O-methyl (Z)-4-(4-phenyl-1H-pyrazol-1-yl)but-3-enethioate (13):

¹H NMR (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.82 (s, 1H), 7.49 (s, 2H), 7.37 (d, J = 7.5 Hz, 2H), 7.27 – 7.18 (m, 1H), 6.94 (dt, J = 14.4, 4.0 Hz, 1H), 6.26 (dt, J = 13.6, 6.7 Hz, 1H), 4.10 (dd, J = 5.2, 2.6 Hz, 3H), 3.60 (d, J = 6.7 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 220.66, 138.67, 131.90, 129.48, 129.05, 127.00, 125.79, 124.41, 123.99, 111.60, 59.46, 46.71.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₁₄H₁₄N₂OS: 259.0900, found 259.0898.

O-methyl (Z)-4-(4-acetyl-1H-pyrazol-1-yl)but-3-enethioate (14):

¹H NMR (500 MHz, CDCl₃) δ 8.02 (s, 1H), 7.98 (s, 1H), 6.81 (dt, *J* = 9.3, 1.9 Hz, 1H), 5.78 (dt, *J* = 9.4, 7.2 Hz, 1H), 4.10 (s, 3H), 4.01 (dd, *J* = 7.3, 1.8 Hz, 2H), 2.43 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 220.38, 191.84, 141.25, 132.55, 125.82, 124.37, 117.20, 59.29, 43.73, 28.06.

O-methyl (*E*)-4-(4-acetyl-1*H*-pyrazol-1-yl)but-3-enethioate (14)

¹H NMR (500 MHz, CDCl₃) δ 8.03 (s, 1H), 7.97 (s, 1H), 6.90 (dt, *J* = 14.0, 1.4 Hz, 1H), 6.42 (dt, *J* = 14.0, 7.6 Hz, 1H), 4.10 (s, 3H), 3.59 (dd, *J* = 7.6, 1.4 Hz, 2H), 2.44 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 219.65, 191.78, 141.35, 129.75, 128.56, 124.92, 115.05, 59.35, 46.28, 28.01.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₁₀H₁₂N₂O₂S: 225.0692, found 225.0691.

O-methyl (*E*)-4-(3-(tert-butyl)-1*H*-pyrazol-1-yl)but-3-enethioate (15):

¹H NMR (500 MHz, CDCl₃) δ 7.44 (dd, J = 28.4, 2.5 Hz, 1H), 6.99 – 6.63 (m, 1H), 6.18 (dd, J = 11.8, 2.5 Hz, 1H), 6.15 – 5.41 (m, 1H), 4.10 (d, J = 8.6 Hz, 3H), 4.39 – 3.36 (m, 2H), 1.31 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 221.70 (d, J = 134.7 Hz), 163.68, 130.34 (d, J = 92.2 Hz), 127.15 (d, J = 152.3 Hz), 110.88 (d, J = 240.8 Hz), 103.39 (d, J = 113.0 Hz), 59.29 (d, J = 21.9 Hz), 45.66 (d, J = 336.4 Hz), 32.69 – 29.52 (m), 30.51 (d, J = 6.8 Hz).

HRMS (ESI) $m/z [M + H]^+$ calculated for $C_{12}H_{18}N_2OS$: 239.1213, found 239.1211.

O-methyl (Z)-4-(3-methyl-1H-pyrazol-1-yl)but-3-enethioate (16):

¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 2.4 Hz, 1H), 6.76 (dt, J = 9.4, 1.8 Hz, 1H), 6.10 (d, J = 2.3 Hz, 1H), 5.50 (dt, J = 9.4, 7.1 Hz, 1H), 4.11 (s, 3H), 4.07 (dd, J = 7.2, 1.8 Hz, 2H), 2.30 (s, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 221.61, 150.25, 131.05, 126.46, 112.32, 106.23, 59.12, 44.08, 13.68.

O-methyl (E)-4-(3-methyl-1H-pyrazol-1-yl)but-3-enethioate (16):

¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 2.4 Hz, 1H), 6.84 (dt, *J* = 14.1, 1.4 Hz, 1H), 6.16 (dt, *J* = 14.1, 7.6 Hz, 1H), 6.11 (d, *J* = 2.3 Hz, 1H), 4.09 (s, 3H), 3.56 (dd, *J* = 7.6, 1.4 Hz, 2H), 2.30 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 220.85, 150.45, 129.25, 128.50, 110.07, 106.89, 59.24, 46.83, 13.63.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₉H₁₂N₂OS: 197.0743, found 197.0743.

O-methyl (*Z*)-4-(1*H*-benzo[d][1,2,3]triazol-1-yl)but-3-enethioate (17):

¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, *J* = 8.3 Hz, 1H), 7.64 – 7.49 (m, 2H), 7.42 (ddd, *J* = 8.2, 4.9, 3.1 Hz, 1H), 7.16 (dt, *J* = 9.1, 2.0 Hz, 1H), 6.21 (dt, *J* = 9.1, 7.0 Hz, 1H), 4.11 (s, 3H), 4.08 (dd, *J* = 6.9, 1.9 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 220.48, 145.30, 132.85, 128.27, 124.66, 120.99, 120.59, 120.30, 109.58, 59.34, 44.28.

O-methyl (*E*)-4-(1*H*-benzo[d][1,2,3]triazol-1-yl)but-3-enethioate (17):

¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, *J* = 8.3 Hz, 1H), 7.74 (d, *J* = 8.3 Hz, 1H), 7.56 (ddd, *J* = 8.3, 6.8, 0.9 Hz, 1H), 7.50 – 7.36 (m, 2H), 6.71 (dt, *J* = 14.7, 7.5 Hz, 1H), 4.15 (s, 2H), 3.73 (dd, *J* = 7.6, 1.4 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 219.87, 146.41, 131.61, 128.45, 125.53, 124.70, 120.50, 116.55, 110.39, 59.54, 46.92.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₁₁H₁₁N₃OS: 234.0496, found 234.0493.

O-methyl (E)-4-(1H-benzo[d]imidazol-1-yl)but-3-enethioate (18):

1H NMR (500 MHz, CDCl₃) δ 8.69 (s, 1H), 7.95 – 7.82 (m, 1H), 7.74 – 7.56 (m, 1H), 7.49 – 7.34 (m, 2H), 7.05 (dt, *J* = 14.3, 1.4 Hz, 1H), 6.44 (dt, *J* = 14.6, 7.5 Hz, 1H), 4.15 (s, 3H), 3.69 (dd, *J* = 7.5, 1.3 Hz, 2H).

13C NMR (126 MHz, CDCl₃) δ 218.46, 140.13, 133.67, 124.99, 124.45, 123.68, 119.35, 118.62, 117.50, 111.09, 59.43, 46.42.

HRMS (ESI) m/z $[M + H]^+$ calculated for C₁₂H₁₂N₂OS: 233.0743, found 233.0743

O-methyl (*Z*)-4-(3,5-dimethyl-1*H*-pyrazol-1-yl)but-3-enethioate (19):

¹H NMR (500 MHz, CDCl₃) δ 6.61 (d, J = 9.3 Hz, 1H), 5.83 (s, 1H), 5.58 (dt, J = 9.3, 6.8 Hz, 1H), 4.16 (dd, J = 6.8, 1.8 Hz, 3H), 4.10 (s, 4H), 2.23 (d, J = 4.1 Hz, 8H).

¹³C NMR (126 MHz, CDCl₃) δ 222.77, 149.35, 140.01, 123.11, 114.09, 105.90, 59.16, 44.11, 13.86, 11.31.

O-methyl (*E*)-4-(3,5-dimethyl-1*H*-pyrazol-1-yl)but-3-enethioate (19):

¹H NMR (500 MHz, CDCl₃) δ 6.74 (dd, *J* = 13.7, 1.6 Hz, 1H), 6.29 (dt, *J* = 14.4, 7.6 Hz, 1H), 5.84 (s, 1H), 4.08 (s, 3H), 3.58 (d, *J* = 7.7 Hz, 2H), 2.26 (s, 3H), 2.24 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 221.25, 149.98, 139.11, 125.97, 110.92, 106.77, 59.41, 47.59, 13.77, 11.11.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₁₀H₁₄N₂OS: 211.0900, found 211.0897.

O-methyl (*Z*)-4-(3,5-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-pyrazol-1-yl)but-3-enethioate (20):

¹H NMR (500 MHz, CDCl₃) δ 6.63 (d, *J* = 9.3 Hz, 1H), 5.64 (dt, *J* = 9.3, 6.8 Hz, 1H), 4.11 (dd, *J* = 7.1, 2.1 Hz, 2H), 4.09 (s, 3H), 2.40 (s, 3H), 2.34 (s, 3H), 1.29 (s, 12H).

¹³C NMR (126 MHz, CDCl₃) δ 222.47, 155.95, 148.25, 123.20, 115.73, 82.77, 59.13, 44.12, 25.02, 14.33, 11.50.

PinŖ

O-methyl (E)-4-(3,5-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-pyrazol-1-yl)but-3-enethioate (20):

¹H NMR (500 MHz, CDCl₃) δ 6.83 – 6.66 (m, 1H), 6.34 (dt, *J* = 13.7, 7.7 Hz, 1H), 4.07 (s, 3H), 3.58 (dd, *J* = 7.6, 1.4 Hz, 2H), 2.43 (s, 3H), 2.35 (s, 3H), 1.28 (s, 12H).

¹³C NMR (126 MHz, CDCl₃) δ 220.98, 156.56, 147.08, 125.53, 111.97, 82.65, 59.29, 47.54, 24.89, 14.14, 11.10.

HRMS (ESI) m/z $[M + H]^+$ calculated for C₁₆H₂₅BN₂O₃S: 337.1752, found 337.1750.

O-methyl (*E*)-4-(4-bromo-3,5-dimethyl-1*H*-pyrazol-1-yl)but-3-enethioate (21):

¹**H NMR** (500 MHz, CDCl₃) δ 6.74 (dt, *J* = 13.7, 1.3 Hz, 1H), 6.33 (dt, *J* = 13.7, 7.7 Hz, 1H), 4.09 (s, 3H), 3.58 (dd, *J* = 7.6, 1.4 Hz, 2H), 2.28 (s, 3H), 2.24 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 220.77, 148.39, 137.05, 126.20, 112.32, 96.24, 59.45, 47.24, 12.58, 10.46.

HRMS (ESI) $m/z [M + H]^+$ calculated for $C_{10}H_{13}BrN_2OS$: 289.0005, found 289.0003.

Ethyl (Z)-1-(4-methoxy-4-thioxobut-1-en-1-yl)-3,5-dimethyl-1*H*-pyrazole-4-carboxylate (22):

¹H NMR (400 MHz, CDCl₃) δ 6.66 (dt, J = 9.1, 1.8 Hz, 1H), 5.84 (dt, J = 9.1, 6.9 Hz, 1H), 4.29 (q, J = 7.1 Hz, 2H), 4.10 (s, 3H), 4.01 (dd, J = 6.9, 1.8 Hz, 2H), 2.51 (s, 3H), 2.43 (s, 3H), 1.36 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 221.47, 164.56, 151.62, 144.75, 123.02, 119.13, 110.25, 59.91, 59.20, 44.01, 14.63, 14.53, 11.38.

EtOOC

Ethyl (E)-1-(4-methoxy-4-thioxobut-1-en-1-yl)-3,5-dimethyl-1H-pyrazole-4-carboxylate (22):

¹H NMR (400 MHz, CDCl₃) δ 6.79 (dt, J = 13.7, 1.4 Hz, 1H), 6.47 (dt, J = 13.7, 7.7 Hz, 1H), 4.29 (q, J = 7.1 Hz, 2H), 4.10 (s, 3H), 3.61 (dd, J = 7.6, 1.4 Hz, 2H), 2.56 (s, 3H), 2.44 (s, 3H), 1.36 (t, 2H), 2.44 (s, 2H), 2.4J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 220.28, 164.29, 152.11, 143.42, 125.02, 114.77, 110.85, 59.77, 59.31, 47.16, 14.47, 14.35, 10.85.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₁₃H₁₈BrN₂O₃S: 283.1111, found 283.1109.

O-methyl (E)-2-methyl-4-(1H-pyrazol-1-yl)but-3-enethioate (23):

¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 1.8 Hz, 1H), 7.56 (dd, J = 2.5, 0.7 Hz, 1H), 6.93 (dd, J = 2.5, 0.7 Hz, 1H), 7.56 (dd, J = 2.5, 0.7= 14.2, 1.0 Hz, 1H), 6.33 (dd, *J* = 2.5, 1.8 Hz, 1H), 6.20 (dd, *J* = 14.2, 8.6 Hz, 1H), 4.09 (s, 3H), 3.76 - 3.53 (m, 1H), 1.45 (d, J = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 225.56, 140.92, 127.90, 127.70, 118.23, 107.10, 59.33, 50.88, 20.74.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₉H₁₂N₂OS: 197.0743, found 197.0741.

O-ethyl (Z)-4-(1H-pyrazol-1-yl)but-3-enethioate (24):

¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 1.8 Hz, 1H), 7.58 (dd, J = 2.4, 0.7 Hz, 1H), 6.85 (dt, J= 9.4, 1.9 Hz, 1H), 6.33 (dd, J = 2.5, 1.8 Hz, 1H), 5.63 (dt, J = 9.4, 7.1 Hz, 1H), 4.54 (t, J = 7.1Hz, 2H), 4.04 (dd, *J* = 7.1, 1.8 Hz, 2H), 1.41 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 220.58, 140.73, 130.31, 126.42, 113.81, 106.28, 68.53, 44.32, 13.57.

O-ethyl (*E*)-4-(1*H*-pyrazol-1-yl)but-3-enethioate (24):

¹H NMR (500 MHz, CDCl₃) δ 7.58 (d, *J* = 1.8 Hz, 1H), 7.56 (d, *J* = 2.5 Hz, 1H), 6.92 (dt, *J* = 14.1, 1.5 Hz, 1H), 6.32 (t, *J* = 2.1 Hz, 1H), 6.23 (dt, *J* = 14.1, 7.6 Hz, 1H), 4.51 (q, *J* = 7.1 Hz, 2H), 3.54 (dd, *J* = 7.6, 1.4 Hz, 2H), 1.39 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 219.97, 140.81, 129.34, 127.54, 111.53, 106.98, 68.74, 47.07, 13.60.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₉H₁₂N₂OS: 197.0743, found 197.0743.

O-isopropyl (*E*)-4-(1*H*-pyrazol-1-yl)but-3-enethioate (25):

¹H NMR (500 MHz, CDCl₃) δ 7.59 (d, J = 1.7 Hz, 1H), 7.58 (d, J = 2.5 Hz, 1H), 6.94 (dt, J = 14.1, 1.5 Hz, 1H), 6.34 (t, J = 2.1 Hz, 1H), 6.23 (dt, J = 14.0, 7.5 Hz, 1H), 5.63 (p, J = 6.2 Hz, 1H), 3.51 (dd, J = 7.5, 1.4 Hz, 2H), 1.36 (d, J = 6.3 Hz, 7H).

¹³C NMR (126 MHz, CDCl₃) δ 219.31, 140.89, 129.39, 127.62, 111.75, 107.09, 76.04, 47.68, 21.15.

HRMS (ESI) $m/z [M + H]^+$ calculated for $C_{10}H_{14}N_2OS$: 211.0900, found 211.0899.

O-isopropyl (*Z*)-4-(1*H*-pyrazol-1-yl)but-3-enethioate (25):

1H NMR (500 MHz, CDCl3) δ 7.62 (d, J = 1.8 Hz, 2H), 7.59 (d, J = 2.5 Hz, 2H), 6.85 (dt, J = 9.4, 1.9 Hz, 2H), 6.33 (t, J = 2.1 Hz, 2H), 5.67 (p, J = 6.2 Hz, 2H), 5.62 (dt, J = 9.4, 7.1 Hz, 2H), 3.97 (dd, J = 7.1, 1.9 Hz, 4H), 1.36 (d, J = 6.2 Hz, 12H).

13C NMR (126 MHz, CDCl3) δ 219.87, 140.85, 130.44, 126.56, 113.98, 106.43, 75.84, 45.00, 21.16.

O-benzyl (E)-4-(1H-pyrazol-1-yl)but-3-enethioate (26):

¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 1.8 Hz, 1H), 7.57 (dd, *J* = 2.4, 0.7 Hz, 1H), 7.47 – 7.33 (m, 5H), 6.95 (dt, *J* = 14.2, 1.4 Hz, 1H), 6.34 (dd, *J* = 2.5, 1.8 Hz, 1H), 6.27 (dt, *J* = 14.1, 7.6 Hz, 1H), 5.51 (s, 2H), 3.61 (dd, *J* = 7.6, 1.4 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 219.56, 140.82, 134.82, 129.50, 128.66, 128.62, 128.50, 127.49, 111.42, 106.98, 74.20, 46.88.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₁₄H₁₄N₂OS: 259.0900, found 259.0898.

O-benzyl (Z)-4-(1H-pyrazol-1-yl)but-3-enethioate (26):

¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 1.8 Hz, 1H), 7.55 (d, J = 2.4 Hz, 1H), 7.43 – 7.33 (m, 5H), 6.85 (dt, J = 9.4, 1.8 Hz, 1H), 6.32 (t, J = 2.2 Hz, 1H), 5.64 (dt, J = 9.4, 7.1 Hz, 1H), 5.52 (s, 2H), 4.11 (dd, J = 7.1, 1.9 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 220.25, 140.77, 134.93, 130.33, 128.62, 128.54, 128.42, 126.47, 113.54, 106.29, 74.05, 44.26.

Methyl (E)-4-(1H-pyrazol-1-yl)but-3-enoate (27): The title compound was prepared according to the general procedure D. The crude residue was purified by column chromatography on silica gel with an eluent of hexanes/ethyl acetate (2:1) to furnish the pure compound as a yellow oil in 76% yield.

¹**H** NMR (500 MHz, CDCl₃) δ 7.59 (d, J = 1.8 Hz, 1H), 7.58 (d, J = 2.4 Hz, 1H), 6.97 (d, J = 14.2 Hz, 1H), 6.34 (t, J = 2.1 Hz, 1H), 6.15 (dt, J = 14.2, 7.5 Hz, 1H), 3.72 (s, 3H), 3.21 (dd, J = 7.5, 1.5 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 171.68, 140.97, 130.08, 127.60, 109.11, 107.18, 52.23, 35.00.

HRMS (ESI) m/z $[M + H]^+$ calculated for C₈H₁₀N₂O₂: 167.0815, found 167.0814.

Methyl (E)-4-(4-methyl-1H-pyrazol-1-yl)but-3-enoate (28):

¹**H NMR** (500 MHz, CDCl₃) δ 7.36 (d, *J* = 13.5 Hz, 3H), 6.93 – 6.76 (m, 1H), 6.00 (dt, *J* = 14.6, 7.5 Hz, 1H), 3.70 (s, 4H), 3.17 (dd, *J* = 7.5, 1.5 Hz, 3H), 2.07 (s, 4H).

¹³C NMR (126 MHz, CDCl₃) δ 171.74, 141.63, 130.22, 125.96, 117.82, 107.69, 52.12, 34.98, 8.92.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₉H₁₂N₂O₂: 181.0972, found 181.0971.

methyl (E)-4-(4-bromo-3,5-dimethyl-1H-pyrazol-1-yl)but-3-enoate (29):

¹**H NMR** (500 MHz, CDCl₃) δ 6.77 (d, *J* = 13.8 Hz, 1H), 6.25 (dt, *J* = 13.7, 7.6 Hz, 2H), 3.71 (s, 5H), 3.19 (dd, *J* = 7.6, 1.4 Hz, 3H), 2.27 (s, 5H), 2.24 (s, 5H).

¹³C NMR (126 MHz, CDCl₃) δ 171.62, 148.40, 136.98, 126.67, 110.15, 96.25, 52.19, 35.27, 12.55, 10.41.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₁₀H₁₃BrN₂O₂: 273.0233, found 273.0231.

4-bromo-1-(5-methoxy-2,3-dihydrofuran-2-yl)-1H-pyrazole (30):

¹H NMR (500 MHz, CDCl₃) δ 7.61 (s, 1H), 7.53 (s, 1H), 6.89 (dt, *J* = 14.3, 1.5 Hz, 1H), 6.11 (dt, *J* = 14.2, 7.5 Hz, 1H), 3.72 (s, 3H), 3.20 (dd, *J* = 7.5, 1.5 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 171.23, 141.24, 129.57, 127.35, 110.00, 95.19, 52.15, 34.62.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₈H₉BrN₂O₂: 244.9920, found 244.9920.

O-methyl (Z)-4-(4-(7-((2-(trimethylsilyl)ethoxy)methyl)-7*H*-pyrrolo[2,3-d]pyrimidin-4-yl)-1*H*-pyrazol-1-yl)but-3-enethioate (31): ¹H NMR (400 MHz, CDCl₃) δ 8.85 (s, 1H), 8.38 (s, 1H), 8.37 (s, 1H), 7.40 (d, J = 3.7 Hz, 1H), 6.93 (dt, J = 9.4, 1.8 Hz, 1H), 6.80 (d, J = 3.8 Hz, 1H), 5.77 (dt, J = 9.3, 7.3 Hz, 1H), 5.67 (s, 2H), 4.14 (s, 3H), 4.16 - 4.10 (m, 2H), 3.61 - 3.48 (m, 2H), 1.05 - 0.69 (m, 2H), -0.06 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 220.82, 152.23, 151.90, 150.53, 140.59, 130.73, 128.47, 126.24, 122.15, 115.71, 114.34, 100.74, 72.80, 66.59, 59.24, 43.95, 17.74, -1.46.

O-methyl (*E*)-4-(4-(7-((2-(trimethylsilyl)ethoxy)methyl)-7*H*-pyrrolo[2,3-d]pyrimidin-4-yl)-1*H*-pyrazol-1-yl)but-3-enethioate (31):

¹H NMR (400 MHz, CDCl₃) δ 8.85 (s, 1H), 8.39 (s, 1H), 8.33 (s, 1H), 7.40 (d, J = 3.7 Hz, 1H), 7.01 (dt, J = 14.2, 1.5 Hz, 1H), 6.79 (d, J = 3.7 Hz, 1H), 6.43 (dt, J = 14.1, 7.6 Hz, 1H), 5.67 (s, 2H), 4.12 (s, 3H), 3.63 (dd, J = 7.6, 1.4 Hz, 2H), 3.60 – 3.42 (m, 2H), 1.06 – 0.77 (m, 2H), -0.06 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 220.02, 152.25, 151.88, 150.47, 140.58, 129.04, 128.49, 127.84, 122.81, 114.31, 113.47, 100.74, 72.80, 66.59, 59.31, 46.51, 17.74, -1.46.

HRMS (ESI) m/z $[M + H]^+$ calculated for C₂₀H₂₇N₅O₂SSi: 430.1728, found 430.1727.

O-methyl (*Z*)-4-(4-(1-((2-(trimethylsilyl)ethoxy)methyl)-1*H*-pyrrolo[3,2-c]pyridin-4-yl)-1*H*-pyrazol-1-yl)but-3-enethioate (32):

¹H NMR (500 MHz, CDCl₃) δ 8.33 (d, J = 5.0 Hz, 1H), 8.12 (s, 1H), 8.10 (s, 1H), 7.41 (d, J = 3.6 Hz, 1H), 7.19 (d, J = 5.0 Hz, 1H), 6.93 (dt, J = 9.4, 1.8 Hz, 1H), 6.72 (d, J = 3.7 Hz, 1H), 5.72 (d, J = 13.0 Hz, 3H), 4.14 (s, 2H), 4.13 (dd, J = 7.3, 1.8 Hz, 2H), 3.77 – 3.36 (m, 2H), 1.04 – 0.69 (m, 2H), -0.06 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 222.40, 150.33, 144.96, 141.24, 133.80, 130.33, 129.51, 127.83, 122.34, 118.91, 116.34, 115.22, 101.74, 74.46, 67.68, 60.72, 45.43, 19.22, -0.00.

O-methyl (*E*)-4-(4-(1-((2-(trimethylsilyl)ethoxy)methyl)-1*H*-pyrrolo[3,2-c]pyridin-4-yl)-1*H*-pyrazol-1-yl)but-3-enethioate (32):

1H NMR (500 MHz, CDCl3) δ 8.32 (d, J = 5.0 Hz, 1H), 8.09 (s, 1H), 8.06 (s, 1H), 7.41 (d, J = 3.6 Hz, 1H), 7.18 (s, 1H), 7.01 (d, J = 14.1 Hz, 1H), 6.71 (d, J = 3.6 Hz, 1H), 6.37 (dt, J = 14.6, 7.5 Hz, 1H), 5.70 (s, 2H), 4.12 (s, 3H), 3.63 (d, J = 7.5 Hz, 2H), 3.56 (t, J = 8.2 Hz, 2H), 0.92 (t, J = 8.2 Hz, 2H), -0.07 (s, 9H).

13C NMR (126 MHz, CDCl3) δ 221.71, 150.33, 144.96, 141.30, 133.79, 130.63, 129.51, 127.37, 123.04, 118.90, 115.23, 113.99, 101.73, 74.46, 67.67, 60.79, 48.00, 19.22, 0.00.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₂₁H₂₈N₄O₂SSi: 429.1775, found 429.1775.

((3a*R*,4*R*,6*R*,6a*R*)-6-methoxy-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)methyl 1-((*E*)-4-methoxy-4-thioxobut-1-en-1-yl)-1*H*-pyrazole-4-carboxylate (33):

¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 0.6 Hz, 1H), 8.00 (s, 1H), 6.90 (dt, J = 14.1, 1.5 Hz, 1H), 6.41 (dt, J = 14.0, 7.6 Hz, 1H), 5.00 (s, 1H), 4.72 (dd, J = 6.0, 1.0 Hz, 1H), 4.63 (d, J = 5.9 Hz, 1H), 4.47 (td, J = 6.8, 1.1 Hz, 1H), 4.28 (dd, J = 6.8, 0.7 Hz, 2H), 4.10 (s, 3H), 3.59 (dd, J = 7.6, 1.4 Hz, 2H), 3.32 (s, 3H), 1.49 (d, J = 0.7 Hz, 4H), 1.33 (d, J = 0.7 Hz, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 219.63, 162.03, 142.14, 130.86, 128.60, 115.52, 114.81, 112.63, 109.51, 85.30, 84.36, 81.91, 64.62, 59.31, 54.94, 46.30, 26.47, 25.03.

HRMS (ESI) m/z $[M + H]^+$ calculated for C₁₈H₂₄N₂O₇S: 413.1377, found 413.1377.

((3a*R*,4*R*,6*R*,6a*R*)-6-methoxy-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)methyl 1-((*Z*)-4-methoxy-4-thioxobut-1-en-1-yl)-1*H*-pyrazole-4-carboxylate (33):

¹H NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H), 8.03 (s, 1H), 6.81 (dt, *J* = 9.2, 1.9 Hz, 1H), 5.79 (dt, *J* = 9.4, 7.2 Hz, 1H), 5.01 (s, 1H), 4.77 – 4.68 (m, 1H), 4.63 (d, *J* = 5.9 Hz, 1H), 4.47 (d, *J* = 1.1 Hz, 1H), 4.29 (dd, *J* = 6.7, 1.9 Hz, 2H), 4.12 (s, 3H), 4.04 (dd, *J* = 7.2, 1.8 Hz, 2H), 3.33 (s, 3H), 1.50 (d, *J* = 0.7 Hz, 3H), 1.39 – 1.19 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 220.40, 162.08, 142.05, 133.58, 125.73, 117.06, 114.99, 112.62, 109.52, 85.32, 84.37, 81.91, 64.60, 59.21, 54.93, 43.69, 26.47, 25.02.

O-methyl (E)-4-(6-chloro-7H-purin-7-yl)but-3-enethioate (34):

¹H NMR (400 MHz, CDCl₃) δ 8.80 (s, 1H), 8.32 (s, 1H), 7.12 (dt, *J* = 14.4, 1.4 Hz, 1H), 6.74 (dt, *J* = 14.4, 7.5 Hz, 1H), 4.14 (s, 3H), 3.68 (dd, *J* = 7.5, 1.4 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 219.17, 152.56, 151.53, 150.75, 142.55, 132.03, 122.02, 118.09, 59.38, 46.57.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₁₀H₉ClN₄OS: 269.0258, found 269.0258.

1-(2-methoxy-2,3-dihydrobenzo[b]thiophen-3-yl)-1H-pyrazole (35):

¹H NMR (500 MHz, CDCl₃) δ 7.62 (d, J = 1.8 Hz, 1H), 7.56 (d, J = 2.5 Hz, 1H), 7.35 – 7.27 (m, 2H), 7.12 (td, J = 7.4, 1.5 Hz, 1H), 6.93 (d, J = 7.6 Hz, 1H), 6.35 (d, J = 2.3 Hz, 1H), 6.25 (d, J = 5.0 Hz, 1H), 5.33 (d, J = 4.8 Hz, 1H), 3.27 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 139.51, 137.24, 136.47, 130.92, 129.46, 125.36, 124.99, 123.90, 106.24, 91.96, 72.19, 57.15.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₁₂H₁₂N₂OS: 233.0743, found 233.0743.

1-(phenylsulfonyl)-2-(1*H*-pyrazol-1-yl)indoline (36):

¹H NMR (500 MHz, CDCl₃) δ 7.56 (d, J = 2.5 Hz, 1H), 7.51 – 7.44 (m, 2H), 7.43 – 7.33 (m, 3H), 7.32 – 7.22 (m, 2H), 7.15 – 7.11 (m, 1H), 7.08 (dd, J = 7.5, 1.3 Hz, 1H), 6.97 (td, J = 7.5, 1.0 Hz, 1H), 6.46 (dd, J = 8.8, 2.2 Hz, 1H), 6.11 (t, J = 2.1 Hz, 1H), 3.42 (dd, J = 16.9, 2.2 Hz, 1H), 3.33 (dd, J = 16.9, 8.8 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 140.70, 140.48, 138.69, 133.40, 129.39, 129.24, 129.19, 128.21, 126.85, 125.10, 124.72, 114.95, 106.28, 75.61, 36.00.

HRMS (ESI) $m/z [M + H]^+$ calculated for C1₇H₁₅N₃O₂S: 181.0972, found 181.0971.

(2-(1*H*-pyrazol-1-yl)indolin-1-yl)(phenyl)methanone (37):

¹H NMR (500 MHz, CDCl₃) δ 7.53 – 7.07 (m, 8H), 7.07 – 6.82 (m, 2H), 6.67 – 6.41 (m, 1H), 6.05 (d, *J* = 2.3 Hz, 1H), 3.58 (dd, *J* = 16.7, 8.4 Hz, 1H), 3.26 (d, *J* = 16.0 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 169.62, 140.27, 135.57, 130.88, 129.52, 128.70, 128.38, 127.69, 127.10, 125.16, 124.75, 116.63, 105.91, 75.02, 36.49.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₁₈H₁₅N₃O: 290.1288, found 290.1285.

tert-butyl 2-(1H-pyrazol-1-yl)indoline-1-carboxylate (38):

¹H NMR (500 MHz, DMSO-*d*₆) δ 7.76 (d, *J* = 2.4 Hz, 1H), 7.42 (d, *J* = 1.7 Hz, 1H), 7.26 (d, *J* = 7.4 Hz, 1H), 7.20 (td, *J* = 7.7, 1.3 Hz, 1H), 7.01 (td, *J* = 7.5, 1.1 Hz, 1H), 6.62 (dd, *J* = 9.5, 2.1 Hz, 1H), 6.23 (t, *J* = 2.1 Hz, 1H), 3.69 (dd, *J* = 17.1, 9.4 Hz, 1H), 3.21 (d, *J* = 17.1 Hz, 1H), 1.39 (s, 10H).

¹³C NMR (126 MHz, DMSO-*d*₆) δ 151.12, 142.37, 139.76, 129.91, 129.07, 127.20, 124.50, 122.79, 114.05, 104.67, 81.04, 72.89, 33.58, 27.80.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₁₆H₁₉N₃O₂: 286.1550, found 286.1550.

5-methyl-1-(phenylsulfonyl)-2-(1*H*-pyrazol-1-yl)indoline (39):

¹H NMR (500 MHz, CDCl₃) δ 7.67 (d, J = 2.7 Hz, 1H), 7.57 (d, J = 7.8 Hz, 2H), 7.54 – 7.43 (m, 2H), 7.37 (q, J = 7.6 Hz, 3H), 7.08 – 6.86 (m, 2H), 6.51 (d, J = 8.9 Hz, 1H), 6.21 (d, J = 2.4 Hz, 1H), 3.47 (d, J = 16.8 Hz, 1H), 3.34 (dd, J = 16.8, 8.8 Hz, 1H), 2.28 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 140.64, 138.55, 138.06, 134.62, 133.35, 129.65, 129.16, 129.14, 128.76, 126.85, 125.73, 115.01, 106.24, 75.81, 35.87, 21.08.

HRMS (ESI) m/z $[M + H]^+$ calculated for C₁₈H₁₇N₃O₂S: 340.1114, found 340.1113.

5-iodo-1-(phenylsulfonyl)-2-(1*H*-pyrazol-1-yl)indoline (40):

¹H NMR (500 MHz, CDCl₃) δ 7.67 (s, 1H), 7.55 – 7.48 (m, 5H), 7.45 (s, 1H), 7.38 (t, *J* = 7.8 Hz, 2H), 7.21 (d, *J* = 8.4 Hz, 1H), 6.52 (d, *J* = 8.9 Hz, 1H), 6.22 (s, 1H), 3.52 (d, *J* = 17.0 Hz, 1H), 3.43 (dd, *J* = 17.2, 8.9 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 140.96, 140.36, 138.35, 137.02, 133.90, 133.56, 131.87, 129.54, 129.24, 126.71, 116.43, 106.32, 87.82, 75.29, 35.38.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₁₇H₁₄IN₃O₂S: 451.9924, found 451.9922.

5-bromo-1-(phenylsulfonyl)-2-(1*H*-pyrazol-1-yl)indoline (41):

¹H NMR (500 MHz, CDCl₃) δ 7.60 (s, 1H), 7.46 (d, *J* = 8.0 Hz, 3H), 7.38 (s, 1H), 7.35 – 7.13 (m, 5H), 6.47 (d, *J* = 8.9 Hz, 1H), 6.15 (s, 1H), 3.47 (d, *J* = 17.1 Hz, 1H), 3.35 (dd, *J* = 17.3, 8.9 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 141.00, 139.72, 138.43, 133.62, 131.75, 131.14, 129.58, 129.31, 128.20, 126.79, 117.47, 116.13, 106.40, 75.57, 35.57.

HRMS (ESI) $m/z [M + H]^+$ calculated for $C_{17}H_{14}BrN_3O_2S$: 404.0063, found 404.0061.

5-fluoro-1-(phenylsulfonyl)-2-(1*H*-pyrazol-1-yl)indoline (42):

¹H NMR (500 MHz, CDCl₃) δ 7.70 (s, 1H), 7.55 (t, *J* = 8.3 Hz, 3H), 7.49 – 7.22 (m, 4H), 7.00 – 6.77 (m, 2H), 6.53 (d, *J* = 8.9 Hz, 1H), 6.24 (s, 1H), 3.54 (d, *J* = 17.1 Hz, 1H), 3.35 (dd, *J* = 17.3, 9.0 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 161.34, 159.41, 140.91, 138.29, 136.50, 133.61, 131.87 (d, *J* = 8.8 Hz), 129.45, 129.31, 126.86, 116.30 (d, *J* = 8.6 Hz), 114.84 (d, *J* = 23.5 Hz), 112.53 (d, *J* = 24.7 Hz), 76.01, 35.73.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₁₇H₁₄FN₃O₂S: 344.0864, found 344.0861.

tert-butyl 7-methyl-2-(1*H*-pyrazol-1-yl)indoline-1-carboxylate (43):

¹H NMR (500 MHz, DMSO- d_6) δ 7.69 (d, J = 2.4 Hz, 1H), 7.41 (d, J = 1.7 Hz, 1H), 7.12 (dd, J = 6.3, 2.5 Hz, 1H), 7.07 – 6.92 (m, 2H), 6.67 (dd, J = 8.3, 1.3 Hz, 1H), 6.24 (t, J = 2.1 Hz, 1H), 3.78 (dd, J = 16.7, 8.3 Hz, 1H), 3.32 (d, J = 16.8 Hz, 1H), 2.18 (s, 3H), 1.51 (s, 9H).

¹³C NMR (126 MHz, DMSO) δ 152.24, 139.99, 139.48, 131.88, 129.65, 128.78, 126.67, 124.51, 121.75, 105.40, 81.45, 75.63, 35.71, 27.82, 19.83.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₁₇H₂₁N₃O₂: 300.1707, found 300.1705.

methyl 1-(phenylsulfonyl)-2-(1*H*-pyrazol-1-yl)indoline-6-carboxylate (44):

¹H NMR (500 MHz, CDCl₃) δ 7.97 (d, J = 3.2 Hz, 1H), 7.68 (dd, J = 7.9, 3.1 Hz, 1H), 7.56 (d, J = 3.2 Hz, 1H), 7.50 – 7.36 (m, 3H), 7.33 (d, J = 3.0 Hz, 1H), 7.29 – 7.21 (m, 2H), 7.18 – 7.01 (m, 1H), 6.51 (dd, J = 9.2, 3.2 Hz, 1H), 6.11 (t, J = 2.6 Hz, 1H), 3.80 (d, J = 2.6 Hz, 3H), 3.48 (d, J = 17.3 Hz, 1H), 3.43 – 3.31 (m, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 166.58, 141.00, 140.90, 138.53, 134.72, 133.59, 130.57, 129.61, 129.28, 126.84, 126.37, 124.91, 115.28, 106.36, 75.58, 52.39, 35.99.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₁₉H₁₇N₃O₄S: 384.1013, found 384.1010.

6-chloro-1-(phenylsulfonyl)-2-(1*H*-pyrazol-1-yl)indoline (45):

¹H NMR (500 MHz, CDCl₃) δ 7.65 (s, 1H), 7.53 (d, *J* = 8.0 Hz, 3H), 7.44 (d, *J* = 3.8 Hz, 2H), 7.38 (t, *J* = 7.6 Hz, 2H), 7.10 (d, *J* = 8.0 Hz, 1H), 7.03 (d, *J* = 8.1 Hz, 1H), 6.58 (d, *J* = 8.2 Hz, 1H), 6.21 (s, 1H), 3.74 - 3.04 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 141.65, 141.01, 138.50, 133.90, 133.64, 129.56, 129.32, 127.79, 126.77, 125.79, 124.59, 114.99, 106.37, 75.88, 35.53.

HRMS (ESI) m/z $[M + H]^+$ calculated for C₁₇H₁₄ClN₃O₂S: 360.0568, found 360.0566.

4-methyl-1-(phenylsulfonyl)-2-(1*H*-pyrazol-1-yl)indoline (46):

¹H NMR (500 MHz, CDCl₃) δ 7.57 (d, J = 2.5 Hz, 1H), 7.50 – 7.45 (m, 2H), 7.43 – 7.32 (m, 2H), 7.32 – 7.19 (m, 3H), 7.04 (t, J = 7.9 Hz, 1H), 6.78 (d, J = 7.6 Hz, 1H), 6.49 (dd, J = 9.0, 2.4 Hz, 1H), 6.12 (t, J = 2.1 Hz, 1H), 3.34 (dd, J = 16.9, 2.4 Hz, 1H), 3.25 (dd, J = 17.0, 9.0 Hz, 1H), 2.08 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 140.71, 140.16, 138.66, 134.75, 133.36, 129.26, 129.16, 128.33, 127.92, 126.87, 125.72, 112.20, 106.19, 75.56, 35.19, 18.80.

HRMS (ESI) m/z $[M + H]^+$ calculated for C₁₈H₁₇N₃O₂S: 340.1114, found 340.1111.

methyl 1-(phenylsulfonyl)-2-(1*H*-pyrazol-1-yl)indoline-5-carboxylate (47):

¹H NMR (500 MHz, CDCl₃) δ 7.85 (dd, J = 8.5, 1.8 Hz, 1H), 7.79 (d, J = 1.7 Hz, 1H), 7.55 (d, J = 2.5 Hz, 1H), 7.47 – 7.38 (m, 3H), 7.37 – 7.31 (m, 2H), 7.26 (t, J = 7.8 Hz, 2H), 6.56 (t, J = 5.8 Hz, 1H), 6.12 (t, J = 2.1 Hz, 1H), 3.78 (s, 3H), 3.48 (d, J = 5.7 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 166.54, 144.47, 141.07, 138.61, 133.61, 130.58, 129.74, 129.34, 129.23, 126.74, 126.52, 126.20, 113.40, 106.33, 75.69, 52.15, 35.63.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₁₉H₁₇N₃O₄S: 384.1013, found 384.1012.

1-(phenylsulfonyl)-2-(1*H*-pyrazol-1-yl)indoline-4-carbaldehyde (48):

¹H NMR (500 MHz, CDCl₃) δ 10.04 (s, 1H), 7.68 (d, *J* = 8.0 Hz, 2H), 7.52 (dd, *J* = 14.4, 7.7 Hz, 4H), 7.48 – 7.41 (m, 2H), 7.37 (t, *J* = 7.8 Hz, 2H), 6.66 (d, *J* = 9.3 Hz, 1H), 6.23 (d, *J* = 2.8 Hz, 1H), 4.02 (d, *J* = 18.7 Hz, 1H), 3.76 (dd, *J* = 18.8, 9.4 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 192.11, 142.19, 141.26, 138.64, 133.67, 132.58, 130.47, 129.94, 129.33, 129.03, 128.34, 126.81, 119.39, 106.28, 75.94, 36.12.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₁₈H₁₅N₃O₃S: 354.0907, found 354.0905.

trans-3-methyl-1-(phenylsulfonyl)-2-(1*H*-pyrazol-1-yl)indoline (49):

¹H NMR (500 MHz, CDCl₃) δ 7.76 (dd, J = 17.0, 8.0 Hz, 3H), 7.66 (t, J = 7.5 Hz, 1H), 7.52 (dd, J = 17.0, 9.3 Hz, 3H), 7.45 (dd, J = 11.4, 5.4 Hz, 1H), 7.37 – 7.18 (m, 3H), 6.74 (d, J = 8.2 Hz, 1H), 6.27 (t, J = 2.0 Hz, 1H), 3.81 (p, J = 7.6 Hz, 1H), 1.07 (d, J = 7.1 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 140.77, 139.61, 138.74, 133.67, 133.29, 129.12, 128.41, 128.32, 126.92, 124.59, 123.84, 113.88, 106.15, 79.70, 41.31, 10.53.

HRMS (ESI) m/z $[M + H]^+$ calculated for C₁₈H₁₇N₃O₂S: 340.1114, found 340.1113.

trans-1-(phenylsulfonyl)-2-(1*H*-pyrazol-1-yl)indolin-3-yl acetate (50):

¹H NMR (500 MHz, CDCl₃) δ 7.50 (d, *J* = 7.9 Hz, 3H), 7.39 (t, *J* = 7.8 Hz, 1H), 7.25 (q, *J* = 9.8, 8.6 Hz, 6H), 7.13 (d, *J* = 7.7 Hz, 1H), 7.01 (dt, *J* = 7.6, 3.7 Hz, 1H), 6.58 (dd, *J* = 7.6, 2.6 Hz, 1H), 6.12 (d, *J* = 7.6 Hz, 1H), 6.03 (s, 1H), 1.64 (d, *J* = 2.7 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 170.45, 140.65, 140.38, 138.02, 133.59, 130.68, 130.05, 129.21, 127.06, 126.72, 125.39, 124.72, 114.19, 106.00, 76.16, 72.68, 19.96.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₁₉H₁₇N₃O₄S: 384.1013, found 384.1012.

methyl 2-1-(phenylsulfonyl)-2-(1*H*-pyrazol-1-yl)indolin-3-yl)acetate (51):

¹H NMR (500 MHz, CDCl₃) δ 7.57 – 7.31 (m, 5H), 7.30 – 7.12 (m, 6H), 6.98 (q, *J* = 8.6, 7.9 Hz, 2H), 6.78 – 6.51 (m, 1H), 6.03 (s, 1H), 4.30 – 3.82 (m, 1H), 3.53 (d, *J* = 2.4 Hz, 3H), 2.61 (dd, *J* = 17.5, 5.8 Hz, 1H), 2.25 – 1.95 (m, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 172.38, 140.95, 140.78, 138.85, 133.28, 131.11, 130.26, 129.08, 128.76, 126.85, 124.32, 123.37, 113.71, 105.74, 77.94, 52.05, 42.53, 31.36.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₂₀H₁₉N₃O₄S: 398.1169, found 398.1168.

Ethyl 1-(1-(phenylsulfonyl)indolin-2-yl)-1H-pyrazole-4-carboxylate (52):

¹H NMR (500 MHz, CDCl₃) δ 8.13 (d, J = 0.6 Hz, 1H), 7.84 (d, J = 0.6 Hz, 1H), 7.66 – 7.61 (m, 2H), 7.59 (d, J = 8.1 Hz, 1H), 7.56 – 7.49 (m, 1H), 7.43 – 7.35 (m, 2H), 7.32 – 7.25 (m, 1H), 7.17 (dd, J = 7.5, 1.4 Hz, 1H), 7.10 (td, J = 7.5, 1.0 Hz, 1H), 6.48 (dd, J = 8.5, 2.3 Hz, 1H), 4.27 (qd, J = 7.1, 1.6 Hz, 2H), 3.71 – 3.23 (m, 2H), 1.33 (t, J = 7.1 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 162.79, 142.10, 140.37, 138.26, 133.73, 132.17, 129.35, 128.98, 128.54, 126.87, 125.25, 125.23, 115.76, 115.49, 76.18, 60.42, 36.14, 14.52.

HRMS (ESI) m/z $[M + H]^+$ calculated for C₁₉H₁₇N₃O₄S: 384.1013, found 384.1012.

1-(1-(1-(phenylsulfonyl)indolin-2-yl)-1*H*-pyrazol-4-yl)ethan-1-one (53):

¹H NMR (500 MHz, CDCl₃) δ 8.00 (s, 1H), 7.71 (s, 1H), 7.61 – 7.50 (m, 2H), 7.47 (d, J = 8.1 Hz, 1H), 7.44 – 7.37 (m, 1H), 7.32 – 7.22 (m, 2H), 7.20 – 7.11 (m, 1H), 7.04 (d, J = 8.0 Hz, 1H), 6.97 (td, J = 7.5, 0.9 Hz, 1H), 6.36 (dd, J = 8.6, 2.2 Hz, 1H), 3.46 – 3.18 (m, 2H), 2.25 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 191.94, 141.21, 140.27, 138.12, 133.77, 131.41, 129.35, 128.95, 128.54, 126.81, 125.31, 125.26, 124.47, 115.52, 76.23, 36.04, 28.06.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₁₉H₁₇N₃O₃S: 368.1063, found 368.1061.

1-(1-(phenylsulfonyl)indolin-2-yl)-1*H*-pyrazole-4-carbaldehyde (54):

¹H NMR (500 MHz, CDCl₃) δ 9.67 (s, 1H), 8.08 (s, 1H), 7.77 (s, 1H), 7.57 – 7.50 (m, 2H), 7.47 (d, *J* = 8.1 Hz, 1H), 7.45 – 7.38 (m, 1H), 7.26 (t, *J* = 8.0 Hz, 2H), 7.19 – 7.09 (m, 1H), 7.03 (d, *J* = 8.0 Hz, 1H), 6.97 (td, *J* = 7.5, 1.0 Hz, 1H), 6.37 (dd, *J* = 8.6, 2.1 Hz, 1H), 3.35 (dd, *J* = 17.2, 2.1 Hz, 1H), 3.27 (dd, *J* = 17.1, 8.6 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 184.02, 141.11, 140.21, 138.05, 133.87, 132.89, 129.42, 128.88, 128.61, 126.83, 125.41, 125.31, 124.54, 115.56, 76.36, 36.06.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₁₈H₁₅N₃O₃S: 354.0907, found 354.0905.

2-(4-methyl-1*H*-pyrazol-1-yl)-1-(phenylsulfonyl)indoline (55):

¹H NMR (500 MHz, CDCl₃) δ 7.58 (dd, *J* = 8.5, 1.3 Hz, 2H), 7.55 – 7.47 (m, 2H), 7.44 – 7.32 (m, 3H), 7.25 – 7.20 (m, 2H), 7.18 (d, *J* = 7.5 Hz, 1H), 7.11 – 7.02 (m, 1H), 6.47 (dd, *J* = 8.8, 2.2 Hz, 1H), 3.73 – 3.21 (m, 2H), 1.99 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 141.18, 140.59, 138.80, 133.36, 129.51, 129.14, 128.25, 127.67, 126.92, 125.15, 124.73, 116.98, 115.06, 75.67, 35.96, 8.92.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₁₈H₁₇N₃O₂S: 340.1114, found 340.1114.

2-(4-iodo-1*H*-pyrazol-1-yl)-1-(phenylsulfonyl)indoline (56):

¹H NMR (500 MHz, CDCl₃) δ 7.51 – 7.35 (m, 5H), 7.30 – 7.20 (m, 3H), 7.18 – 7.08 (m, 1H), 7.03 (dd, *J* = 7.6, 1.4 Hz, 1H), 6.94 (td, *J* = 7.5, 1.0 Hz, 1H), 6.35 (dd, *J* = 8.3, 2.5 Hz, 1H), 3.37 – 3.12 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 145.33, 140.35, 138.33, 133.61, 133.28, 129.23, 128.99, 128.40, 126.73, 125.18, 124.95, 115.09, 75.95, 57.57, 35.89.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₁₇H₁₄IN₃O₂S: 451.9924, found 451.9922.

2-(4-bromo-1*H*-pyrazol-1-yl)-1-(phenylsulfonyl)indoline (57):

¹H NMR (500 MHz, CDCl₃) δ 7.58 – 7.49 (m, 3H), 7.48 – 7.38 (m, 2H), 7.32 – 7.23 (m, 2H), 7.21 – 7.11 (m, 1H), 7.06 (dd, J = 7.2, 1.4 Hz, 1H), 6.97 (td, J = 7.5, 1.0 Hz, 1H), 6.35 (dd, J = 8.6, 2.1 Hz, 1H), 3.36 (dd, J = 17.1, 2.2 Hz, 1H), 3.28 (dd, J = 17.1, 8.6 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 140.91, 140.32, 138.31, 133.62, 129.24, 129.04, 129.02, 128.40, 126.76, 125.17, 125.00, 115.19, 94.25, 76.17, 35.79.

HRMS (ESI) m/z $[M + H]^+$ calculated for C₁₇H₁₄BrN₃O₂S: 404.0063, found 404.0062.

2-(4-chloro-1*H*-pyrazol-1-yl)-1-(phenylsulfonyl)indoline (58):

¹H NMR (500 MHz, CDCl₃) δ 7.61 – 7.38 (m, 5H), 7.38 – 7.23 (m, 3H), 7.22 – 7.14 (m, 1H), 7.09 (d, *J* = 7.5 Hz, 1H), 7.00 (t, *J* = 7.5 Hz, 1H), 6.35 (dd, *J* = 8.6, 2.1 Hz, 1H), 3.39 (dd, *J* = 17.1, 2.0 Hz, 1H), 3.29 (dd, *J* = 17.0, 8.6 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 140.34, 138.88, 138.36, 133.64, 129.27, 129.08, 128.44, 126.87, 126.80, 125.18, 125.04, 115.27, 111.06, 76.27, 35.76.

HRMS (ESI) m/z $[M + H]^+$ calculated for C₁₇H₁₄ClN₃O₂S: 360.0568, found 360.0566.

2-(4-fluoro-1*H*-pyrazol-1-yl)-1-(phenylsulfonyl)indoline (59):

¹H NMR (500 MHz, CDCl₃) δ 7.51 (dd, J = 8.1, 1.5 Hz, 2H), 7.46 – 7.34 (m, 3H), 7.26 (t, J = 7.8 Hz, 2H), 7.20 – 7.09 (m, 2H), 7.04 (d, J = 7.5 Hz, 1H), 6.95 (t, J = 7.5 Hz, 1H), 6.27 (dd, J = 8.9, 2.0 Hz, 1H), 3.36 (dd, J = 17.1, 2.1 Hz, 1H), 3.23 (dd, J = 17.0, 8.8 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 150.90, 148.93, 140.34, 138.43, 133.59, 129.25, 128.35, 127.69 (d, *J* = 14.1 Hz), 126.82, 125.12, 125.01, 115.36, 114.88 (d, *J* = 28.0 Hz), 76.59, 35.48.

HRMS (ESI) m/z $[M + H]^+$ calculated for C₁₇H₁₄FN₃O₂S: 344.0864, found 344.0863.

1-(phenylsulfonyl)-2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-pyrazol-1-yl)indoline (60):

¹H NMR (500 MHz, CDCl₃) δ 7.81 (s, 1H), 7.62 (s, 1H), 7.52 – 7.48 (m, 2H), 7.46 (d, J = 8.1 Hz, 1H), 7.43 – 7.37 (m, 1H), 7.26 (t, J = 7.9 Hz, 2H), 7.16 (dd, J = 8.1, 6.8 Hz, 1H), 7.06 (dd, J = 7.4, 1.4 Hz, 1H), 6.98 (td, J = 7.5, 1.0 Hz, 1H), 6.45 (t, J = 5.5 Hz, 1H), 3.32 (d, J = 5.5 Hz, 2H), 1.20 (s, 12H).

¹³C NMR (126 MHz, CDCl₃) δ 146.47, 140.57, 138.52, 135.59, 133.44, 129.19, 129.15, 128.33, 126.87, 125.22, 124.89, 115.24, 83.49, 75.69, 36.40, 24.98, 24.94, 24.92, 24.82.

HRMS (ESI) m/z $[M + H]^+$ calculated for C₂₃H₂₆BN₃O₄S: 452.1810, found 452.1809.

1-(1-(phenylsulfonyl)indolin-2-yl)-1*H*-pyrazole-4-carbonitrile (61):

¹H NMR (500 MHz, CDCl₃) δ 7.81 (s, 1H), 7.62 (s, 1H), 7.40 (s, 1H), 7.32 (d, *J* = 7.6 Hz, 2H), 7.29 – 7.19 (m, 1H), 7.09 (t, *J* = 7.8 Hz, 2H), 6.96 (t, *J* = 7.8 Hz, 1H), 6.84 (d, *J* = 7.5 Hz, 1H), 6.78 (t, *J* = 7.5 Hz, 1H), 6.17 (dd, *J* = 8.6, 2.2 Hz, 1H), 3.22 – 2.98 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 143.08, 139.95, 138.18, 137.71, 134.25, 134.03, 129.48, 128.68, 126.76, 125.52, 125.29, 115.52, 113.07, 92.99, 76.42, 35.91.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₁₈H₁₄N₄O₂S: 351.0910, found 351.0909.

1-(phenylsulfonyl)-2-(4-(trifluoromethyl)-1*H*-pyrazol-1-yl)indoline (62):

¹H NMR (500 MHz, CDCl₃) δ 7.81 (s, 1H), 7.58 – 7.35 (m, 5H), 7.27 (d, J = 8.2 Hz, 2H), 7.15 (q, J = 7.5, 6.4 Hz, 1H), 7.06 (d, J = 7.5 Hz, 1H), 7.02 – 6.87 (m, 1H), 6.57 – 6.06 (m, 1H), 3.52 – 3.14 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 140.33, 138.29, 137.98 (d, J = 2.7 Hz), 133.79, 129.37, 128.89, 128.59, 128.40 (d, J = 3.7 Hz), 126.76, 125.25 (d, J = 4.8 Hz), 122.41 (q, J = 266.2 Hz), 115.35, 114.30 (q, J = 38.1 Hz), 76.21, 36.06.
HRMS (ESI) m/z $[M + H]^+$ calculated for C₁₈H₁₄F₃N₃O₂S: 394.0832, found 394.0831.

2-(3-(*tert*-butyl)-1*H*-pyrazol-1-yl)-1-(phenylsulfonyl)indoline (63):

¹H NMR (500 MHz, CDCl₃) δ 7.57 (d, J = 7.8 Hz, 2H), 7.50 (dd, J = 9.8, 7.5 Hz, 2H), 7.42 (t, J = 2.0 Hz, 1H), 7.38 – 7.31 (m, 2H), 7.23 (t, J = 7.8 Hz, 1H), 7.15 (d, J = 7.5 Hz, 1H), 7.05 (t, J = 7.4 Hz, 1H), 6.54 (dt, J = 8.6, 2.1 Hz, 1H), 6.01 (t, J = 2.0 Hz, 1H), 3.46 (d, J = 16.8 Hz, 1H), 3.38 (dd, J = 17.0, 8.7 Hz, 1H), 1.24 (d, J = 1.8 Hz, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 162.76, 140.70, 138.87, 133.30, 129.69, 129.13, 128.61, 128.03, 126.90, 125.18, 124.52, 115.00, 102.69, 75.91, 36.45, 32.27, 30.62.

HRMS (ESI) m/z $[M + H]^+$ calculated for C₂₁H₂₃N₃O₂S: 382.1583, found 392.1582.

2-(4-bromo-3-methyl-1*H*-pyrazol-1-yl)-1-(phenylsulfonyl)indoline (64):

¹H NMR (500 MHz, CDCl₃) δ 7.63 (dtd, J = 54.0, 11.1, 9.9, 5.3 Hz, 5H), 7.43 (dt, J = 8.3, 5.0 Hz, 2H), 7.32 (q, J = 9.9 Hz, 1H), 7.29 – 7.19 (m, 1H), 7.14 (td, J = 7.5, 3.0 Hz, 1H), 6.52 (dd, J = 66.8, 8.9 Hz, 1H), 3.98 – 3.10 (m, 2H), 2.32 (dd, J = 148.6, 3.3 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 148.38, 140.71 (d, J = 45.1 Hz), 139.58 (d, J = 210.1 Hz), 138.08 (d, J = 72.2 Hz), 133.44 (d, J = 21.1 Hz), 129.13 (d, J = 7.3 Hz), 128.98 (d, J = 16.3 Hz), 128.26 (d, J = 20.5 Hz), 126.69 (d, J = 25.7 Hz), 124.79 (d, J = 14.5 Hz), 124.78 (d, J = 119.9 Hz), 114.60 (d, J = 146.3 Hz), 94.78 (d, J = 63.7 Hz), 74.63 (d, J = 385.2 Hz), 36.16 (d, J = 52.5 Hz), 10.94 (d, J = 276.0 Hz).

HRMS (ESI) $m/z [M + H]^+$ calculated for C₁₈H₁₆BrN₃O₂S: 418.0219, found 418.0217.

2-(3,5-dimethyl-1*H*-pyrazol-1-yl)-1-(phenylsulfonyl)indoline (65):

¹H NMR (500 MHz, CDCl₃) δ 7.61 – 7.50 (m, 2H), 7.46 (dd, *J* = 7.8, 6.4 Hz, 2H), 7.33 (t, *J* = 7.9 Hz, 2H), 7.25 – 7.18 (m, 1H), 7.16 (dd, *J* = 7.5, 1.4 Hz, 1H), 7.03 (td, *J* = 7.5, 1.0 Hz, 1H), 6.48 (dd, *J* = 9.8, 3.1 Hz, 1H), 5.70 (s, 1H), 3.52 (dd, *J* = 16.8, 9.8 Hz, 1H), 3.34 (dd, *J* = 16.8, 3.1 Hz, 1H), 2.36 (s, 3H), 1.99 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 149.15, 141.13, 140.12, 139.09, 132.99, 129.05, 128.81, 127.87, 126.83, 124.81, 123.73, 113.76, 106.06, 72.20, 36.45, 13.68, 11.10.

HRMS (ESI) m/z $[M + H]^+$ calculated for C₁₉H₁₉N₃O₂S: 354.1271, found 354.1269.

2-(4-bromo-3,5-dimethyl-1*H*-pyrazol-1-yl)-1-(phenylsulfonyl)indoline (66):

¹H NMR (500 MHz, CDCl₃) δ 7.43 (dt, J = 20.8, 7.9 Hz, 4H), 7.26 (t, J = 7.8 Hz, 2H), 7.17 (t, J = 7.8 Hz, 1H), 7.09 (d, J = 7.4 Hz, 1H), 6.97 (t, J = 7.5 Hz, 1H), 6.39 (dd, J = 9.7, 2.8 Hz, 1H), 3.46 (dd, J = 16.9, 9.8 Hz, 1H), 3.22 (dd, J = 16.9, 2.9 Hz, 1H), 2.25 (s, 3H), 1.85 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 147.57, 141.16, 138.83, 138.03, 133.15, 128.79, 128.76, 128.07, 126.61, 124.82, 123.90, 113.72, 95.66, 73.07, 36.29, 12.40, 10.43.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₁₉H₁₈BrN₃O₂S: 432.0376, found 432.0375.

2-(1*H*-imidazol-1-yl)-1-(phenylsulfonyl)indoline (67):

¹H NMR (500 MHz, CDCl₃) δ 7.53 (s, 1H), 7.41 (d, *J* = 8.0 Hz, 3H), 7.36 (d, *J* = 8.1 Hz, 1H), 7.26 (t, *J* = 7.7 Hz, 2H), 7.16 (dd, *J* = 9.3, 6.4 Hz, 1H), 7.10 (d, *J* = 7.5 Hz, 1H), 6.98 (t, *J* = 7.5 Hz, 1H), 6.80 (s, 1H), 6.59 (s, 1H), 6.37 (d, *J* = 8.9 Hz, 1H), 3.47 (dd, *J* = 17.2, 9.0 Hz, 1H), 3.02 (d, *J* = 17.1 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 140.11, 138.52, 136.10, 133.57, 130.44, 129.33, 128.74, 127.97, 126.69, 125.26, 124.68, 116.01, 114.58, 71.69, 37.18.

HRMS (ESI) $m/z [M + H]^+$ calculated for C1₇H₁₅N₃O₂S: 181.0972, found 181.0970.

1-(phenylsulfonyl)-2-(1H-1,2,3-triazol-1-yl)indoline (68):

¹H NMR (500 MHz, CDCl₃) δ 7.76 (d, J = 1.1 Hz, 1H), 7.66 (dd, J = 8.2, 1.5 Hz, 2H), 7.62 (d, J = 8.0 Hz, 2H), 7.59 – 7.50 (m, 1H), 7.42 (t, J = 7.8 Hz, 2H), 7.29 (t, J = 7.8 Hz, 1H), 7.19 (d, J = 7.5 Hz, 1H), 7.12 (t, J = 7.5 Hz, 1H), 6.77 (dd, J = 8.7, 1.7 Hz, 1H), 3.66 – 3.59 (m, 1H), 3.43 (dd, J = 17.2, 8.7 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 140.07, 137.90, 134.27, 133.95, 129.52, 129.00, 128.72, 126.91, 125.60, 125.45, 122.57, 116.04, 74.97, 36.23.

HRMS (ESI) m/z $[M + H]^+$ calculated for C1₇H₁₅N₄O₂S: 327.0910, found 327.0908.

$$\overbrace{\hspace{1.5cm}}^{\hspace{1.5cm} \text{SO}_2 \hspace{-0.5cm} \text{Ph}}_{\hspace{1.5cm} N \hspace{-0.5cm} N \hspace{-0.$$

1-(phenylsulfonyl)-2-(1*H*-1,2,4-triazol-1-yl)indoline (69):

¹H NMR (500 MHz, CDCl₃) δ 8.25 (s, 1H), 7.70 (s, 1H), 7.57 – 7.46 (m, 2H), 7.45 – 7.37 (m, 2H), 7.26 (t, *J* = 7.9 Hz, 2H), 7.13 (t, *J* = 7.8 Hz, 1H), 7.04 (d, *J* = 7.5 Hz, 1H), 6.96 (t, *J* = 7.4 Hz, 1H), 6.45 (dd, *J* = 8.1, 2.7 Hz, 1H), 3.48 – 3.13 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 152.53, 143.13, 140.06, 138.07, 133.75, 129.35, 128.70, 128.48, 126.67, 125.18, 125.14, 115.25, 73.91, 35.74.

HRMS (ESI) $m/z [M + H]^+$ calculated for C1₇H₁₅N₄O₂S: 327.0910, found 327.0910.

2-(5-methyl-1*H*-tetrazol-1-yl)-1-(phenylsulfonyl)indoline (70):

¹**H NMR** (500 MHz, CDCl₃) δ 7.66 (dd, J = 21.4, 7.9 Hz, 3H), 7.54 (t, J = 7.7 Hz, 1H), 7.39 (t, J = 7.7 Hz, 2H), 7.31 (t, J = 7.9 Hz, 1H), 7.21 (d, J = 7.5 Hz, 1H), 7.12 (t, J = 7.5 Hz, 1H), 7.04 (d, J = 9.1 Hz, 1H), 3.60 (dd, J = 17.3, 9.2 Hz, 1H), 3.34 (d, J = 17.1 Hz, 1H), 2.36 (d, J = 2.6 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 163.66, 140.60, 138.20, 133.70, 129.28, 128.64, 128.06, 126.89, 125.12, 124.95, 115.00, 76.29, 36.11, 10.97.

¹**H NMR** (500 MHz, CDCl₃) δ 7.86 – 7.51 (m, 4H), 7.42 (t, *J* = 7.8 Hz, 2H), 7.30 (t, *J* = 8.0 Hz, 1H), 7.20 (d, *J* = 7.6 Hz, 1H), 7.15 (d, *J* = 7.7 Hz, 1H), 6.69 (d, *J* = 8.9 Hz, 1H), 3.54 (dd, *J* = 17.3, 9.2 Hz, 1H), 3.34 (d, *J* = 17.2 Hz, 1H), 2.66 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 151.59, 139.90, 137.46, 134.12, 129.53, 128.76, 128.36, 126.67, 125.51, 125.02, 115.46, 72.25, 36.49, 9.36.

HRMS (ESI) m/z $[M + H]^+$ calculated for C₁₆H₁₅N₅O₂S: 342.1019, found 342.1018.

1-(1-(phenylsulfonyl)indolin-2-yl)-1*H*-benzo[d]imidazole (71):

¹H NMR (500 MHz, CDCl₃) δ 7.86 (s, 1H), 7.58 (d, *J* = 8.1 Hz, 1H), 7.49 (d, *J* = 8.1 Hz, 1H), 7.26 (t, *J* = 7.0 Hz, 3H), 7.21 – 7.11 (m, 2H), 7.02 (dt, *J* = 23.5, 7.6 Hz, 4H), 6.86 (t, *J* = 7.7 Hz, 1H), 6.66 (dd, *J* = 10.1, 2.7 Hz, 1H), 6.55 (d, *J* = 8.2 Hz, 1H), 3.62 (dd, *J* = 17.4, 9.9 Hz, 1H), 3.19 (dd, *J* = 17.4, 2.6 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 144.30, 142.36, 140.75, 138.15, 133.34, 131.27, 128.99, 128.94, 127.82, 126.20, 125.17, 124.65, 123.49, 122.74, 120.67, 114.05, 110.86, 71.61, 35.78.

HRMS (ESI) m/z $[M + H]^+$ calculated for C₂₁H₁₇N₃O₂S: 376.1114, found 376.1112.

1-(1-(phenylsulfonyl)indolin-2-yl)-1*H*-indazole (72):

¹H NMR (500 MHz, CDCl₃) δ 8.16 (s, 1H), 7.66 (d, *J* = 8.1 Hz, 1H), 7.58 (dt, *J* = 16.7, 8.9 Hz, 4H), 7.43 (t, *J* = 7.4 Hz, 1H), 7.26 (qd, *J* = 13.2, 11.4, 8.1 Hz, 4H), 7.16 (d, *J* = 7.4 Hz, 1H), 7.10 (t, *J* = 7.5 Hz, 1H), 7.03 (t, *J* = 7.6 Hz, 1H), 6.79 (dd, *J* = 8.7, 2.4 Hz, 1H), 3.58 (d, *J* = 17.0 Hz, 1H), 3.49 (dd, *J* = 17.2, 8.6 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 149.25, 140.69, 138.08, 133.60, 129.27, 129.12, 128.46, 126.84, 126.62, 125.43, 125.16, 122.16, 122.06, 121.67, 120.67, 117.86, 115.49, 77.35, 37.06.

HRMS (ESI) m/z $[M + H]^+$ calculated for C₂₁H₁₇N₃O₂S: 376.1114, found 376.1114.

1-(1-(phenylsulfonyl)indolin-2-yl)-1*H*-benzo[*d*][1,2,3]triazole (73):

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.01 (dd, *J* = 6.3, 3.2 Hz, 1H), 7.73 (d, *J* = 8.1 Hz, 1H), 7.58 (d, *J* = 7.8 Hz, 2H), 7.42 (q, *J* = 8.0 Hz, 2H), 7.37 – 7.19 (m, 8H), 7.17 (dd, *J* = 6.5, 3.2 Hz, 1H), 3.73 (dd, *J* = 17.3, 9.6 Hz, 1H), 3.51 (dd, *J* = 17.4, 2.7 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 146.48, 140.71, 137.82, 133.48, 131.20, 129.04, 128.81, 128.75, 127.92, 126.53, 125.11, 125.07, 124.26, 120.04, 115.12, 110.51, 74.16, 35.97.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₂₀H₁₆N₄O₂S: 377.1067, found 377.1065.

N-benzyl-1-(phenylsulfonyl)indolin-2-amine (74):

¹H NMR (500 MHz, Chloroform-*d*) δ 7.68 – 7.47 (m, 3H), 7.42 (t, *J* = 7.6 Hz, 1H), 7.34 – 7.19 (m, 6H), 7.16 (tq, *J* = 6.3, 2.1, 1.6 Hz, 2H), 7.02 – 6.80 (m, 2H), 5.24 (dd, *J* = 8.6, 2.5 Hz, 1H), 3.86 (q, *J* = 13.3 Hz, 2H), 2.85 (dd, *J* = 17.0, 8.7 Hz, 1H), 2.67 (dd, *J* = 16.9, 2.5 Hz, 1H), 2.30 (s, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 140.56, 139.92, 138.67, 133.09, 131.31, 129.11, 128.48, 128.39, 128.03, 127.10, 126.91, 125.09, 124.80, 117.33, 78.49, 47.53, 35.21.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₂₁H₂₀N₂O₂S: 365.1318, found 365.1317.

1-(phenylsulfonyl)-N-(pyridin-2-ylmethyl)indolin-2-amine (75):

¹H NMR (500 MHz, CDCl₃) δ 8.42 (dd, J = 5.0, 1.8 Hz, 1H), 7.64 – 7.47 (m, 4H), 7.39 (t, J = 7.5 Hz, 1H), 7.26 (t, J = 7.8 Hz, 2H), 7.18 (d, J = 7.8 Hz, 1H), 7.15 – 7.08 (m, 1H), 7.04 (dd, J = 7.6, 4.9 Hz, 1H), 6.95 (dt, J = 14.6, 7.3 Hz, 2H), 5.28 (dd, J = 8.5, 2.2 Hz, 1H), 4.33 – 3.69 (m, 2H), 2.82 (dd, J = 16.9, 8.4 Hz, 2H), 2.68 (dd, J = 17.0, 2.3 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 158.97, 149.23, 140.33, 138.61, 136.37, 132.96, 131.45, 128.98, 127.88, 126.78, 125.00, 124.80, 122.40, 121.89, 117.55, 78.33, 48.98, 35.33.

HRMS (ESI) m/z $[M + H]^+$ calculated for C₂₀H₁₉N₃O₂S: 366.1271, found 366.1270.

1-(phenylsulfonyl)-N-(thiophen-2-ylmethyl)indolin-2-amine (76):

¹H NMR (500 MHz, CDCl₃) δ 7.98 – 7.80 (m, 3H), 7.71 (t, *J* = 7.4 Hz, 1H), 7.58 (t, *J* = 7.7 Hz, 2H), 7.49 – 7.43 (m, 1H), 7.40 (dd, *J* = 5.1, 1.3 Hz, 1H), 7.25 (d, *J* = 6.9 Hz, 2H), 7.21 – 7.01 (m, 2H), 5.50 (dd, *J* = 8.6, 2.3 Hz, 1H), 4.41 (d, *J* = 14.1 Hz, 1H), 4.33 (d, *J* = 14.1 Hz, 1H), 3.11 (dd, *J* = 17.0, 8.6 Hz, 1H), 2.94 (dd, *J* = 17.0, 2.3 Hz, 1H), 2.68 (s, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 143.59, 140.40, 138.56, 133.14, 131.39, 129.13, 128.08, 126.91, 126.78, 125.25, 125.12, 124.97, 124.58, 117.65, 78.00, 42.88, 35.36.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₁₉H₁₈N₂O₂S₂: 371.0882, found 371.0881.

1-(phenylsulfonyl)-*N*-(prop-2-yn-1-yl)indolin-2-amine (77):

¹H NMR (500 MHz, CDCl₃) δ 7.85 (dd, J = 7.9, 2.2 Hz, 3H), 7.71 (t, J = 7.5 Hz, 1H), 7.58 (t, J = 7.7 Hz, 2H), 7.51 – 7.41 (m, 1H), 7.25 (d, J = 7.0 Hz, 2H), 5.42 (d, J = 8.3 Hz, 1H), 4.10 – 3.65 (m, 2H), 3.07 (dd, J = 17.0, 8.4 Hz, 1H), 2.90 (dd, J = 17.0, 2.2 Hz, 1H), 2.46 (s, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 140.27, 138.45, 133.23, 131.25, 129.17, 128.17, 126.93, 125.17, 125.13, 117.81, 86.19, 81.74, 71.35, 35.37, 33.46.

HRMS (ESI) m/z $[M + H]^+$ calculated for C₁₇H₁₆N₂O₂S: 313.1005, found 313.1003.

1-(phenylsulfonyl)indolin-2-yl acetate (78):

¹H NMR (500 MHz, CDCl₃) δ 7.91 (dd, J = 8.4, 1.3 Hz, 2H), 7.70 – 7.56 (m, 2H), 7.50 (t, J = 7.9 Hz, 2H), 7.35 – 7.23 (m, 1H), 7.18 (d, J = 7.4 Hz, 1H), 7.12 – 7.01 (m, 1H), 6.86 (dd, J = 7.0, 1.2 Hz, 1H), 3.34 (dd, J = 17.5, 7.0 Hz, 1H), 2.94 (d, J = 17.5 Hz, 1H), 2.02 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 169.76, 140.62, 139.26, 133.55, 129.30, 128.53, 128.24, 127.17, 125.31, 124.29, 114.49, 85.81, 36.98, 21.11.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₁₆H₁₅NO₄S: 318.0795, found 318.0794.

5-methyl-1-(phenylsulfonyl)indolin-2-yl acetate (79):

¹H NMR (500 MHz, CDCl₃) δ 7.66 (d, *J* = 7.9 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 1H), 7.26 (t, *J* = 7.5 Hz, 3H), 6.85 (d, *J* = 8.2 Hz, 1H), 6.76 (s, 1H), 6.59 (d, *J* = 6.8 Hz, 1H), 3.04 (dd, *J* = 17.5, 6.9 Hz, 1H), 2.65 (d, *J* = 17.5 Hz, 1H), 2.09 (s, 3H), 1.80 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 169.81, 139.17, 138.26, 134.18, 133.46, 129.27, 128.73, 127.15, 126.82, 125.95, 114.45, 86.05, 36.96, 21.13, 21.02.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₁₇H₁₇NO₄S: 332.0951, found 332.0949.

1-(phenylsulfonyl)indolin-2-yl 2-cyclopropylacetate (80):

¹H NMR (500 MHz, CDCl₃) δ 7.72 – 7.57 (m, 2H), 7.36 (td, *J* = 7.8, 4.9 Hz, 2H), 7.26 (t, *J* = 7.9 Hz, 2H), 7.04 (t, *J* = 7.7 Hz, 1H), 6.95 (d, *J* = 7.4 Hz, 1H), 6.84 (t, *J* = 7.5 Hz, 1H), 6.65 (dd, *J* = 7.0, 1.3 Hz, 1H), 3.13 (dd, *J* = 17.6, 7.1 Hz, 1H), 2.71 (d, *J* = 17.5 Hz, 1H), 1.95 (qd, *J* = 16.0, 7.1 Hz, 2H), 0.80 (tdd, *J* = 10.3, 9.1, 5.1 Hz, 1H), 0.33 (dd, *J* = 8.1, 1.6 Hz, 2H), -0.07 (dd, *J* = 8.8, 4.9 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 172.06, 140.65, 139.26, 133.53, 129.30, 128.57, 128.21, 127.17, 125.30, 124.26, 114.50, 85.69, 39.31, 37.09, 6.64, 4.47, 4.43.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₁₉H₁₉NO₄S: 358.1108, found 358.1107.

1-(phenylsulfonyl)indolin-2-yl hex-5-ynoate (81):

¹H NMR (500 MHz, CDCl₃) δ 8.24 – 7.97 (m, 2H), 7.87 – 7.74 (m, 2H), 7.69 (t, *J* = 7.7 Hz, 2H), 7.55 – 7.40 (m, 1H), 7.36 (d, *J* = 7.4 Hz, 1H), 7.26 (t, *J* = 7.5 Hz, 1H), 7.06 (d, *J* = 7.0 Hz, 1H), 3.53 (dd, *J* = 17.6, 7.1 Hz, 1H), 3.12 (d, *J* = 17.5 Hz, 1H), 2.60 (td, *J* = 7.4, 4.2 Hz, 2H), 2.46 (td, *J* = 6.9, 2.6 Hz, 2H), 2.18 (t, *J* = 2.7 Hz, 1H), 2.03 (p, *J* = 7.2 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 171.89, 140.58, 139.18, 133.58, 129.33, 128.46, 128.24, 127.15, 125.31, 124.28, 114.44, 85.69, 83.21, 69.43, 36.99, 32.92, 23.32, 17.86.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₂₀H₁₉NO₄S: 370.1108, found 370.1106.

1-(phenylsulfonyl)indolin-2-yl pent-4-enoate (82):

¹H NMR (500 MHz, CDCl₃) δ 7.67 (d, J = 7.8 Hz, 2H), 7.36 (d, J = 7.7 Hz, 2H), 7.26 (t, J = 7.7 Hz, 2H), 7.12 – 6.99 (m, 1H), 6.94 (d, J = 7.4 Hz, 1H), 6.84 (t, J = 7.5 Hz, 1H), 6.63 (d, J = 6.9 Hz, 1H), 5.81 – 5.46 (m, 1H), 4.96 – 4.59 (m, 2H), 3.11 (dd, J = 17.5, 7.0 Hz, 1H), 2.68 (d, J = 17.5 Hz, 1H), 2.13 (t, J = 3.6 Hz, 4H).

¹³C NMR (126 MHz, CDCl₃) δ 171.86, 140.61, 139.21, 136.39, 133.55, 129.31, 128.52, 128.23, 127.15, 125.30, 124.28, 115.89, 114.48, 85.76, 37.04, 33.52, 28.62.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₁₉H₁₉NO₄S: 357.1035, found 357.1033.

1-(phenylsulfonyl)indolin-2-yl 4-phenylbutanoate (83):

¹H NMR (500 MHz, CDCl₃) δ 8.05 – 7.86 (m, 2H), 7.77 – 7.58 (m, 2H), 7.52 (t, *J* = 7.9 Hz, 2H), 7.36 (dt, *J* = 14.5, 7.6 Hz, 3H), 7.32 – 7.27 (m, 1H), 7.25 (dd, *J* = 7.8, 2.3 Hz, 3H), 7.15 (t, *J* = 7.5 Hz, 1H), 6.95 (dd, *J* = 7.2, 1.2 Hz, 1H), 3.42 (dd, *J* = 17.5, 7.0 Hz, 1H), 2.98 (d, *J* = 17.5 Hz, 1H), 2.74 (t, *J* = 7.5 Hz, 2H), 2.34 (hept, *J* = 7.9, 7.4 Hz, 2H), 2.02 (p, *J* = 7.5 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 172.26, 141.31, 140.62, 139.24, 133.51, 129.28, 128.65, 128.54, 128.50, 128.23, 127.13, 126.14, 125.31, 124.26, 114.46, 85.67, 37.01, 35.09, 33.58, 26.27.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₂₄H₂₃NO₄S: 422.1421, found 422.1420.

1-(phenylsulfonyl)indolin-2-yl 6-azidohexanoate (84):

¹H NMR (500 MHz, CDCl₃) δ 7.66 (dd, J = 7.7, 1.6 Hz, 2H), 7.45 – 7.33 (m, 2H), 7.26 (t, J = 7.8 Hz, 2H), 7.09 – 6.98 (m, 1H), 6.94 (d, J = 7.4 Hz, 1H), 6.84 (t, J = 7.5 Hz, 1H), 6.62 (dd, J = 7.2, 1.2 Hz, 1H), 3.11 (dd, J = 17.6, 7.1 Hz, 1H), 3.05 (t, J = 6.9 Hz, 2H), 2.68 (d, J = 17.5 Hz, 1H), 2.24 – 1.92 (m, 2H), 1.40 (dp, J = 20.0, 7.3 Hz, 4H), 1.29 – 1.13 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 172.24, 140.59, 139.18, 133.56, 129.32, 128.49, 128.25, 127.13, 125.31, 124.31, 114.51, 85.64, 51.29, 37.01, 34.10, 28.60, 26.20, 24.22.

HRMS (ESI) m/z $[M + H]^+$ calculated for C₂₀H₂₂N₄O₄S: 415.1435, found 415.1433.

2-methoxy-1-(phenylsulfonyl)indoline (85):

¹H NMR (500 MHz, CDCl₃) δ 7.79 – 7.64 (m, 2H), 7.62 (d, *J* = 8.0 Hz, 1H), 7.55 – 7.43 (m, 1H), 7.37 (t, *J* = 7.9 Hz, 2H), 7.25 – 7.17 (m, 1H), 7.12 – 6.96 (m, 2H), 5.50 (dd, *J* = 4.9, 2.2 Hz, 1H), 3.51 (s, 3H), 2.90 – 2.64 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 140.28, 138.91, 133.21, 131.62, 129.09, 127.87, 126.95, 125.20, 125.13, 117.69, 93.50, 55.22, 36.48.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₁₅H₁₅NO₃S: 290.0845, found 290.0843.

2-ethoxy-1-(phenylsulfonyl)indoline (86):

¹H NMR (500 MHz, CDCl₃) δ 7.56 (d, *J* = 7.9 Hz, 2H), 7.50 (d, *J* = 8.0 Hz, 1H), 7.39 (t, *J* = 7.5 Hz, 1H), 7.26 (t, *J* = 7.7 Hz, 2H), 7.12 (t, *J* = 7.7 Hz, 1H), 6.95 (dt, *J* = 14.8, 7.4 Hz, 2H), 5.50 (dd, *J* = 4.9, 2.5 Hz, 1H), 3.87 (dq, *J* = 10.0, 7.1 Hz, 1H), 3.58 (dq, *J* = 9.8, 6.9 Hz, 1H), 2.66 (d, *J* = 4.1 Hz, 2H), 1.09 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 140.33, 138.97, 133.15, 131.76, 129.05, 127.78, 126.93, 125.16, 125.09, 117.62, 92.19, 63.31, 36.71, 14.93.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₁₆H₁₇NO₃S: 304.1002, found 304.1001.

2-methoxy-5-methyl-1-(phenylsulfonyl)indoline (87):

¹H NMR (500 MHz, CDCl₃) δ 7.64 (dd, J = 8.1, 1.5 Hz, 2H), 7.50 (t, J = 7.3 Hz, 2H), 7.37 (t, J = 7.7 Hz, 2H), 7.03 (d, J = 8.2 Hz, 1H), 6.89 (s, 1H), 5.45 (dd, J = 5.4, 1.6 Hz, 1H), 3.51 (s, 3H), 3.04 – 2.53 (m, 2H), 2.27 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 138.90, 137.86, 135.10, 133.13, 131.84, 129.08, 128.50, 126.97, 125.78, 117.71, 93.71, 55.24, 36.53, 21.16.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₁₆H₁₇NO₃S: 304.1002, found 304.1002.

ethyl hydrogen (1-(phenylsulfonyl)indolin-2-yl)phosphonate (88):

¹H NMR (500 MHz, CDCl₃) δ 7.66 (d, J = 7.7 Hz, 2H), 7.60 (d, J = 8.1 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H), 7.36 (t, J = 7.8 Hz, 2H), 7.22 (t, J = 7.7 Hz, 1H), 7.06 (dt, J = 14.7, 7.4 Hz, 2H), 5.59 (dd, J = 4.8, 2.3 Hz, 1H), 4.25 – 3.83 (m, 1H), 3.68 (dq, J = 8.8, 7.0 Hz, 1H), 2.76 (d, J = 4.9 Hz, 2H), 1.19 (dd, J = 8.0, 6.5 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 140.32, 138.94, 133.16, 131.77, 129.06, 127.80, 126.93, 125.17, 125.12, 117.66, 92.20, 63.34, 36.72, 14.94.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₁₆H₁₈NO₅PS: 368.0716, found 368.0715.

ethyl hydrogen (5-methyl-1-(phenylsulfonyl)indolin-2-yl)phosphonate (89):

¹**H NMR** (500 MHz, CDCl₃) δ 7.77 – 7.59 (m, 2H), 7.56 – 7.43 (m, 2H), 7.36 (t, *J* = 7.9 Hz, 2H), 7.02 (dd, *J* = 8.1, 1.8 Hz, 1H), 6.88 (s, 1H), 5.55 (dd, *J* = 5.2, 1.8 Hz, 1H), 3.97 (dq, *J* = 9.8, 7.1 Hz, 1H), 3.67 (dq, *J* = 9.7, 7.0 Hz, 1H), 2.84 – 2.59 (m, 2H), 2.27 (s, 3H), 1.19 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 138.95, 137.93, 134.97, 133.07, 132.00, 129.03, 128.40, 126.95, 125.81, 117.64, 92.39, 63.28, 36.72, 21.16, 14.94.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₁₇H₂₀NO₅PS: 382.0873, found 382.0873.

ethyl hydrogen (4-methyl-1-(phenylsulfonyl)indolin-2-yl)phosphonate (90):

¹**H NMR** (500 MHz, CDCl₃) δ 7.67 – 7.48 (m, 2H), 7.44 – 7.36 (m, 1H), 7.32 (d, *J* = 8.0 Hz, 1H), 7.26 (t, *J* = 7.9 Hz, 2H), 7.02 (t, *J* = 7.8 Hz, 1H), 6.75 (d, *J* = 7.6 Hz, 1H), 5.53 (dd, *J* = 6.1, 1.2 Hz, 1H), 3.87 (dq, *J* = 9.7, 7.1 Hz, 1H), 3.58 (dq, *J* = 9.7, 7.0 Hz, 1H), 2.80 – 2.44 (m, 2H), 2.01 (s, 3H), 1.10 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 139.98, 139.02, 134.62, 133.10, 130.36, 129.01, 127.83, 126.98, 126.06, 114.79, 92.00, 63.33, 35.60, 18.80, 14.97.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₁₇H₂₀NO₅PS: 382.0873, found 382.0871.

ethyl hydrogen (6-chloro-1-(phenylsulfonyl)indolin-2-yl)phosphonate (91):

¹**H** NMR (500 MHz, CDCl₃) δ 7.86 – 7.65 (m, 2H), 7.60 (d, J = 1.8 Hz, 1H), 7.53 (t, J = 7.5 Hz, 1H), 7.41 (t, J = 7.7 Hz, 2H), 7.07 – 6.82 (m, 2H), 5.60 (dd, J = 4.8, 2.5 Hz, 1H), 3.94 (dq, J = 9.7, 7.1 Hz, 1H), 3.65 (dq, J = 9.7, 7.0 Hz, 1H), 2.96 – 2.60 (m, 2H), 1.18 (t, J = 7.0 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 141.61, 138.89, 133.50, 133.43, 130.21, 129.26, 126.96, 125.90, 125.12, 117.83, 92.69, 63.48, 36.33, 14.92.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₁₆H₁₇ClNO₅PS: 402.0326, found 402.0325.

tert-butyl (*tert*-butoxycarbonyl)(9-(1-(phenylsulfonyl)indolin-2-yl)-9*H*-purin-6-yl)carbamate (92):

¹H NMR (500 MHz, CDCl₃) δ 8.81 (s, 1H), 8.08 (s, 1H), 7.74 (d, J = 8.1 Hz, 1H), 7.71 – 7.65 (m, 2H), 7.55 (t, J = 7.5 Hz, 1H), 7.40 (t, J = 7.8 Hz, 2H), 7.34 (td, J = 7.7, 1.8 Hz, 1H), 7.23 – 7.06 (m, 2H), 6.83 (dd, J = 8.9, 2.5 Hz, 1H), 3.53 (dd, J = 17.3, 9.0 Hz, 1H), 3.28 (dd, J = 17.3, 2.5 Hz, 1H), 1.46 (s, 20H).

¹³C NMR (126 MHz, CDCl₃) δ 152.39, 152.33, 150.63, 150.60, 142.39, 140.46, 137.51, 134.07, 129.54, 128.99, 128.92, 128.33, 126.97, 125.57, 125.54, 115.76, 83.98, 70.80, 37.25, 27.93.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₂₉H₃₂N₆O₆S: 593.2177, found 593.2176.

tert-butyl (2-(-2-(1*H*-pyrazol-1-yl)-1-tosylindolin-3-yl)ethyl)carbamate (93):

¹H NMR (500 MHz, CDCl₃) δ 7.63 (dd, J = 19.8, 8.0 Hz, 3H), 7.53 (d, J = 1.7 Hz, 1H), 7.45 – 7.35 (m, 2H), 7.32 – 7.24 (m, 3H), 7.21 (t, J = 7.5 Hz, 1H), 6.86 (d, J = 7.9 Hz, 1H), 6.26 (d, J = 2.2 Hz, 1H), 4.90 (s, 0H), 3.73 (p, J = 4.4 Hz, 1H), 3.30 (dt, J = 14.5, 7.2 Hz, 1H), 3.19 (dt, J = 13.8, 6.5 Hz, 1H), 2.48 (s, 3H), 1.60 (s, 9H), 1.27 (ddt, J = 15.7, 11.8, 6.1 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 156.26, 144.50 (d, *J* = 78.9 Hz), 140.78 (d, *J* = 9.7 Hz), 139.86, 135.96, 132.61, 129.71, 129.16, 128.42, 126.95, 124.32, 123.69, 113.83, 106.10, 79.12 (d, *J* = 87.2 Hz), 60.49, 43.95, 38.89, 28.53, 27.56, 21.61.

HRMS (ESI) m/z $[M + H]^+$ calculated for C₂₉H₃₂N₆O₆S: 593.2177, found 593.2176.

4-((*S*)-2-((*tert*-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl)phenyl 1-(1-(phenylsulfonyl)indolin-2-yl)-1*H*-pyrazole-4-carboxylate (94): ¹H NMR (500 MHz, CDCl₃) δ 8.47 (s, 1H), 8.15 (s, 1H), 7.81 (dd, J = 22.5, 8.0 Hz, 3H), 7.72 (t, J = 7.4 Hz, 1H), 7.62 – 7.53 (m, 2H), 7.52 – 7.41 (m, 1H), 7.40 – 7.17 (m, 6H), 6.90 – 6.62 (m, 1H), 5.19 (d, J = 8.3 Hz, 1H), 4.75 (d, J = 7.2 Hz, 1H), 3.88 (d, J = 1.8 Hz, 3H), 3.67 (d, J = 17.0 Hz, 1H), 3.58 (dd, J = 17.2, 8.7 Hz, 1H), 3.26 (dq, J = 14.1, 8.0 Hz, 2H), 1.59 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 172.33, 160.91, 155.19, 149.50, 142.58, 140.27, 138.07, 133.82, 133.76, 132.88, 130.40, 129.40, 128.92, 128.61, 126.87, 125.37, 125.29, 121.86, 115.62, 114.68, 80.12, 54.46, 52.39, 37.80, 36.14, 28.40.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₃₃H₃₄N₄O₈S: 647.2170, found 647.2168.

((3a*R*,6*S*,7a*S*)-8,8-dimethyl-2,2-dioxidotetrahydro-3*H*-3a,6-methanobenzo[c]isothiazol-1(4*H*)-yl)(1-(1-(phenylsulfonyl)indolin-2-yl)-1*H*-pyrazol-4-yl)methanone (95):

¹H NMR (500 MHz, CDCl₃) δ 8.30 (d, J = 13.7 Hz, 1H), 7.85 (d, J = 23.3 Hz, 1H), 7.55 – 7.49 (m, 1H), 7.49 – 7.44 (m, 1H), 7.39 (dt, J = 21.7, 7.9 Hz, 2H), 7.27 (dt, J = 11.2, 7.8 Hz, 2H), 7.18 – 7.12 (m, 1H), 7.07 (t, J = 6.9 Hz, 1H), 6.96 (td, J = 7.5, 3.5 Hz, 1H), 6.44 (ddd, J = 13.8, 8.7, 2.4 Hz, 1H), 4.02 (ddd, J = 7.5, 4.6, 2.6 Hz, 1H), 3.63 – 3.13 (m, 4H), 2.10 – 1.73 (m, 5H), 1.38 – 1.31 (m, 1H), 1.28 (q, J = 3.8, 2.8 Hz, 1H), 1.15 (d, J = 21.1 Hz, 3H), 0.89 (d, J = 7.7 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 161.38 (d, J = 10.7 Hz), 142.85 (d, J = 26.1 Hz), 140.38 (d, J = 15.4 Hz), 138.42 (d, J = 4.6 Hz), 133.59 (d, J = 53.8 Hz), 133.51, 129.22 (d, J = 8.3 Hz), 128.73 (d, J = 45.0 Hz), 128.24 (d, J = 5.8 Hz), 126.79 (d, J = 10.6 Hz), 125.00 (d, J = 8.2 Hz), 124.66 (d, J = 19.4 Hz), 117.06 (d, J = 2.4 Hz), 114.61 (d, J = 28.3 Hz), 75.81 (d, J = 11.9 Hz), 65.95 (d, J = 15.3 Hz), 53.56 (d, J = 12.7 Hz), 48.14 (d, J = 3.6 Hz), 47.81, 45.01 (d, J = 4.6 Hz), 38.47 (d, J = 5.3 Hz), 35.93 (d, J = 44.7 Hz), 33.08 (d, J = 5.7 Hz), 26.53, 21.14 (d, J = 17.1 Hz), 19.92 (d, J = 2.3 Hz).

HRMS (ESI) $m/z [M + H]^+$ calculated for C₂₈H₃₀N₄O₅S₂: 567.1730, found 567.1728.

((3aS,5S,5aR,8aR,8bS)-2,2,7,7-tetramethyltetrahydro-5*H*-bis([1,3]dioxolo)[4,5-*b*:4',5'*d*]pyran-5-yl)methyl 1-(1-(phenylsulfonyl)indolin-2-yl)-1*H*-pyrazole-4-carboxylate (96): ¹H NMR (500 MHz, CDCl₃) δ 8.00 (t, J = 2.5 Hz, 1H), 7.71 (d, J = 5.6 Hz, 1H), 7.61 – 7.44 (m, 3H), 7.40 (t, J = 7.4 Hz, 1H), 7.31 – 7.22 (m, 2H), 7.20 – 7.11 (m, 1H), 7.04 (d, J = 7.6 Hz, 1H), 6.96 (t, J = 7.6 Hz, 1H), 6.35 (dt, J = 5.6, 2.5 Hz, 1H), 5.42 (d, J = 4.8 Hz, 1H), 4.51 (dd, J = 7.8, 2.4 Hz, 1H), 4.42 – 4.12 (m, 4H), 4.01 (dd, J = 5.1, 2.6 Hz, 1H), 3.30 (d, J = 5.7 Hz, 2H), 1.38 (d, J = 8.3 Hz, 3H), 1.34 (s, 3H), 1.22 (s, 3H), 1.20 (d, J = 4.7 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 162.49, 142.22 (d, J = 2.7 Hz), 139.31 (d, J = 270.3 Hz), 133.71, 132.43 (d, J = 20.1 Hz), 129.34, 128.68 (dd, J = 42.1, 2.7 Hz), 126.81 (d, J = 3.0 Hz), 125.20 (d, J = 3.8 Hz), 125.18 (d, J = 18.0 Hz), 115.39, 115.22 (d, J = 11.5 Hz), 109.36 (d, J = 103.6 Hz), 96.40, 76.13 (d, J = 7.2 Hz), 71.16, 70.71 (d, J = 21.5 Hz), 66.18 (d, J = 8.4 Hz), 63.43, 36.74, 36.16 (d, J = 6.3 Hz), 26.17 (d, J = 1.9 Hz), 26.08, 25.11, 24.58.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₃₀H₃₃N₃O₉S: 612.2010, found 612.2009.

4-(1-(1-(phenylsulfonyl)indolin-2-yl)-1*H*-pyrazol-4-yl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1*H*-pyrrolo[2,3-*b*]pyridine (97):

¹H NMR (500 MHz, CDCl₃) δ 8.22 (d, J = 4.9 Hz, 1H), 8.06 (s, 1H), 7.83 (s, 1H), 7.56 (d, J = 7.9 Hz, 2H), 7.49 (d, J = 8.1 Hz, 1H), 7.39 (t, J = 7.4 Hz, 1H), 7.31 (d, J = 3.7 Hz, 1H), 7.26 (t, J = 7.6 Hz, 2H), 7.22 – 7.12 (m, 3H), 7.03 (t, J = 7.3 Hz, 2H), 6.66 – 6.48 (m, 2H), 5.62 (s, 2H), 3.55 (d, J = 17.0 Hz, 1H), 3.50 – 3.34 (m, 3H), 0.84 (t, J = 8.2 Hz, 2H), -0.14 (d, J = 1.7 Hz, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 148.99, 143.60, 140.52, 139.63, 138.63, 137.23, 136.27, 133.57, 132.73, 129.26, 128.45, 128.10, 126.83, 125.22, 124.96, 120.99, 117.59, 115.07, 113.91, 100.51, 76.01, 73.13, 66.33, 35.92, 17.90, -1.30.

HRMS (ESI) m/z $[M + H]^+$ calculated for C₃₀H₃₃N₅O₃SSi: 572.2146, found 572.2144.

trans-9-(phenylsulfonyl)-4,4a,9,9a-tetrahydropyrano[2,3-*b*]indol-2(3*H*)-one (99):

¹H NMR (500 MHz, CDCl₃) δ 8.27 – 7.85 (m, 2H), 7.59 – 7.50 (m, 1H), 7.47 (dd, J = 8.6, 6.9 Hz, 2H), 7.27 (d, J = 8.1 Hz, 1H), 7.19 (q, J = 7.9, 7.4 Hz, 1H), 7.08 (d, J = 7.5 Hz, 1H), 7.02 (t, J = 7.5 Hz, 1H), 6.54 (d, J = 7.5 Hz, 1H), 3.72 (d, J = 6.0 Hz, 1H), 2.63 – 2.24 (m, 2H), 2.21 – 2.07 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 168.99, 140.68, 139.04, 133.74, 129.54, 129.31, 129.11, 127.96, 124.39, 123.96, 113.77, 91.55, 38.18, 26.97, 21.06.

HRMS (ESI) $m/z [M + H]^+$ calculated for C₁₇H₁₅NO₄S: 330.0795 found 330.0793.

5. Spectral Data

S64

S71

S82

S90

S110

S119

S120

S141

S143

S151

S154

S169

S170

6. Single crystal X-ray diffraction data of 30

Table S5 Crystal data and structure refinement for mo_220822Peng_0ma.

Identification code	mo_220822Peng_0ma
Empirical formula	C8H9BrN2O2
Formula weight	245.08
Temperature/K	100
Crystal system	orthorhombic
Space group	Pccn
a/Å	13.2630(13)
b/Å	24.954(2)
c/Å	5.6399(5)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	1866.6(3)
Z	8
$\rho_{calc}g/cm^3$	1.744
µ/mm ⁻¹	4.372
F(000)	976.0
Crystal size/mm ³	0.4 imes 0.2 imes 0.12
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	3.264 to 52.766
Index ranges	$-16 \le h \le 15, -31 \le k \le 31, -7 \le l \le 6$
Reflections collected	11450
Independent reflections	1899 [$R_{int} = 0.0190, R_{sigma} = 0.0128$]

Data/restraints/parameters	1899/0/119
Goodness-of-fit on F ²	1.042
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0185, wR_2 = 0.0462$
Final R indexes [all data]	$R_1 = 0.0213, wR_2 = 0.0473$
Largest diff. peak/hole / e Å ⁻³	0.42/-0.23

Molecular structure. There are 8 molecules per unit cell, 1 molecule per asymmetric unit. The thermal displacement ellipsoids are at a 50% probability level.

Unit cell and packing. View almost along axis c:

Atom	x	У	Z	U(eq)
Br1	3598.4(2)	7001.0(2)	-1184.7(3)	17.81(7)
01	3838.3(9)	3244.7(5)	5371(2)	18.6(2)
O2	3437.3(8)	4006.0(5)	7275(2)	19.7(3)
N1	3707.8(9)	5511.8(6)	1510(2)	14.4(3)
N2	3891.7(10)	5782.8(6)	3556(2)	16.3(3)
C4	3953.1(11)	4643.0(6)	3285(3)	15.3(3)
C3	3985.8(12)	4041.9(6)	3180(3)	15.7(3)
C6	3576.9(11)	5844.0(7)	-372(3)	14.4(3)
C7	3682.3(11)	6353.9(6)	503(3)	14.3(3)
C5	3699.6(11)	4942.5(7)	1461(3)	15.6(3)
C2	3712.9(11)	3781.5(7)	5508(3)	14.4(3)
C8	3872.1(12)	6297.8(7)	2930(3)	16.3(3)
C1	3687.8(13)	2962.1(7)	7582(3)	23.3(4)

Table S6 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic DisplacementParameters (Å²×10³) for mo_220822Peng_0ma. U_{eq} is defined as 1/3 of of the trace of the
orthogonalised U_{IJ} tensor.

Table S7 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for mo_220822Peng_0ma. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U33	U ₂₃	U ₁₃	U ₁₂
Br1	25.59(11)	12.92(10)	14.92(11)	0.28(6)	-0.75(6)	1.71(6)
01	25.8(6)	13.8(6)	16.3(6)	0.2(5)	2.7(5)	-1.4(5)
02	26.1(6)	16.9(6)	16.2(6)	-2.5(5)	3.5(5)	0.7(5)

Atom	U_{11}	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
N1	16.2(6)	15.4(7)	11.7(6)	-1.9(5)	-0.6(5)	0.0(5)
N2	20.0(6)	17.1(7)	11.8(6)	-1.9(5)	-2.9(5)	0.5(5)
C4	15.3(7)	15.2(8)	15.5(8)	-2.3(6)	-0.6(6)	-1.1(6)
C3	16.2(7)	16.6(8)	14.3(8)	-0.9(7)	0.5(6)	0.8(6)
C6	15.3(7)	16.7(8)	11.3(7)	-1.1(6)	-1.1(6)	1.0(6)
C7	14.8(7)	14.1(8)	14.0(7)	1.3(6)	0.7(6)	2.5(6)
C5	16.6(7)	14.8(8)	15.2(8)	-3.4(6)	-0.3(6)	-0.5(6)
C2	12.0(7)	13.3(8)	17.9(8)	-0.3(7)	-2.3(6)	-1.2(6)
C8	17.8(7)	17.0(8)	14.3(8)	-4.1(7)	-1.8(6)	1.2(6)
C1	31.3(10)	16.4(9)	22.2(10)	5.2(7)	1.3(7)	-2.5(7)

Table S7 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for mo_220822Peng_0ma. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Table S8 Bond Lengths for mo_220822Peng_0ma.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Br1	C7	1.8778(16)	N2	C8	1.333(2)
01	C2	1.3519(19)	C4	C3	1.502(2)
01	C1	1.446(2)	C4	C5	1.315(2)
02	C2	1.200(2)	C3	C2	1.509(2)
N1	N2	1.3597(18)	C6	C7	1.372(2)
N1	C6	1.358(2)	C7	C8	1.399(2)
N1	C5	1.421(2)			

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C2	01	C1	114.65(13)	C6	C7	Br1	127.53(13)
N2	N1	C5	121.00(13)	C6	C7	C8	106.11(15)
C6	N1	N2	112.50(13)	C8	C7	Br1	126.36(13)
C6	N1	C5	126.46(14)	C4	C5	N1	123.44(15)
C8	N2	N1	104.56(13)	01	C2	C3	110.35(14)
C5	C4	C3	122.98(15)	02	C2	01	123.17(16)
C4	C3	C2	112.90(14)	02	C2	C3	126.47(15)
N1	C6	C7	105.79(14)	N2	C8	C7	111.05(15)

Table S9 Bond Angles for mo_220822Peng_0ma.

Table S10 Torsion Angles for mo_220822Peng_0ma.

A	B	С	D	Angle/°	A	B	С	D	Angle/°
Br1	C7	C8	N2	-179.38(11)	C6	N1	N2	C8	0.16(17)
N1	N2	C8	C7	-0.30(18)	C6	N1	C5	C4	171.33(15)
N1	C6	C7	Br1	179.49(10)	C6	C7	C8	N2	0.33(18)
N1	C6	C7	C8	-0.21(16)	C5	N1	N2	C8	178.12(13)
N2	N1	C6	C7	0.04(17)	C5	N1	C6	C7	-177.78(13)
N2	N1	C5	C4	-6.3(2)	C5	C4	C3	C2	-147.55(15)
C4	C3	C2	01	-174.75(12)	C1	01	C2	02	-4.5(2)
C4	C3	C2	02	4.1(2)	C1	01	C2	C3	174.43(12)
C3	C4	C5	N1	-177.21(14)					

Atom	x	Y	Z	U(eq)
H4	4123.15	4814.67	4733.85	18
H3B	4672.79	3927.27	2717.42	19
H3A	3512.87	3916.29	1941.22	19
Н6	3440.66	5743.99	-1965.36	17
Н5	3500.64	4769.14	36.01	19
H8	3973.65	6588.3	3992.5	20
H1A	3828.1	2580.13	7350.71	35
H1B	2988.51	3007.98	8105.37	35
H1C	4144.83	3106.83	8788.03	35

Table S11 Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for mo_220822Peng_0ma.

Experimental

The single crystal XRD of C₈H₉BrN₂O₂ [mo_220822Peng_0ma] was studied on a 'Bruker Kappa APEX-II' diffractometer. The crystal was kept at 100.0 K during data collection. Using the Olex2 [1] environment, the structure was solved with the ShelXT [2] structure solution program using Intrinsic Phasing and refined with the ShelXL [3] refinement package using Least Squares minimization.

- 1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
- 2. Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.
- 3. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Crystal structure determination of [mo_220822Peng_0ma]

Crystal Data for C₈H₉BrN₂O₂ (M =245.08 g/mol): orthorhombic, space group Pccn (no. 56), a = 13.2630(13) Å, b = 24.954(2) Å, c = 5.6399(5) Å, V = 1866.6(3) Å³, Z = 8, T = 100 K, μ (MoK α) = 4.372 mm⁻¹, *Dcalc* = 1.744 g/cm³, 11450 reflections measured ($3.264^{\circ} \le 2\Theta \le 52.766^{\circ}$), 1899 unique ($R_{int} = 0.0190$, $R_{sigma} = 0.0128$) which were used in all calculations. The final R_1 was 0.0185 (I > 2 σ (I)) and wR_2 was 0.0473 (all data).

Refinement model description

Number of restraints - 0, number of constraints - unknown.

Details:

```
Fixed Uiso
    At 1.2 times of:
        All C(H) groups, All C(H,H) groups

    At 1.5 times of:
        All C(H,H,H) groups

Secondary CH2 refined with riding coordinates:
    C3(H3B,H3A)

Aromatic/amide H refined with riding coordinates:

C4(H4), C6(H6), C5(H5), C8(H8)

C Idealised Me refined as rotating group:
    C1(H1A,H1B,H1C)
```

References:

APEX2 (data collection)

Bruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

SAINT (integration and reduction)

Bruker (2007). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

SADABS (absorption correction)

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

SHELXTL (structure solution and refinement)

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

PLATON

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

OLEX2

Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., Puschmann H. (2008), *J. Appl. Cryst.* **42**, 339-341.