Electronic Supplementary Information

A fungicide-inspired precursors of π-allylpalladium intermediates for palladium-catalyzed decarboxylative cycloadditions

CONTENTS

General Information	S2
Preparation of Substrates: Synthesis of 5-Vinyloxazolidine-2,4-diones 1 or 4	S2
General Procedure for Palladium-Catalyzed Asymmetric (5 + 3) Cycloaddition	S3
General Procedure for Scaled-up (5 + 3) Cycloaddition	S3
General Procedure for Palladium-Catalyzed Asymmetric (3 + 2) Cycloaddition	S3
General Procedure for Scaled-up (3 + 2) Cycloaddition	S3
General Procedure for Further Transformation	S4
Characterization Data of Substrates and Products	S4
NMR Spectra of Substrates and Products	S38
HPLC Chromatograms of All Products	S115
X-Ray Crystallographic Data of 3ea, 6aa and 7	S160

General Information

All reactions were performed in Schlenk tubes under an atmosphere of argon using oven-dried glassware. Commercially obtained reagents were used without further purification, unless otherwise noted. Trichloromethane (CHCl₃) was distilled over P_2O_5 and stored over 3Å type molecular sieves. Tetrahydrofuran (THF) and toluene were distilled freshly before use over sodium and benzophenone. Acetonitrile (MeCN), Dichloromethane (DCM) and 1,2dichloroethane (DCE) were distilled from CaH₂. Reactions were checked for completion by TLC analysis and plates were visualized with short-wave UV light (254 nm). The ¹H, ¹³C and ¹⁹F NMR spectra were obtained in CDCl₃ using a Bruker-BioSpin AVANCE III HD NMR spectrometer at 500, 125 and 470 MHz, respectively. Chemical shifts are reported in parts per million (δ value) calibrated against the residual solvent peak. Signal patterns are indicated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. Coupling constants (J) are given in hertz (Hz). The infrared spectra were recorded on a Bruker VERTEX 70 IR spectrometer as KBr pellets, with absorption reported in cm⁻¹. High-resolution mass spectra were recorded on a Bruker Impact II UHR TOF LC/MS Mass Spectrometry. Melting points were determined on a Stuard SMP3 melting point apparatus. X-ray crystallographic data were collected using a MM007HF Saturn724+. HPLC analysis was performed on Agilent 1220 series, UV detection monitored at 254 nm, using a Chiralpak AD-H column, a Chiralcel OD-H column, Chiralpak IA column, Chiralpak IC column, Chiralpak ID column and Chiralpak IH column with hexane and i-PrOH as the eluent.

Preparation of Substrates: Synthesis of 5-Vinyloxazolidine-2,4-diones 1 or 4

The required Grignard reagent (1.2 equiv.) was added dropwise to a solution of the ethyl benzoylformate **S1** (1.0 equiv.) in anhydrous THF at -78 °C under argon atmosphere. The resulting mixture was stirred at -78 °C for 2 h. Then the resulting mixture was stirred at -10 °C for 2 h The reaction was quenched with aq. NH₄Cl and the organic layer was separated. The aqueous layer was extracted with EtOAc (3×100 mL). The combined organic layers were washed with brine (1×100 mL), dried over MgSO₄, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (Ethyl acetate/Petroleum ether = 1:15) to obtain the product **S2**.

A solution of **S2** (5.0 mmol, 1.0 equiv.), phenyl isocyanate (2.0 equiv.) and Et_3N (5.0 equiv.) in benzene was stirred at 80 °C for 12 h. The reaction was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (Ethyl acetate/Petroleum ether = 1:10) to give the desired 5-vinyloxazolidine-2,4-diones **1** or **4**.

General Procedure for Palladium-Catalyzed Asymmetric (5 + 3) Cycloaddition

To an oven-dried 25 mL of Schlenk tube equipped with a stir bar, $Pd_2dba_3 \cdot CHCl_3$ (5 mol%) and (S, S, S)-(3, 5-dioxa-4-phosphacyclohepta[2, 1-a:3, 4-a']dinaphthalen-4-yl)bis(1-phenylethyl) amine L3 (20 mol%) was added along with 5-vinyloxazolidine-2,4-diones 1 (0.12 mmol), azomethine imines 2 (0.1 mmol) and DCM (1.0 mL). The reaction was stirred at 25 °C under argon atmosphere until complete consumption of azomethine imines 2 as monitored by thin layer chromatography. The reaction mixture was directly purified by silica gel column chromatography (Ethyl acetate/Petroleum ether = 1:1) to afford the desired cycloadducts.

General Procedure for Scaled-up (5+3) Cycloaddition

To an oven-dried 100 mL of Schlenk tube equipped with a stir bar, $Pd_2dba_3 \cdot CHCl_3$ (5 mol%) and (S, S, S)-(3, 5-dioxa-4-phosphacyclohepta[2,1-a:3,4-a']dinaphthalen-4-yl)bis(1phenylethyl)amine (20 mol%) was added along with 5-vinyloxazolidine-2,4-diones 1 (1.2 mmol), azomethine imines 2 (1.0 mmol) and DCM (10.0 mL). The reaction was stirred at 25 °C under argon atmosphere until complete consumption of azomethine imines 2 as monitored by thin layer chromatography. The reaction mixture was directly purified by silica gel column chromatography (Ethyl acetate/Petroleum ether = 1:1) to afford the desired cycloadducts.

General Procedure for Palladium-Catalyzed Asymmetric (3 + 2) Cycloaddition

To an oven-dried 25 mL of Schlenk tube equipped with a stir bar, $Pd_2dba_3 \cdot CHCl_3$ (2.5 mol%) and (S, S, S)-(3, 5-dioxa-4-phosphacyclohepta[2,1-a:3,4-a']dinaphthalen-4-yl)bis(1phenylethyl)amine L3 (10 mol%) was added along with 5-vinyloxazolidine-2,4-diones 4 (0.15 mmol), 1,1-dicyanoalkenes 5 (0.1 mmol) and DCM (1.0 mL). The reaction was stirred at 0 °C under argon atmosphere until complete consumption of 1,1-dicyanoalkenes 5 as monitored by thin layer chromatography. The reaction mixture was directly purified by silica gel column chromatography (Ethyl acetate/Petroleum ether = 10:1) to afford the desired cycloadducts.

General Procedure for Scaled-up (3 + 2) Cycloaddition

To an oven-dried 100 mL of Schlenk tube equipped with a stir bar, Pd_2dba_3 ·CHCl₃ (2.5 mol%) and (S, S, S)-(3, 5-dioxa-4-phosphacyclohepta[2,1-a:3,4-a']dinaphthalen-4-yl)bis(1-phenylethyl)amine (10 mol%) was added along with 5-vinyloxazolidine-2,4-diones **4** (1.5 mmol), 1,1-dicyanoalkenes **5** (1.0 mmol) and DCM (10.0 mL). The reaction was stirred at 0 °C

under argon atmosphere until complete consumption of 1,1-dicyanoalkenes 5 as monitored by thin layer chromatography. The reaction mixture was directly purified by silica gel column chromatography (Ethyl acetate/Petroleum ether = 10:1) to afford desired the cycloadducts.

General Procedure for Further Transformation

The NaBH₄ (2.0 mmol) was added to a solution of **6aa** (0.20 mmol) in DCM/MeOH (1:1, 4.0 mL) at 0 °C. The reaction was stirred at 0 °C for 12 h, and the reaction was concentrated under reduced pressure. The residue purified by silica gel column chromatography (Ethyl acetate/Petroleum ether = 1:1) to afford the desired product **7**.

Characterization Data of Substrates and Products

3,5-diphenyl-5-vinyloxazolidine-2,4-dione

white solid, 499.7 mg, 36%, Mp: 98 – 100 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.58 – 7.47 (m, 2H), 7.42 – 7.22 (m, 8H), 6.23 – 6.11 (dd, *J* = 17.0, 10.5 Hz, 1H), 5.65 – 5.56 (d, *J* = 17.0 Hz, 1H), 5.43 – 5.34 (d, *J* = 10.5 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ = 170.7, 153.1, 134.9, 133.4, 130.8, 129.5, 129.4, 129.1, 125.7, 125. 5, 118.4, 87.3. HRMS (ESI, *m/z*) calcd for C₁₇H₁₄NO₃ [M+H]⁺: 280.0968, found: 280.0968.

3-(3-fluorophenyl)-5-phenyl-5-vinyloxazolidine-2,4-dione

white solid, 808.7 mg, 54%, Mp: 78 – 80 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.70 – 7.57 (m, 2H), 7.52 – 7.36 (m, 4H), 7.32 – 7.19 (m, 2H), 7.16 – 7.05 (m, 1H), 6.34 – 6.19 (dd, *J* = 17.0, 10.5 Hz, 1H), 5.76 – 5.65 (d, *J* = 17.0 Hz, 1H), 5.56 – 5.45 (d, *J* = 10.5 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ = 170.3, 162.6 (d, *J* = 246.6 Hz), 152.5, 134.6, 133.1, 132.1 (d, *J* = 10.1 Hz), 130.6 (d, *J* = 8.8 Hz), 129.6, 129.1, 125.4, 121.1 (d, *J* = 3.4 Hz), 118.5, 116.1 (d, *J* = 20.9 Hz), 113.2 (d, *J* = 24.9 Hz), 87.3. ¹⁹F NMR (CDCl₃, 470 MHz): δ = -110.2. HRMS (ESI, *m/z*) calcd for C₁₇H₁₃FNO₃ [M+H]⁺: 298.0874, found: 298.0873.

3-(4-fluorophenyl)-5-phenyl-5-vinyloxazolidine-2,4-dione

white solid, 992.8 mg, 67%, Mp: 108 – 110 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.71 – 7.55 (m, 2H), 7.52 – 7.29 (m, 5H), 7.19 – 7.03 (m, 2H), 6.36 – 6.17 (dd, *J* = 17.0, 10.5 Hz, 1H), 5.78 – 5.62 (d, *J* = 17.0 Hz, 1H), 5.57 – 5.43 (d, *J* = 10.5 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ = 170.6, 162.4 (d, *J* = 248.1 Hz), 152.9, 134.7, 133.3, 129.6, 129.1, 127.7 (d, *J* = 8.6 Hz), 126.7 (d, *J* = 3.3 Hz), 125.4, 118.5, 116.4 (d, *J* = 23.0 Hz), 87.4. ¹⁹F NMR (CDCl₃, 470 MHz): δ = - 111.3. HRMS (ESI, *m/z*) calcd for C₁₇H₁₃FNO₃ [M+H]⁺: 298.0874, found: 298.0871.

3-(3-chlorophenyl)-5-phenyl-5-vinyloxazolidine-2,4-dione

yellow oil, 869.6 mg, 55%. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.65 - 7.57$ (m, 2H), 7.51 - 7.33 (m, 7H), 6.31 - 6.21 (dd, J = 17.0, 10.5 Hz, 1H), 5.77 - 5.65 (d, J = 17.0 Hz, 1H), 5.57 - 5.47 (d, J = 10.5 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 170.3, 152.5, 135.0, 134.6, 133.1, 131.9, 130.3, 129.6, 129.2, 129.1, 125.8, 125.4, 123.7, 118.5, 87.4.$ HRMS (ESI, m/z) calcd for C₁₇H₁₃³⁵CINO₃ [M+H]⁺: 314.0578, found: 314.0578.

3-(4-chlorophenyl)-5-phenyl-5-vinyloxazolidine-2,4-dione

white solid, 753.4 mg, 48%, Mp: 82 – 84 °C. ¹H NMR (500 MHz, CDCl₃): δ =7.67 – 7.56 (m, 2H), 7.52 – 7.34 (m, 7H), 6.34 – 6.17 (dd, *J* = 17.5, 11.0 Hz, 1H), 5.77 – 5.65 (d, *J* = 17.5 Hz, 1H), 5.57 – 5.43 (d, *J* = 11.0 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ = 170.4, 152.7, 134.8, 134.6, 133.2, 129.6, 129.6, 129.3, 129.1, 126.8, 125.4, 118.5, 87.4. HRMS (ESI, *m/z*) calcd for C₁₇H₁₃³⁵ClNO₃ [M+H]⁺: 314.0578, found: 314.0580.

3-(4-bromophenyl)-5-phenyl-5-vinyloxazolidine-2,4-dione

white solid, 768.8 mg, 43%, Mp: 88 – 90 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.67 – 7.56 (m, 4H), 7.50 – 7.39 (m, 3H), 7.38 – 7.29 (m, 2H), 6.33 – 6.20 (dd, *J* = 17.0, 10.5 Hz, 1H), 5.76 – 5.64 (d, *J* = 17.0 Hz, 1H), 5.55 – 5.45 (d, *J* = 10.5 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ = 170.4, 152.6, 134.6, 133.2, 132.5, 129.9, 129.6, 129.1, 127.1, 125.4, 122.9, 118.5, 87.4. HRMS (ESI, *m/z*) calcd for C₁₇H₁₃⁷⁹BrNO₃ [M+H]⁺: 358.0073, found: 358.0074.

5-phenyl-3-(4-(trifluoromethyl)phenyl)-5-vinyloxazolidine-2,4-dione

yellow oil, 979.8 mg, 56%. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.78 - 7.70$ (m, 2H), 7.67 - 7.57 (m, 4H), 7.50 - 7.36 (m, 3H), 6.33 - 6.19 (dd, J = 17.5, 11.0 Hz, 1H), 5.78 - 5.66 (d, J = 17.5 Hz, 1H), 5.59 - 5.43 (d, J = 11.0 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 170.3$, 152.4, 134.5, 134.0, 133.1, 130.9 (q, J = 32.9 Hz), 129.7, 129.1, 126.5 (q, J = 3.6 Hz), 125.7, 125.4, 123.6 (q, J = 270.8 Hz), 118.6, 87.4. ¹⁹F NMR (CDCl₃, 470 MHz): $\delta = -62.8$. HRMS (ESI, m/z) calcd for C₁₈H₁₃F₃NO₃ [M+H]⁺: 348.0842 , found: 348.0837.

5-phenyl-3-(m-tolyl)-5-vinyloxazolidine-2,4-dione

yellow oil, 988.3 mg, 67%. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.68 - 7.56$ (m, 2H), 7.48 - 7.37 (m, 3H), 7.36 - 7.29 (m, 1H), 7.24 - 7.14 (m, 3H), 6.33 - 6.20 (dd, J = 17.0, 10.5 Hz, 1H), 5.76 - 5.67 (d, J = 17.0 Hz, 1H), 5.52 - 5.42 (d, J = 10.5 Hz, 1H), 2.37 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 170.8, 153.2, 139.6, 134.9, 133.4, 130.7, 130.0, 129.5, 129.2, 129.0, 129.0, 126.4, 125.4, 122.9, 118.3, 87.3, 21.3. HRMS (ESI, <math>m/z$) calcd for C₁₈H₁₆NO₃ [M+H]⁺: 294.1125, found: 294.1120.

5-phenyl-3-(p-tolyl)-5-vinyloxazolidine-2,4-dione

white solid, 788.3 mg, 54%, Mp: 92 – 94 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.60 – 7.47 (m, 2H), 7.40 – 7.24 (m, 3H), 7.21 – 7.12 (m, 4H), 6.27 – 6.09 (dd, *J* = 17.5, 11.0 Hz, 1H), 5.66 – 5.55 (d, *J* = 17.5 Hz, 1H), 5.45 – 5.32 (d, *J* = 11.0 Hz, 1H), 2.27 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ = 169.7, 152.1, 138.1, 133.8, 132.3, 128.9, 128.4, 127.9, 127.1, 124.5, 124.4, 117.2, 86.2, 20.1. HRMS (ESI, *m/z*) calcd for C₁₈H₁₆NO₃ [M+H]⁺: 294.1125, found: 294.1120.

3-(3,5-dimethylphenyl)-5-phenyl-5-vinyloxazolidine-2,4-dione

yellow oil, 998.1 mg, 65%. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.67 - 7.59$ (m, 2H), 7.49 - 7.36 (m, 3H), 7.08 - 7.01 (m, 1H), 7.01 - 6.94 (d, J = 1.5 Hz, 2H), 6.33 - 6.22 (dd, J = 17.0, 10.5 Hz, 1H), 5.76 - 5.66 (d, J = 17.0 Hz, 1H), 5.56 - 5.44 (d, J = 10.5 Hz, 1H), 2.34 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 170.9$, 153.3, 139.3, 134.9, 133.4, 131.0, 130.4, 129. 5, 129.0, 125.4, 123.6, 118.3, 87.3, 21.2. HRMS (ESI, m/z) calcd for C₁₉H₁₈NO₃ [M+H]⁺: 308.1281, found: 308.1277.

3-(3-methoxyphenyl)-5-phenyl-5-vinyloxazolidine-2,4-dione

yellow oil, 810.2 mg, 52%. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.71 - 7.58$ (m, 2H), 7.50 - 7.32 (m, 4H), 7.03 - 6.98 (m, 1H), 6.98 - 6.91 (m, 2H), 6.35 - 6.22 (dd, J = 17.0, 10.5 Hz, 1H), 5.78 - 5.67 (d, J = 17.0 Hz, 1H), 5.55 - 5.46 (d, J = 10.5 Hz, 1H), 3.80 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 170.6, 160.2, 153.0, 134.8, 133.3, 131.7, 130.1, 129.5, 129.0, 125.4, 118.4, 117.9, 115.0, 111.5, 87.2, 55.6. HRMS (ESI, <math>m/z$) calcd for C₁₈H₁₆NO₄ [M+H]⁺: 310.1074, found: 310.1072.

3-(4-methoxyphenyl)-5-phenyl-5-vinyloxazolidine-2,4-dione

white solid, 977.8 mg, 63%, Mp: 93 – 95 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.69 – 7.57 (m, 2H), 7.49 – 7.37 (m, 3H), 7.34 – 7.27 (m, 2H), 7.02 – 6.91 (m, 2H), 6.33 – 6.20 (dd, *J* = 17.5, 11.0 Hz, 1H), 5.77 – 5.63 (d, *J* = 17.5 Hz, 1H), 5.55 – 5.45 (d, *J* = 11.0 Hz, 1H), 3.81 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ = 170.9, 159.9, 153.4, 134.9, 133.4, 129.5, 129.0, 127.2, 125.4, 123.3, 118.3, 114.7, 87.3, 55.6. HRMS (ESI, *m/z*) calcd for C₁₈H₁₆NO₄ [M+H]⁺: 310.1074, found: 310.1071.

5-phenyl-3-(4-(trifluoromethoxy)phenyl)-5-vinyloxazolidine-2,4-dione

yellow oil, 978.4 mg, 54%. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.68 - 7.58$ (m, 2H), 7.56 - 7.48 (m, 2H), 7.48 - 7.39 (m, 3H), 7.36 - 7.27 (m, 2H), 6.33 - 6.22 (dd, J = 17.0, 11.0 Hz, 1H), 5.78 - 5.65 (d, J = 17.0 Hz, 1H), 5.55 - 5.49 (d, J = 11.0 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 170.4, 152.7, 149.0, 134.6, 133.1, 129.6, 129.2, 129.1, 127.1, 125.4, 121.8, 120.4$ (q, J = 256.8 Hz), 118.5, 87.4. ¹⁹F NMR (CDCl₃, 470 MHz): $\delta = -57.9$. HRMS (ESI, m/z) calcd for C₁₈H₁₃F₃NO₄ [M+H]⁺: 364.0791, found: 364.0785.

5-(2-fluorophenyl)-3-(3-methoxyphenyl)-5-vinyloxazolidine-2,4-dione

yellow oil, 763.4 mg, 47%. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.57 - 7.36$ (m, 3H), 7.27 - 7.10 (m, 2H), 7.09 - 7.02 (dd, J = 8.0, 1.5 Hz, 1H), 7.01 - 6.92 (m, 2H), 6.43 - 6.30 (dd, J = 17.0, 11.0 Hz, 1H), 5.95 - 5.85 (d, J = 17.0 Hz, 1H), 5.77 - 5.66 (d, J = 11.0 Hz, 1H), 3.83 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 170.9$, 161.2 (d, J = 248.8 Hz), 160.3, 153.2, 132.6 (d, J = 8.9 Hz), 132.0, 130.9, 130.3 (d, J = 2.6 Hz), 130.2, 124.6 (d, J = 3.4 Hz), 122.2 (d, J = 11.9 Hz), 120.0, 118.1, 116.5 (d, J = 21.4 Hz), 115.1, 111.7, 85.0, 55.5. ¹⁹F NMR (CDCl₃, 470 MHz): $\delta = -112.1$. HRMS (ESI, m/z) calcd for C₁₈H₁₅FNO₄ [M+H]⁺: 328.0980, found: 328.0977. 5-(4-fluorophenyl)-3-(3-methoxyphenyl)-5-vinyloxazolidine-2,4-dione

yellow oil, 988.2 mg, 60%. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.68 - 7.57$ (m, 2H), 7.44 - 7.32 (m, 1H), 7.19 - 7.07 (m, 2H), 7.04 - 6.90 (m, 3H), 6.30 - 6.17 (dd, J = 17.0, 10.5 Hz, 1H), 5.75 - 5.62 (d, J = 17.0 Hz, 1H), 5.57 - 5.46 (d, J = 10.5 Hz, 1H), 3.81 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 170.5, 163.3$ (d, J = 248.1 Hz), 160.2, 152.8, 133.2, 131.6, 130.6 (d, J = 3.1 Hz), 130.1, 127.6 (d, J = 8.5 Hz), 118.6, 117.8, 116.0 (d, J = 21.8 Hz), 115.0, 111.5, 86.7, 55.5. ¹⁹F NMR (CDCl₃, 470 MHz): $\delta = -111.6$. HRMS (ESI, m/z) calcd for C₁₈H₁₅FNO₄ [M+H]⁺: 328.0980, found: 328.0975.

5-(3-chlorophenyl)-3-(3-methoxyphenyl)-5-vinyloxazolidine-2,4-dione

yellow oil, 949.6 mg, 55%. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.70 - 7.61$ (m, 1H), 7.59 - 7.48 (m, 1H), 7.44 - 7.32 (m, 3H), 7.04 - 6.88 (m, 3H), 6.29 - 6.17 (dd, J = 17.0, 10.5 Hz, 1H), 5.77 - 5.67 (d, J = 17.0 Hz, 1H), 5.58 - 5.46 (d, J = 10.5 Hz, 1H), 3.81 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 170.1, 160.2, 152.6, 136.7, 135.1, 133.0, 131.5, 130.3, 130.1, 129.7, 125.7, 123.5, 118.8, 117.8, 115.1, 111.4, 86.4, 55.6. HRMS (ESI, <math>m/z$) calcd for C₁₈H₁₅³⁵ClNO₄ [M+H]⁺: 344.0684, found: 344.0685.

5-(4-chlorophenyl)-3-(3-methoxyphenyl)-5-vinyloxazolidine-2,4-dione

white solid, 866.7 mg, 50%, Mp: 100 – 102 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.63 – 7.52 (m, 2H), 7.46 – 7.32 (m, 3H), 7.02 – 6.90 (m, 3H), 6.30 – 6.17 (dd, *J* = 17.0, 10.5 Hz, 1H), 5.75 – 5.65 (d, *J* = 17.0 Hz, 1H), 5.57 – 5.47 (d, *J* = 10.5 Hz, 1H), 3.81 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ = 170.3, 160.2, 152.7, 135.7, 133.3, 133.1, 131.6, 130.1, 129.2, 126.9, 118.7, 117.8, 115.1, 111.4, 86.6, 55.6. HRMS (ESI, *m/z*) calcd for C₁₈H₁₅³⁵ClNO₄ [M+H]⁺: 344.0684, found: 344.0682.

5-(3,4-dichlorophenyl)-3-(3-methoxyphenyl)-5-vinyloxazolidine-2,4-dione

yellow oil, 958.6 mg, 51%. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.80 - 7.73$ (d, J = 2.0 Hz, 1H), 7.55 - 7.45 (m, 2H), 7.42 - 7.34 (t, J = 8.0 Hz, 1H), 7.03 - 6.89 (m, 3H), 6.27 - 6.15 (dd, J =17.0, 11.0 Hz, 1H), 5.76 - 5.66 (d, J = 17.0 Hz, 1H), 5.58 - 5.48 (d, J = 11.0 Hz, 1H), 3.81 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 169.9$, 160.3, 152.4, 134.8, 134.0, 133.5, 132.7, 131.4, 131.0, 130.2, 127.5, 124.7, 119.1, 117.7, 115.2, 111.4, 85.9, 55.6. HRMS (ESI, m/z) calcd for C₁₈H₁₄³⁵Cl₂NO₄ [M+H]⁺: 378.0294, found: 378.0293.

5-(3-bromophenyl)-3-(3-methoxyphenyl)-5-vinyloxazolidine-2,4-dione

yellow oil, 896.0 mg, 46%. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.84 - 7.76$ (m, 1H), 7.62 - 7.51 (m, 2H), 7.41 - 7.35 (t, J = 8.0 Hz, 1H), 7.35- 7.28 (t, J = 8.0 Hz, 1H), 7.06 - 6.91 (m, 3H), 6.28 - 6.16 (dd, J = 17.0, 11.0 Hz, 1H), 5.76 - 5.65 (d, J = 17.0 Hz, 1H), 5.57 - 5.48 (d, J = 11.0 Hz, 1H), 3.81 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 170.1$, 160.2, 152.6, 136.9, 133.0, 132.6, 130.6, 130.1, 128.5, 124.0, 123.1, 118.8, 117.8, 115.1, 111.4, 86.3, 55.6. HRMS (ESI, m/z) calcd for C₁₈H₁₅⁷⁹BrNO₄ [M+H]⁺: 388.0179, found: 388.0178.

5-(4-bromophenyl)-3-(3-methoxyphenyl)-5-vinyloxazolidine-2,4-dione

yellow oil, 993.9 mg, 51%. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.62 - 7.55$ (d, J = 8.5 Hz, 2H), 7.55 - 7.48 (d, J = 7.5 Hz, 2H), 7.43 - 7.32 (t, J = 8.0 Hz, 1H), 7.02 - 6.89 (m, 3H), 6.29 - 6.16 (dd, J = 17.0, 11.0 Hz, 1H), 5.74 - 5.65 (d, J = 17.0 Hz, 1H), 5.56 - 5.47 (d, J = 11.0 Hz, 1H), 3.80 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 170.3$, 160.2, 152.7, 133.8, 133.0, 132.2, 131.6, 130.1, 127.1, 123.9, 118.8, 117.8, 115.1, 111.4, 86.6, 55.6. HRMS (ESI, m/z) calcd for $C_{18}H_{15}^{79}BrNO_4$ [M+H]⁺: 388.0179, found: 388.0178. 3-(3-methoxyphenyl)-5-(m-tolyl)-5-vinyloxazolidine-2,4-dione

yellow oil, 613.9 mg, 38%. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.47 - 7.40$ (m, 2H), 7.40 - 7.29 (m, 2H), 7.29 - 7.19 (t, J = 6.5 Hz, 1H), 7.04 - 6.98 (dd, J = 8.5, 2.0 Hz, 1H), 6.98 - 6.91 (m, 2H), 6.32 - 6.21 (dd, J = 17.0, 10.5 Hz, 1H), 5.75 - 5.64 (d, J = 17.0 Hz, 1H), 5.54 - 5.44 (d, J = 10.5 Hz, 1H), 3.80 (s, 3H), 2.39 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 170.7$, 160.2, 153.0, 138.9, 134.8, 133.4, 131.8, 130.2, 130.1, 128.9, 125.9, 122.5, 118.2, 117.9, 115.0, 111.5, 87.3, 55.6, 21.6. HRMS (ESI, m/z) calcd for C₁₉H₁₈NO₄ [M+H]⁺: 324.1230, found: 324.1227.

3-(3-methoxyphenyl)-5-(p-tolyl)-5-vinyloxazolidine-2,4-dione

yellow oil, 982.7 mg, 61%. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.55 - 7.45$ (d, J = 8.0 Hz, 2H), 7.42 - 7.30 (t, J = 9.5 Hz, 1H), 7.28 - 7.18 (d, J = 8.0 Hz, 2H), 7.05 - 6.98 (d, J = 7.5 Hz, 1H), 6.98 - 6.87 (m, 2H), 6.35 - 6.18 (dd, J = 17.5, 11.0 Hz, 1H), 5.76 - 5.64 (d, J = 17.5 Hz, 1H), 5.54 - 5.42 (d, J = 11.0 Hz, 1H), 3.79 (s, 3H), 2.36 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): $\delta =$ 170.8, 160.2, 153.1, 139.6, 133.4, 131.9, 131.8, 130.1, 129.7, 125.4, 118.2, 117.9, 115.0, 111.5, 87.3, 55.5, 21.2. HRMS (ESI, m/z) calcd for C₁₉H₁₈NO₄ [M+H]⁺: 324.1230, found: 324.1229.

5-(4-isopropylphenyl)-3-(3-methoxyphenyl)-5-vinyloxazolidine-2,4-dione

yellow oil, 822.6 mg, 47%. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.58 - 7.51$ (d, J = 8.0 Hz, 2H), 7.40 – 7.33 (t, J = 8.0 Hz, 1H), 7.33 – 7.26 (d, J = 8.0 Hz, 2H), 7.04 – 6.98 (m, 1H), 6.97 – 6.90 (m, 2H), 6.32 – 6.21 (dd, J = 17.5, 11.0 Hz, 1H), 5.75 – 5.66 (d, J = 17.5 Hz, 1H), 5.52 – 5.43 (d, J = 11.0 Hz, 1H), 3.80 (s, 3H), 2.99 – 2.72 (m, 1H), 1.32 – 1.12 (d, J = 8.0 Hz, 6H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 170.8$, 160.2, 153.1, 150.4, 133.4, 132.2, 131.8, 130.1, 127.1, 125.5, 118.1, 117.9, 115.0, 111.5, 87.3, 55.5, 33.9, 23.9, 23.9. HRMS (ESI, *m/z*) calcd for C₂₁H₂₂NO4 [M+H]⁺: 352.1543, found: 352.1542. 5-(4-cyclohexylphenyl)-3-(3-methoxyphenyl)-5-vinyloxazolidine-2,4-dione

white solid, 991.2 mg, 51%, Mp: 105 – 107 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.59 – 7.49 (d, *J* = 8.5 Hz, 2H), 7.42 – 7.31 (m, 1H), 7.31 – 7.25 (d, *J* = 8.0 Hz, 2H), 7.06 – 6.98 (d, *J* = 7.5 Hz, 1H), 6.97 – 6.89 (m, 2H), 6.35 – 6.21 (dd, *J* = 17.0, 10.5 Hz, 1H), 5.75 – 5.65 (d, *J* = 17.0 Hz, 1H), 5.53 – 5.44 (d, *J* = 10.5 Hz, 1H), 3.80 (s, 3H), 2.59 – 2.40 (m, 1H), 1.94 – 1.78 (m, 4H), 1.78 – 1.66 (m, 1H), 1.48 – 1.32 (m, 4H), 1.32 – 1.15 (m, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ = 170.8, 160.2, 153.1, 149.6, 133.4, 132.2, 131.8, 130.1, 127.5, 125.4, 118.1, 117.9, 115.0, 111.5, 87.3, 55.5, 44.3, 34.3, 34.3, 26.8, 26.1. HRMS (ESI, *m/z*) calcd for C₂₄H₂₆NO₄ [M+H]⁺: 392.1856, found: 392.1855.

5-(4-(tert-butyl)phenyl)-3-(3-methoxyphenyl)-5-vinyloxazolidine-2,4-dione

yellow oil, 820.7 mg, 45%. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.59 - 7.51$ (d, J = 8.5 Hz, 2H), 7.51 – 7.43 (d, J = 8.5 Hz, 2H), 7.42 – 7.30 (m, 1H), 7.05 – 6.98 (m, 1H), 6.98 – 6.90 (m, 2H), 6.33 – 6.22 (dd, J = 17.0, 11.0 Hz, 1H), 5.77 – 5.67 (d, J = 17.0 Hz, 1H), 5.53 – 5.45 (d, J =11.0 Hz, 1H), 3.80 (s, 3H), 1.32 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 170.8$, 160.2, 153.1, 152.7, 133.4, 131.8, 131.8, 130.1, 126.0, 125.2, 118.1, 117.9, 115.0, 111.5, 87.3, 55.5, 34.7, 31.2. HRMS (ESI, m/z) calcd for C₂₂H₂₄NO₄ [M+H]⁺: 366.1700, found: 366.1699.

3-(3-methoxyphenyl)-5-(naphthalen-2-yl)-5-vinyloxazolidine-2,4-dione

yellow oil, 980.2 mg, 54%. ¹H NMR (500 MHz, CDCl₃): $\delta = 8.20 - 8.09$ (d, J = 2.5 Hz, 1H), 7.97 – 7.80 (m, 3H), 7.75 – 7.66 (m, 1H), 7.57 – 7.48 (m, 2H), 7.41 – 7.32 (t, J = 8.0 Hz, 1H), 7.06 – 6.99 (d, J = 8.0 Hz, 1H), 6.99 – 6.89 (m, 2H), 6.43 – 6.30 (dd, J = 17.0, 10.5 Hz, 1H), 5.83 – 5.72 (d, J = 17.0 Hz, 1H), 5.59 – 5.49 (d, J = 10.5 Hz, 1H), 3.79 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 170.7$, 160.3, 153.0, 133.5, 133.3, 132.9, 132.0, 131.8, 130.1, 129.1, 128.6, 127.8, 127.3, 126.9, 124.8, 122.7, 118.7, 117.9, 115.1, 111.5, 87.4, 55.6. HRMS (ESI, m/z) calcd for C₂₂H₁₈NO₄ [M+H]⁺: 360.1230, found: 360.1229. 3-(3-methoxyphenyl)-5-(thiophen-3-yl)-5-vinyloxazolidine-2,4-dione

yellow oil, 570.3 mg, 36%. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.57 - 7.50$ (m, 1H), 7.45 - 7.33 (m, 2H), 7.27 - 7.19 (m, 1H), 7.04 - 6.98 (m, 1H), 6.98 - 6.91 (m, 2H), 6.32 - 6.19 (dd, J = 17.0, 11.0 Hz, 1H), 5.74 - 5.64 (d, J = 17.0 Hz, 1H), 5.54 - 5.45 (d, J = 11.0 Hz, 1H), 3.81 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 170.3, 160.2, 152.9, 135.3, 132.8, 131.7, 130.1, 127.5, 125.2, 123.5, 118.5, 117.8, 115.0, 111.5, 85.9, 55.6. HRMS (ESI, <math>m/z$) calcd for C₁₆H₁₄NO₄S [M+H]⁺: 316.0638, found: 316.0636.

5-(4-chlorophenyl)-3-(4-methoxyphenyl)-5-vinyloxazolidine-2,4-dione

white solid, 770.6 mg, 45%, Mp: 110 – 112 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.63 – 7.53 (m, 2H), 7.45 – 7.39 (m, 2H), 7.33 – 7.27 (m, 2H), 7.01 – 6.93 (m, 2H), 6.30 – 6.16 (dd, *J* = 17.0, 10.5 Hz, 1H), 5.73 – 5.66 (d, *J* = 17.0 Hz, 1H), 5.55 – 5.45 (d, *J* = 10.5 Hz, 1H), 3.82 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ = 170.6, 159.9, 153.1, 135.7, 133.3, 133.1, 129.2, 127.1, 126.9, 123.1, 118.6, 114.7, 86.7, 55.6. HRMS (ESI, *m*/*z*) calcd for C₁₈H₁₅³⁵ClNO₄ [M+H]⁺: 344.0684, found: 344.0682.

5-(4-bromophenyl)-3-(4-methoxyphenyl)-5-vinyloxazolidine-2,4-dione

yellow oil, 847.3 mg, 44%. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.60 - 7.55$ (m, 2H), 7.53 - 7.49 (m, 2H), 7.32 - 7.27 (m, 2H), 7.01 - 6.92 (m, 2H), 6.28 - 6.18 (dd, J = 17.0, 10.5 Hz, 1H), 5.73 - 5.65 (d, J = 17.0 Hz, 1H), 5.54 - 5.48 (d, J = 10.5 Hz, 1H), 3.82 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 170.5, 159.9, 153.1, 133.9, 133.1, 132.2, 127.1, 123.9, 123.1, 118.7, 114.7, 86.7, 55.6. HRMS (ESI, <math>m/z$) calcd for C₁₈H₁₅⁷⁹BrNO₄ [M+H]⁺: 388.0179, found: 388.0172.

3-(4-methoxyphenyl)-5-(p-tolyl)-5-vinyloxazolidine-2,4-dione

white solid, 814.1 mg, 50%, Mp: 100 – 102 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.54 – 7.45 (m, 2H), 7.36 – 7.29 (m, 2H), 7.29 – 7.19 (m, 2H), 7.02 – 6.93 (m, 2H), 6.32 – 6.21 (dd, *J* = 17.5, 11.0 Hz, 1H), 5.74 – 5.65 (d, *J* = 17.5 Hz, 1H), 5.53 – 5.44 (d, *J* = 11.0 Hz, 1H), 3.81 (s, 3H), 2.37 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ = 171.1, 159.8, 153.5, 139.5, 133.4, 132.0, 129.7, 127.2, 125.4, 123.4, 118.2, 114.6, 87.4, 55.6, 21.2. HRMS (ESI, *m/z*) calcd for C₁₉H₁₈NO₄ [M+H]⁺: 324.123, found: 324.1229.

3-(4-methoxyphenyl)-5-(naphthalen-2-yl)-5-vinyloxazolidine-2,4-dione

white solid, 832.8 mg, 46%, Mp: 142 – 144 °C. ¹H NMR (500 MHz, CDCl₃): $\delta = 8.17 - 8.09$ (d, J = 2.0 Hz, 1H), 7.93 – 7.80 (m, 3H), 7.73 – 7.66 (m, 1H), 7.55 – 7.46 (m, 2H), 7.35 – 7.29 (m, 2H), 7.02 – 6.91 (m, 2H), 6.40 – 6.30 (dd, J = 17.0, 11.0 Hz, 1H), 5.82 – 5.72 (d, J = 17.0Hz, 1H), 5.59 – 5.49 (d, J = 11.0 Hz, 1H), 3.79 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 171.0$, 159.9, 153.5, 133.4, 133.4, 132.9, 132.1, 129.1, 128.6, 127.8, 127.2, 126.9, 124.8, 123.3, 122.8, 118.6, 114.68, 87.5, 55.6. HRMS (ESI, m/z) calcd for C₂₂H₁₈NO₄ [M+H]⁺: 360.123, found: 360.1228.

3-(4-methoxyphenyl)-5-(thiophen-3-yl)-5-vinyloxazolidine-2,4-dione

yellow oil, 802.4 mg, 51%. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.56 - 7.51$ (m, 1H), 7.44 - 7.38 (m, 1H), 7.35 - 7.28 (m, 2H), 7.25 - 7.20 (m, 1H), 7.02 - 6.94 (m, 2H), 6.29 - 6.19 (dd, J = 17.0, 10.5 Hz, 1H), 5.73 - 5.64 (d, J = 17.0 Hz, 1H), 5.53 - 5.46 (d, J = 10.5 Hz, 1H), 3.82 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 170.6, 159.9, 153.3, 135.3, 132.9, 127.5, 127.1, 125.2, 123.4, 123.2, 118.4, 114.7, 86.0, 55.6. HRMS (ESI, <math>m/z$) calcd for C₁₆H₁₄NO₄S [M+H]⁺: 316.0638, found: 316.0635.

$(R,\ Z) \text{-} 1,3 \text{-} diphenyl-6 \text{-} tosyl-1,5,6,13b \text{-} tetrahydro-2H-[1,2,4] triazocino[2,3-c] quinazolin-2-diphenyl-6 \text{-} tosyl-6 \text{-} tosyl-6$

one

colorless oil, 51.4 mg, 96%, 90% *ee*, $[\alpha]^{25}_{D} = 64.0$ (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.64 - 7.54$ (m, 2H), 7.52 - 7.40 (m, 5H), 7.28 - 7.19 (m, 2H), 7.16 - 7.01 (m, 5H), 6.97 -6.86 (m, 3H), 6.82 - 6.75 (m, 2H), 6.73 - 6.58 (d, *J* = 7.5 Hz, 2H), 5.14 - 5.03 (dd, *J* = 15.5, 7.0 Hz, 1H), 4.43 - 4.32 (dd, *J* = 15.5, 10.5 Hz, 1H), 2.32 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 168.0, 146.5, 145.8, 141.7, 141.0, 136.2, 134.9, 133.0, 123.0, 129.9, 129.5, 129.4, 129.0,$ 128.9, 128.6, 128.5, 127.1, 126.6, 126.2, 126.0, 123.8, 119.9, 69.7, 49.1, 21.7. IR (film) v_{max} = 2923, 1661, 1650, 1614, 1598, 1275, 1261, 1165, 764, 750. HRMS (ESI, *m/z*) calcd for C₃₁H₂₇N₄O₃S [M+H]⁺: 535.1798, found: 535.1799. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK AD-H, *n*-hexane/2-propanol = 60 : 40, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 8.7 min, t_{minor} = 17.3 min).

(*R*, *Z*)-1-(3-fluorophenyl)-3-phenyl-6-tosyl-1,5,6,13b-tetrahydro-2*H*-[1,2,4]triazocino

[2,3-c]quinazolin-2-one

colorless oil, 44.2 mg, 80%, 90% *ee*, $[\alpha]^{25}_{D} = 80.0$ (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.60 - 7.55$ (m, 2H), 7.52 - 7.41 (m, 5H), 7.30 - 7.22 (m, 2H), 7.12 - 7.07 (d, J = 8.0 Hz, 2H), 7.07 - 7.01 (m, 1H), 6.98 - 6.93 (m, 2H), 6.89 - 6.77 (m, 4H), 6.55 - 6.48 (d, J = 8.0 Hz, 1H), 6.39 - 6.30 (d, J = 9.5 Hz, 1H), 5.13 - 5.03 (dd, J = 15.5, 7.0 Hz, 1H), 4.36 - 4.26 (dd, J = 15.5, 10.0 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 167.9$, 162.1 (d, J = 246.5Hz), 146.4, 145.9, 141.5, 140.9, 137.7 (d, J = 9.6 Hz), 134.8, 132.9, 130.2, 130.0, 129.7 (d, J = 8.9 Hz), 129.5, 129.1, 128.9, 127.0, 126.6, 126.5, 126.1, 125.3, 124.1, 119.5, 117.3 (d, J = 22.8Hz), 115.7 (d, J = 20.8 Hz), 69.8, 49.1, 21.7. ¹⁹F NMR (CDCl₃, 470 MHz): $\delta = -112.0$. IR (film) $v_{max} = 2921$, 1667, 1614, 1597, 1488, 1387, 1164, 1087, 765, 706. HRMS (ESI, *m/z*) calcd for C₃₁H₂₆FN4O₃S [M+H]⁺: 553.1704, found: 553.1706. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK AD-H, *n*-hexane/2-propanol = 60 : 40, v = 1.0 mL/min, $\lambda = 254.0$ nm; t_{major} = 8.8 min, t_{minor} = 15.4 min).

(*R*, *Z*)-1-(4-fluorophenyl)-3-phenyl-6-tosyl-1,5,6,13b-tetrahydro-2*H*-[1,2,4]triazocino [2,3-*c*]quinazolin-2-one

yellow oil, 49.2 mg, 89%, 91% *ee*, $[α]^{25}_{D}$ = 72.0 (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ = 7.60 – 7.53 (m, 2H), 7.51 – 7.48 (d, *J* = 2.0 Hz, 2H), 7.48 – 7.40 (m, 3H), 7.30 – 7.21 (m, 2H), 7.11 – 7.05 (d, *J* = 8.0 Hz, 2H), 6.99 – 6.90 (dd, *J* = 14.0, 8.0 Hz, 2H), 6.90– 6.86 (d, *J* = 1.5 Hz, 1H), 6.85 – 6.69 (m, 4H), 6.69 – 6.52 (m, 2H), 5.12 – 5.03 (dd, *J* = 15.5, 7.0 Hz, 1H), 4.36 – 4.24 (dd, *J* = 15.5, 10.0 Hz, 1H), 2.32 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ = 168.1, 162.2 (d, *J* = 247.3 Hz), 146.4, 145.9, 141.6, 141.0, 134.8, 132.9, 132.1 (d, *J* = 3.3 Hz), 131.2, 130.1, 130.0, 129.4, 129.0, 128.8, 126.9, 126.6, 126.4, 126.1, 124.0, 119.8, 115.7 (d, *J* = 22.5 Hz), 69.7, 49.1, 21.7. ¹⁹F NMR (CDCl₃, 470 MHz): δ = – 112.5. IR (film) v_{max} = 2922, 2851, 1662, 1615, 1598, 1508, 1389, 1165, 814, 764. HRMS (ESI, *m/z*) calcd for C₃₁H₂₆FN₄O₃S [M+H]⁺: 553.1704, found: 553.1702. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK AD-H, *n*-hexane/2-propanol = 60 : 40, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 12.1 min, t_{minor} = 25.8 min).

(*R*, *Z*)-1-(3-chlorophenyl)-3-phenyl-6-tosyl-1,5,6,13b-tetrahydro-2*H*-[1,2,4]triazocino [2,3-*c*]quinazolin-2-one

3da

colorless oil, 43.6 mg, 77%, 91% *ee*, $[\alpha]^{25}_{D} = 80.0$ (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.62 - 7.54$ (m, 2H), 7.53 - 7.39 (m, 5H), 7.31 - 7.23 (m, 2H), 7.14 - 7.07 (m, 3H), 7.04 -6.93 (m, 3H), 6.89 - 6.84 (m, 2H), 6.83 - 6.77 (dd, *J* = 10.5, 7.0 Hz, 1H), 6.60 (s, 2H), 5.14 -5.03 (dd, *J* = 15.5, 7.0 Hz, 1H), 4.36 - 4.27 (dd, *J* = 15.5, 10.5 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 167.9$, 146.3, 145.9, 141.4, 140.9, 137.4, 134.8, 133.9, 132.9, 130.3, 130.0, 129.5, 129.1, 128.9, 128.8, 127.8, 127.0, 126.6, 126.5, 126.1, 124.1, 119.5, 69.8, 49.1, 21.7. IR (film) v_{max} = 2921, 2851, 1661, 1614, 1597, 1387, 1165, 765, 751, 729. HRMS (ESI, *m/z*) calcd for C₃₁H₂₆³⁵CIN₄O₃S [M+H]⁺: 569.1409, found: 569.1410. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK AD-H, *n*-hexane/2-propanol = 60 : 40, *v* = 1.0 mL/min, $\lambda = 254.0$ nm; t_{major} = 8.6 min, t_{minor} = 15.8 min).

(*R*, *Z*)-1-(4-chlorophenyl)-3-phenyl-6-tosyl-1,5,6,13b-tetrahydro-2*H*-[1,2,4]triazocino [2,3-*c*]quinazolin-2-one

white solid, 52.3 mg, 91%, Mp: 195 – 197 °C, 92% *ee*, $[\alpha]^{25}_{D} = 72.0$ (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.62 - 7.51$ (m, 2H), 7.51 – 7.37 (m, 5H), 7.31 – 7.18 (m, 2H), 7.12 – 7.05 (d, *J* = 8.0 Hz, 2H), 7.05 – 6.99 (d, *J* = 8.0 Hz, 2H), 6.99 – 6.94 (dd, *J* = 7.5, 1.0 Hz, 1H), 6.94 – 6.85 (m, 2H), 6.82 – 6.73 (m, 2H), 6.66 – 6.48 (m, 2H), 5.13 – 4.99 (dd, *J* = 15.0, 6.5 Hz, 1H), 4.36 – 4.25 (dd, *J* = 15.0, 10.0 Hz, 1H), 2.31 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ = 168.0, 146.4, 145.9, 141.5, 141.0, 134.8, 134.8, 134.5, 132.9, 130.8, 130.2, 130.0, 129.5, 129.1, 128.9, 128.8, 126.9, 126.6, 126.5, 126.2, 124.03, 119.6, 69.7, 49.1, 21.7. IR (film) v_{max} = 2923, 2852, 1662, 1615, 1598, 1491, 1388, 1165, 1087, 764. HRMS (ESI, *m/z*) calcd for C₃₁H₂₆³⁵ClN₄O₃S [M+H]⁺: 569.1409, found: 569.1409. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK AD-H, *n*-hexane/2-propanol = 60 : 40, *v* = 1.0 mL/min, λ = 254.0 mm; t_{major} = 15.0 min, t_{minor} = 24.8 min).

(*R*, Z)-1-(4-bromophenyl)-3-phenyl-6-tosyl-1,5,6,13b-tetrahydro-2*H*-[1,2,4]triazocino [2,3-*c*]quinazolin-2-one

3fa

yellow oil, 46.8 mg, 76%, 91% *ee*, $[\alpha]^{25}_{D}$ = 56.0 (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ = 7.58 - 7.53 (m, 2H), 7.51 - 7.40 (m, 5H), 7.31 - 7.21 (m, 2H), 7.20 - 7.14 (d, *J* = 8.5 Hz, 2H), 7.11 - 7.05 (d, *J* = 8.0 Hz, 2H), 6.99 - 6.94 (dd, *J* = 8.0, 1.5 Hz, 1H), 6.94 - 6.90 (dd, *J* = 8.0, 1.5 Hz, 1H), 6.90 - 6.86 (d, *J* = 1.5 Hz, 1H), 6.82 - 6.75 (m, 2H), 6.58 - 6.49 (m, 2H), 5.17 - 4.93 (dd, *J* = 15.5, 7.0 Hz, 1H), 4.38 - 4.19 (dd, *J* = 15.5, 10.0 Hz, 1H), 2.32 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ = 168.0, 146.4, 145.9, 141.5, 141.0, 135.3, 134.8, 132.9, 131.9, 131.1, 130.2, 130.0, 129.5, 129.1, 128.8, 126.9, 126.6, 126.4, 126.2, 124.0, 122.7, 119.6, 69.7, 49.1, 21.7. IR (film) ν_{max} = 2924, 1662, 1615, 1598, 1487, 1388, 1165, 1087, 764, 751. HRMS (ESI, *m/z*) calcd for C₃₁H₂₆⁷⁹BrN₄O₃S [M+H]⁺: 613.0903, found: 613.0897. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK AD-H, *n*-hexane/2-propanol = 60 : 40, ν = 1.0 mL/min, λ = 254.0 nm; t_{major} = 14.6 min, t_{minor} = 25.4 min).

(*R*, *Z*)-3-phenyl-6-tosyl-1-(4-(trifluoromethyl)phenyl)-1,5,6,13b-tetrahydro-2*H*-[1,2,4]triazocino[2,3-*c*]quinazolin-2-one

3ga

yellow oil, 42.5 mg, 71%, 90% *ee*, $[\alpha]^{25}_{D} = 56.0$ (*c* 1.0, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ = 7.61 – 7.54 (m, 2H), 7.52 – 7.41 (m, 5H), 7.35 – 7.20 (m, 4H), 7.13 – 7.04 (d, *J* = 8.5 Hz, 2H), 6.99 – 6.90 (dd, *J* = 16.5, 6.0 Hz, 2H), 6.88 (s, 2H), 6.85 – 6.75 (m, 3H), 5.12 – 5.04 (dd, *J* = 15.0, 6.5 Hz, 1H), 4.37 – 4.27 (dd, *J* = 15.0, 10.0 Hz, 1H), 2.32 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ = 168.0, 146.3, 146.0, 141.3, 140.9, 139.8, 134.7, 132.8, 130.4, 130.1, 130.0, 129.5, 129.1, 128.8, 126.9, 126.6, 126.5, 126.2, 125.7,125.7, 124.2, 123.6 (q, *J* = 270.9 Hz), 119.4, 69.8, 49.1, 21.6. ¹⁹F NMR (CDCl₃, 470 MHz): δ = – 62.8. IR (film) v_{max} = 2922, 1665, 1615, 1598, 1388, 1324, 1165, 1064, 818, 765. HRMS (ESI, *m/z*) calcd for C₃₂H₂₆F₃N₄O₃S [M+H]⁺: 603.1672, found: 603.1670. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK AD-H, *n*-hexane/2-propanol = 80 : 20, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 21.3 min, t_{minor} = 26.4 min).

(*R*, *Z*)-3-phenyl-1-(*m*-tolyl)-6-tosyl-1,5,6,13b-tetrahydro-2*H*-[1,2,4]triazocino[2,3-*c*]qui-nazolin-2-one

3ha

colorless oil, 51.4 mg, 94%, 92% *ee*, $[\alpha]^{25}_{D} = 72.0$ (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.62 - 7.55$ (m, 2H), 7.54 - 7.48 (d, J = 8.5 Hz, 2H), 7.47 - 7.39 (m, 3H), 7.28 - 7.20 (m, 2H), 7.11 - 7.05 (d, J = 8.0 Hz, 2H), 6.98 - 6.89 (m, 4H), 6.89 - 6.84 (d, J = 1.5 Hz, 1H), 6.82 - 6.75 (m, 2H), 6.55 - 6.30 (m, 2H), 5.12 - 5.01 (dd, J = 15.0, 6.5 Hz, 1H), 4.42 - 4.34 (dd, J = 15.0, 10.5 Hz, 1H), 2.32 (s, 3H), 2.08 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 168.0$, 146.4, 145.8, 141.8, 141.1, 138.4, 136.0, 134.9, 133.0, 123.0, 129.9, 129.3, 129.2, 129.0, 128.9, 128.4, 127.1, 126.7, 126.5, 126.2, 125.9, 123.7, 112.0, 69.7, 49.1, 21.6, 21.0. IR (film) v_{max} = 2961, 2923, 2853, 1660, 1597, 1388, 1260, 1161, 1087, 1017, 801. HRMS (ESI, *m/z*) calcd for C₃₂H₂₉N₄O₃S [M+H]⁺: 549.1955, found: 549.1950. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK AD-H, *n*-hexane/2-propanol = 60 : 40, v = 1.0 mL/min, $\lambda = 254.0$ nm; t_{major} = 7.0 min, t_{minor} = 15.2 min).

(*R*, *Z*)-3-phenyl-1-(*p*-tolyl)-6-tosyl-1,5,6,13b-tetrahydro-2*H*-[1,2,4]triazocino[2,3-*c*] quinazolin-2-one

3ia

colorless oil, 51.3 mg, 94%, 90% *ee*, $[\alpha]^{25}_{D} = 53.3$ (*c* 0.75, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.59 - 7.53$ (m, 2H), 7.51 - 7.47 (d, J = 8.0 Hz, 2H), 7.47 - 7.38 (m, 3H), 7.28 - 7.19 (m, 2H), 7.09 - 7.04 (d, J = 8.0 Hz, 2H), 6.96 - 6.88 (m, 3H), 6.87 - 6.80 (d, J = 8.0 Hz, 2H), 6.79 - 6.70 (m, 2H), 6.60 - 6.41 (m, 2H), 5.17 - 4.94 (dd, J = 15.5, 7.0 Hz, 1H), 4.48 - 4.28 (dd, J = 15.5, 10.0 Hz, 1H), 2.31 (s, 3H), 2.17 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 168.1$, 146.5, 145.7, 141.8, 141.1, 138.3, 134.9, 133.4, 133.1, 123.0, 129.9, 129.4, 129.3, 129.1, 129.0, 128.9, 127.0, 126.6, 126.2, 126.0, 123.7, 120.1, 69.7, 49.0, 21.6, 21.1. IR (film) v_{max} = 2922, 1661, 1615, 1598, 1510, 1387, 1275, 1261, 1165, 1087, 764, 750. HRMS (ESI, *m/z*) calcd for C₃₂H₂₉N₄O₃S [M+H]⁺: 549.1955, found: 549.1953. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK AD-H, *n*-hexane/2-propanol = 60 : 40, *v* = 1.0 mL/min, $\lambda = 254.0$ nm; t_{major} = 12.8 min, t_{minor} = 22.8 min). (*R*, *Z*)-1-(3,5-dimethylphenyl)-3-phenyl-6-tosyl-1,5,6,13b-tetrahydro-2*H*-[1,2,4]triazocino[2,3-*c*]quinazolin-2-one

white solid, 53.3 mg, 95%, Mp: 214 – 216 °C, 91% *ee*, $[\alpha]^{25}_{D} = 56.0$ (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.61 - 7.55$ (d, J = 7.0 Hz, 2H), 7.53 – 7.47 (d, J = 8.0 Hz, 2H), 7.47 – 7.38 (m, 3H), 7.27 – 7.19 (m, 2H), 7.10 – 7.03 (d, J = 8.0 Hz, 2H), 6.96 – 6.89 (d, J = 8.0 Hz, 2H), 6.88 – 6.83 (d, J = 1.5 Hz, 1H), 6.80 – 6.70 (m, 3H), 6.38 – 6.05 (m, 2H), 5.16 – 4.95 (dd, J = 15.0, 7.0 Hz, 1H), 4.48 – 4.27 (dd, J = 15.0, 10.0 Hz, 1H), 2.30 (s, 3H), 2.04 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 167.9, 146.4, 145.7, 141.8, 141.1, 138.1, 135.7, 135.0, 133.1, 130.1, 130.0, 129.8, 129.3, 129.0, 128.9, 127.1, 126.7, 126.1, 125.9, 123.7, 120.0, 69.8, 49.0, 21.6, 20.9. IR (film) <math>\nu_{max} = 2922, 2852, 1662, 1597, 1389, 1358, 1164, 1089, 815, 765.$ HRMS (ESI, *m/z*) calcd for C₃₃H₃₁N₄O₃S [M+H]⁺: 563.2111, found: 563.2114. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK AD-H, *n*-hexane/2-propanol = 60 : 40, $\nu = 1.0$ mL/min, $\lambda = 254.0$ nm; t_{major} = 5.7 min, t_{minor} = 12.8 min).

(*R*, *Z*)-1-(3-methoxyphenyl)-3-phenyl-6-tosyl-1,5,6,13b-tetrahydro-2*H*-[1,2,4]triazocino [2,3-*c*]quinazolin-2-one

colorless oil, 49.9 mg, 88%, 93% *ee*, $[\alpha]^{25}_{D} = 88.0$ (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.61 - 7.55$ (m, 2H), 7.52 - 7.48 (d, J = 8.0 Hz, 2H), 7.47 - 7.40 (m, 3H), 7.29 - 7.20 (m, 2H), 7.11 - 7.06 (d, J = 8.0 Hz, 2H), 7.02 - 6.92 (m, 3H), 6.87 (s, 1H), 6.83 - 6.80 (d, J = 1.5Hz, 1H), 6.80 - 6.74 (dd, J = 10.0, 7.0 Hz, 1H), 6.70 - 6.64 (dd, J = 8.5, 2.5 Hz, 1H), 6.35 (s, 1H), 6.07 (s, 1H), 5.18 - 4.93 (dd, J = 15.0, 7.0 Hz, 1H), 4.44 - 4.24 (dd, J = 15.0, 10.0 Hz, 1H), 3.51 (s, 3H), 2.32 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 167.9$, 159.4, 146.5, 145.8, 141.7, 141.2, 137.1, 134.9, 133.0, 130.0, 129.4, 129.3, 129.0, 128.9, 127.1, 126.7, 126.2, 126.1, 123.9, 121.8, 119.9, 115.2, 114.6, 69.8, 55.2, 49.0, 21.7. IR (film) $\nu_{max} = 2923$, 1662, 1614, 1598, 1490, 1389, 1229, 1163, 1088, 1037, 765, 706. HRMS (ESI, *m/z*) calcd for C₃₂H₂₉N₄O₄S [M+H]⁺: 565.1904, found: 565.1906. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK AD-H, *n*-hexane/2-propanol = 60 : 40, $\nu = 1.0$ mL/min, $\lambda = 254.0$ nm; t_{major} = 8.9 min, t_{minor} = 18.2 min).

(*R*, *Z*)-1-(4-methoxyphenyl)-3-phenyl-6-tosyl-1,5,6,13b-tetrahydro-2*H*-[1,2,4]triazocino [2,3-*c*]quinazolin-2-one

yellow oil, 48.6 mg, 86%, 90% *ee*, $[\alpha]^{25}_{D} = 40.0$ (*c* 1.0, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ = 7.59 - 7.53 (m, 2H), 7.52 - 7.47 (d, *J* = 8.0 Hz, 2H), 7.47 - 7.39 (m, 3H), 7.28 - 7.19 (m, 2H), 7.09 - 7.04 (d, *J* = 8.5 Hz, 2H), 6.98 - 6.93 (dd, *J* = 7.5, 1.5 Hz, 1H), 6.92 - 6.87 (m, 2H), 6.78 - 6.71 (m, 2H), 6.56 (s, 4H), 5.15 - 4.96 (dd, *J* = 15.0, 7.0 Hz, 1H), 4.39 - 4.29 (dd, *J* = 15.0, 10.0 Hz, 1H), 3.65 (s, 3H), 2.31 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ = 168.2, 159.2, 146.5, 145.7, 141.9, 141.0, 134.9, 133.1, 130.4, 130.0, 129.9, 129.3, 129.0, 128.9, 128.5, 126.9, 126.6, 126.2, 126.0, 123.7, 120.0, 114.0, 69.7, 55.2, 49.1, 21.6. IR (film) ν_{max} = 2924, 1661, 1614, 1598, 1510, 1389, 1357, 1243, 1164, 1087, 809, 764. HRMS (ESI, *m/z*) calcd for C₃₂H₂₉N₄O₄S [M+H]⁺: 565.1904, found: 565.1902. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK AD-H, *n*-hexane/2-propanol = 60 : 40, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 18.7 min, t_{minor} = 35.1 min).

(*R*, *Z*)-3-phenyl-6-tosyl-1-(4-(trifluoromethoxy)phenyl)-1,5,6,13b-tetrahydro-2*H*-[1,2,4] triazocino[2,3-*c*]quinazolin-2-one

3ma

colorless oil, 40.2 mg, 65%, 90% *ee*, $[\alpha]^{25}_{D} = 160.0$ (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.60 - 7.55$ (m, 2H), 7.52 - 7.41 (m, 5H), 7.29 - 7.21 (m, 2H), 7.12 - 7.06 (d, J = 8.0 Hz, 2H), 6.97 - 6.91 (m, 2H), 6.91 - 6.84 (m, 4H), 6.83 - 6.78 (dd, J = 10.0, 7.0 Hz, 1H), 6.75 -6.62 (m, 2H), 5.13 - 5.04 (dd, J = 15.0, 6.5 Hz, 1H), 4.36 - 4.26 (dd, J = 15.0, 10.0 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 168.1, 148.8, 146.3, 145.9, 141.4, 140.9, 134.7, 132.8, 131.0, 130.2, 130.0, 129.5, 129.1, 128.8, 126.9, 126.6, 126.5, 126.1, 124.1, 120.9, 120.2$ (q, <math>J = 256.5 Hz), 119.6, 69.8, 49.1, 21.7. ¹⁹F NMR (CDCl₃, 470 MHz): $\delta = -57.9$. IR (film) $v_{max} = 2924, 1666, 1615, 1598, 1507, 1260, 1165, 1087, 764, 704.$ HRMS (ESI, m/z) calcd for C₃₂H₂₆F₃N₄O₄S [M+H]⁺: 619.1621, found: 619.1619. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK AD-H, *n*-hexane/2-propanol = 60 : 40, v = 1.0 mL/min, $\lambda = 254.0$ nm; t_{major} = 8.1 min, t_{minor} = 11.1 min). (*R*, *Z*)-3-(2-fluorophenyl)-1-(3-methoxyphenyl)-6-tosyl-1,5,6,13b-tetrahydro-2*H*-[1,2,4] triazocino[2,3-*c*]quinazolin-2-one

yellow oil, 35.2 mg, 60%, 96% *ee*, $[α]^{25}_{D} = -32.0$ (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ = 7.53 - 7.36 (m, 4H), 7.30 - 7.20 (m, 3H), 7.18 - 7.10 (m, 2H), 7.03 - 6.92 (m, 5H), 6.82 -6.77 (d, *J* = 2.0 Hz, 1H), 6.76 - 6.69 (dd, *J* = 9.5, 7.0 Hz, 1H), 6.67 - 6.60 (dd, *J* = 8.5, 2.5 Hz, 1H), 6.41 - 6.33 (d, *J* = 7.5 Hz, 1H), 6.14 (s, 1H), 5.08 - 4.99 (dd, *J* = 15.0, 7.0 Hz, 1H), 4.43 - 4.30 (dd, *J* = 15.0, 10.0 Hz, 1H), 3.52 (s, 3H), 2.31 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ = 167.0, 159.9 (d, *J* = 245.1 Hz), 159.2, 146.5, 145.8, 141.0, 138.2, 137.5, 132.9, 131.1 (d, *J* = 8.5 Hz), 130.3 (d, *J* = 3.1 Hz), 129.9, 129.9, 129.1, 128.9, 127.9, 127.3 (d, *J* = 5.4 Hz), 126.2, 126.0, 125.1 (d, *J* = 3.1 Hz), 124.8 (d, *J* = 13.1 Hz), 121.6, 120.1, 115.5 (d, *J* = 21.1 Hz), 115.0, 114.6, 69.4, 55.2, 48.6, 21.6. ¹⁹F NMR (CDCl₃, 470 MHz): δ = -114.3. IR (film) v_{max} = 2922, 1661, 1599, 1574, 1488, 1394, 1261, 1165, 764, 750. HRMS (ESI, *m/z*) calcd for C₃₂H₂₈FN₄O₄S [M+H]⁺: 583.181, found: 583.1813. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK IA, *n*-hexane/2-propanol = 50 : 50, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 8.3 min, t_{minor} = 19.7 min).

(*R*, *Z*)-3-(4-fluorophenyl)-1-(3-methoxyphenyl)-6-tosyl-1,5,6,13b-tetrahydro-2*H*-[1,2,4] triazocino[2,3-*c*]quinazolin-2-one

yellow oil, 55.1 mg, 95%, 93% *ee*, $[α]^{25}_{D}$ = 96.0 (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ = 7.64 – 7.57 (m, 2H), 7.53 – 7.46 (d, *J* = 8.0 Hz, 2H), 7.29 – 7.20 (m, 2H), 7.17 – 7.07 (m, 4H), 7.01 – 6.91 (m, 3H), 6.89 – 6.85 (d, *J* = 1.5 Hz, 1H), 6.85 – 6.78 (d, *J* = 2.0 Hz, 1H), 6.76 – 6.70 (dd, *J* = 10.0, 7.0 Hz, 1H), 6.69 – 6.64 (dd, *J* = 8.5, 2.5 Hz, 1H), 6.34 (s, 1H), 6.06 (s, 1H), 5.08 – 5.01 (dd, *J* = 15.0, 6.5 Hz, 1H), 4.39 – 4.29 (dd, *J* = 15.0, 10.0 Hz, 1H), 3.50 (s, 3H), 2.33 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ = 167.7, 163.4 (d, *J* = 248.3 Hz), 159.4, 146.4, 145.9, 141.1, 140.5, 137.0, 132.9, 131.1 (d, *J* = 3.3 Hz), 130.0, 130.0, 129.3, 128.9, 128.7, 128.6, 127.1, 126.2, 126.1, 124.0, 121.7, 119.8, 116.1, 115.9, 115.2, 114.6, 69.8, 55.2, 48.9, 21.7. ¹⁹F NMR (CDCl₃, 470 MHz): δ = -111.6. IR (film) v_{max} = 2922, 1661, 1599, 1508, 1387, 1231, 1163, 1088, 764, 750. HRMS (ESI, *m/z*) calcd for C₃₂H₂₈FN₄O₄S [M+H]⁺: 583.181, found: 583.1808. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK IA, *n*hexane/2-propanol = 50 : 50, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 9.9 min, t_{minor} = 19.0 min).

(*R*, *Z*)-3-(3-chlorophenyl)-1-(3-methoxyphenyl)-6-tosyl-1,5,6,13b-tetrahydro-2*H*-[1,2,4] triazocino[2,3-*c*]quinazolin-2-one

yellow oil, 54.2 mg, 91%, 92% *ee*, $[α]^{25}_{D}$ = 96.0 (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ = 7.58 – 7.55 (m, 1H), 7.54 – 7.48 (m, 3H), 7.42 – 7.34 (m, 2H), 7.30 – 7.23 (m, 2H), 7.16 – 7.11 (d, *J* = 8.0 Hz, 2H), 7.03 – 6.92 (m, 3H), 6.90 – 6.86 (d, *J* = 1.5 Hz, 1H), 6.82 – 6.74 (m, 2H), 6.71 – 6.65 (dd, *J* = 8.0, 2.5 Hz, 1H), 6.33 (s, 1H), 6.06 (s, 1H), 5.12 – 5.03 (dd, *J* = 15.0, 7.0 Hz, 1H), 4.40 – 4.29 (dd, *J* = 15.0, 10.0 Hz, 1H), 3.52 (s, 3H), 2.35 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ = 167.2, 159.4, 146.4, 146.0, 141.1, 140.4, 136.9, 136.7, 135.0, 133.0, 130.3, 130.1, 129.4, 129.3, 128.9, 127.1, 126.6, 126.3, 126.1, 125.4, 125.0, 121.7, 119.8, 115.2, 114.7, 69.76, 55.2, 48.8, 21.7. IR (film) v_{max} = 2921, 2851, 1661, 1615, 1598, 1387, 1276, 1261, 1164, 764, 751. HRMS (ESI, *m*/*z*) calcd for C₃₂H₂₈³⁵ClN₄O₄S [M+H]⁺: 599.1514, found: 599.1518. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK IA, *n*hexane/2-propanol = 50 : 50, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 8.8 min, t_{minor} = 15.5 min).

(*R*, *Z*)-3-(4-chlorophenyl)-1-(3-methoxyphenyl)-6-tosyl-1,5,6,13b-tetrahydro-2*H*-[1,2,4] triazocino[2,3-*c*]quinazolin-2-one

yellow solid, 51.5 mg, 86%, Mp: 115 – 117 °C, 96% *ee*, $[\alpha]^{25}_{D}$ = 112.0 (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ = 7.59 – 7.54 (m, 2H), 7.52 – 7.48 (m, 2H), 7.45 – 7.39 (m, 2H), 7.29 – 7.21 (m, 2H), 7.14 – 7.09 (d, *J* = 8.0 Hz, 2H), 7.02 – 6.92 (m, 3H), 6.89 – 6.86 (d, *J* = 1.5 Hz, 1H), 6.83 – 6.75 (m, 2H), 6.70 – 6.65 (dd, *J* = 8.5, 2.5 Hz, 1H), 6.33 (s, 1H), 6.05 (s, 1H), 5.10 – 5.02 (dd, *J* = 15.0, 7.0 Hz, 1H), 4.39 – 4.31 (dd, *J* = 15.0, 10.0 Hz, 1H), 3.51 (s, 3H), 2.34 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ = 167.5, 159.4, 146.4, 145.9, 141.1, 140.5, 137.0, 135.5, 133.3, 132.8, 130.0, 129.3, 129.2, 128.9, 128.04, 127.1, 126.3, 126.1, 124.6, 121.7, 119.8, 115.2, 114.6, 69.8, 55.2, 48.9, 21.7. IR (film) ν_{max} = 2922, 2851, 1662, 1615, 1598, 1491, 1387, 1356, 1231, 1163, 763. HRMS (ESI, *m/z*) calcd for C₃₂H₂₈³⁵ClN₄O₄S [M+H]⁺: 599.1514, found: 599.1509. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK IA, *n*-hexane/2-propanol = 50 : 50, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 13.6 min, t_{minor} = 26.2 min).

(*R*, *Z*)-3-(3,4-dichlorophenyl)-1-(3-methoxyphenyl)-6-tosyl-1,5,6,13b-tetrahydro-2*H*-[1,2,4]triazocino[2,3-*c*]quinazolin-2-one

yellow oil, 57.3 mg, 91%, 95% *ee*, $[α]^{25}_{D} = 160.0$ (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.75 - 7.66$ (d, J = 1.5 Hz, 1H), 7.56 - 7.45 (m, 4H), 7.31 - 7.22 (m, 2H), 7.20 - 7.11 (d, J = 8.0 Hz, 2H), 7.05 - 6.91 (m, 3H), 6.88 - 6.81 (m, 2H), 6.80 - 6.74 (dd, J = 10.0, 7.0 Hz, 1H), 6.72 - 6.62 (dd, J = 8.5, 2.5 Hz, 1H), 6.32 (s, 1H), 6.04 (s, 1H), 5.11 - 5.02 (dd, J = 15.0, 7.0 Hz, 1H), 4.40 - 4.29 (dd, J = 15.0, 10.0 Hz, 1H), 3.51 (s, 3H), 2.37 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 166.9, 159.4, 146.4, 146.1, 141.1, 139.5, 136.8, 134.9, 133.6, 133.2, 132.8, 130.9, 130.1, 129.3, 128.8, 128.5, 127.1, 126.3, 126.2, 125.9, 121.6, 119.6, 115.1, 114.7, 69.8, 55.2, 48.7, 21.7. IR (film) <math>v_{max} = 2920, 1661, 1599, 1574, 1489, 1375, 1275, 1261, 1164, 764, 750.$ HRMS (ESI, m/z) calcd for C₃₂H₂₇³⁵Cl₂N₄O4S [M+H]⁺: 633.1125, found: 633.1123. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK IA, *n*-hexane/2-propanol = 70 : 30, v = 1.0 mL/min, λ = 254.0 nm; t_{major} = 23.8 min, t_{minor} = 28.6 min).

(*R*, *Z*)-3-(3-bromophenyl)-1-(3-methoxyphenyl)-6-tosyl-1,5,6,13b-tetrahydro-2*H*-[1,2,4] triazocino[2,3-*c*]quinazolin-2-one

yellow oil, 53.4 mg, 83%, 94% *ee*, $[α]^{25}_{D} = 104.0$ (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ = 7.75 – 7.70 (m, 1H), 7.58 – 7.54 (dd, *J* = 8.0, 2.0 Hz, 2H), 7.53 – 7.49 (d, *J* = 8.5 Hz, 2H), 7.34 – 7.22 (m, 3H), 7.17 – 7.10 (d, *J* = 8.5 Hz, 2H), 7.03 – 6.92 (m, 3H), 6.91 – 6.87 (d, *J* = 1.5 Hz, 1H), 6.80 – 6.73 (m, 2H), 6.71 – 6.66 (dd, *J* = 8.5, 3.0 Hz, 1H), 6.33 (s, 1H), 6.05 (s, 1H), 5.11 – 5.03 (dd, *J* = 15.5, 7.0 Hz, 1H), 4.39 – 4.29 (dd, *J* = 15.5, 10.0 Hz, 1H), 3.52 (s, 3H), 2.36 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ = 167.2, 159.4, 146.4, 146.0, 141.1, 140.3, 137.0, 136.9, 132.9, 132.3, 130.5, 130.1, 129.5, 129.3, 128.9, 127.1, 126.3, 126.1, 125.5, 125.5, 123.1, 121.7, 119.7, 115.2, 114.7, 69.8, 55.2, 48.8, 21.7. IR (film) $v_{max} = 2920$, 1661, 1598, 1489, 1387, 1276, 1261, 1164, 1088, 764, 750. HRMS (ESI, *m/z*) calcd for C₃₂H₂₈⁷⁹BrN₄O₄S [M+H]⁺: 643.1009, found: 643.1004. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK IA, *n*-hexane/2-propanol = 50 : 50, *v* = 1.0 mL/min, $\lambda = 254.0$ nm; $t_{major} = 9.4$ min, $t_{minor} = 17.1$ min). (*R*, *Z*)-3-(4-bromophenyl)-1-(3-methoxyphenyl)-6-tosyl-1,5,6,13b-tetrahydro-2*H*-[1,2,4] triazocino[2,3-*c*]quinazolin-2-one

yellow oil, 59.9 mg, 93%, 94% *ee*, $[\alpha]^{25}_{D}$ = 152.0 (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ = 7.62 - 7.55 (m, 2H), 7.54 - 7.45 (m, 4H), 7.30 - 7.21 (m, 2H), 7.15 - 7.08 (d, *J* = 8.0 Hz, 2H), 7.02 - 6.92 (m, 3H), 6.89 - 6.85 (d, *J* = 2.0 Hz, 1H), 6.83 - 6.76 (m, 2H), 6.70 - 6.64 (dd, *J* = 8.5, 2.5 Hz, 1H), 6.32 (s, 1H), 6.05 (s, 1H), 5.10 - 5.01 (dd, *J* = 15.5, 7.0 Hz, 1H), 4.39 -4.30 (dd, *J* = 15.5, 10.0 Hz, 1H), 3.51 (s, 3H), 2.35 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ = 167.5, 159.4, 146.4, 145.9, 141.1, 140.6, 137.0, 133.8, 132.8, 132.2, 130.0, 129.3, 128.9, 128.3, 127.1, 126.3, 126.1, 124.7, 123.7, 121.7, 119.8, 115.2, 114.6, 69.8, 55.2, 48.9, 21.7. IR (film) v_{max} = 2923, 1660, 1598, 1573, 1489, 1386, 1260, 1163, 1087, 764. HRMS (ESI, *m/z*) calcd for C₃₂H₂₈⁷⁹BrN₄O₄S [M+H]⁺: 643.1009, found: 643.1004. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK IA, *n*-hexane/2-propanol = 50 : 50, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 15.3 min, t_{minor} = 28.3 min).

(*R*, *Z*)-1-(3-methoxyphenyl)-3-(*m*-tolyl)-6-tosyl-1,5,6,13b-tetrahydro-2*H*-[1,2,4]triazocino [2,3-*c*]quinazolin-2-one

yellow oil, 51.6 mg, 89%, 92% *ee*, $[α]^{25}_{D} = 72.0$ (*c* 1.0, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ = 7.53 – 7.48 (d, *J* = 8.5 Hz, 2H), 7.43 – 7.40 (d, *J* = 1.0 Hz, 1H), 7.38 – 7.31 (m, 2H), 7.29 – 7.21 (m, 3H), 7.11 – 7.06 (d, *J* = 8.0 Hz, 2H), 7.01 – 6.93 (m, 3H), 6.88 – 6.85 (d, *J* = 1.5 Hz, 1H), 6.85 – 6.81 (d, *J* = 2.0 Hz, 1H), 6.79 – 6.72 (dd, *J* = 10.5, 7.0 Hz, 1H), 6.70 – 6.65 (dd, *J* = 8.5, 2.5 Hz, 1H), 6.35 (s, 1H), 6.07 (s, 1H), 5.10 – 5.03 (dd, *J* = 15.0, 6.5 Hz, 1H), 4.41 – 4.30 (dd, *J* = 15.0, 10.0 Hz, 1H), 3.52 (s, 3H), 2.43 (s, 3H), 2.33 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ = 168.0, 159.4, 146.5, 145.7, 141.8, 141.2, 138.7, 137.1, 134.8, 133.0, 130.2, 130.0, 130.0, 129.3, 128.9, 127.2, 127.1, 126.2, 126.0, 123.9, 123.7, 121.8, 120.0, 115.2, 114.5, 69.8, 55.2, 49.0, 21.7, 21.6. IR (film) v_{max} = 2922, 1663, 1614, 1598, 1490, 1387, 1235, 1163, 1088, 765, 707. HRMS (ESI, *m/z*) calcd for C₃₃H₃₁N₄O₄S [M+H]⁺: 579.2061, found: 579.2065. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK IA, *n*-hexane/2-propanol = 50 : 50, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 7.9 min, t_{minor} = 16.2 min). (*R*, *Z*)-1-(3-methoxyphenyl)-3-(*p*-tolyl)-6-tosyl-1,5,6,13b-tetrahydro-2*H*-[1,2,4]triazocino[2,3-*c*]quinazolin-2-one

yellow oil, 53.5 mg, 93%, 93% *ee*, $[\alpha]^{25}_{D} = 104.0$ (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.53 - 7.44$ (dd, J = 11.5, 8.5 Hz, 4H), 7.29 - 7.20 (m, 4H), 7.11 - 7.05 (d, J = 8.0 Hz, 2H), 7.02 - 6.90 (m, 3H), 6.88 - 6.85 (d, J = 1.5 Hz, 1H), 6.83 - 6.79 (d, J = 2.0 Hz, 1H), 6.76 -6.70 (dd, J = 10.5, 7.0 Hz, 1H), 6.70 - 6.64 (m, 1H), 6.34 (s, 1H), 6.06 (s, 1H), 5.11 - 5.01 (dd, J = 15.0, 6.5 Hz, 1H), 4.40 - 4.30 (dd, J = 15.0, 10.0 Hz, 1H), 3.51 (s, 3H), 2.41 (s, 3H), 2.32 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 168.1$, 159.4, 146.6, 145.7, 141.6, 141.2, 139.5, 137.2, 133.1, 132.0, 130.0, 129.9, 129.7, 129.3, 128.9, 127.1, 126.5, 126.1, 126.0, 122.8, 121.8, 120.0, 115.2, 114.6, 69.7, 55.2, 49.1, 21.6, 21.3. IR (film) v_{max} = 2922, 1663, 1614, 1598, 1387, 1231, 1163, 1088, 764, 706. HRMS (ESI, *m/z*) calcd for C₃₃H₃₁N₄O₄S [M+H]⁺: 579.2061, found: 579.2063. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK IA, *n*hexane/2-propanol = 50 : 50, v = 1.0 mL/min, $\lambda = 254.0$ nm; t_{major} = 13.5 min, t_{minor} = 42.9 min).

(*R*, *Z*)-3-(4-isopropylphenyl)-1-(3-methoxyphenyl)-6-tosyl-1,5,6,13b-tetrahydro-2*H*-[1,2,4]triazocino[2,3-*c*]quinazolin-2-one

white solid, 51.4 mg, 85%, Mp: 212 – 214 °C, 90% *ee*, $[\alpha]^{25}_{D} = 96.0$ (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.54 - 7.45$ (m, 4H), 7.34 – 7.29 (d, J = 8.5 Hz, 2H), 7.29 – 7.21 (m, 2H), 7.10 – 7.03 (d, J = 8.5 Hz, 2H), 7.01 – 6.92 (m, 3H), 6.89 – 6.84 (d, J = 2.0 Hz, 1H), 6.82 – 6.78 (d, J = 2.0 Hz, 1H), 6.78 – 6.71 (dd, J = 10.0, 6.5 Hz, 1H), 6.70 – 6.64 (m, 1H), 6.35 (s, 1H), 6.07 (s, 1H), 5.10 – 5.00 (dd, J = 15.5, 7.0 Hz, 1H), 4.40 – 4.30 (dd, J = 15.5, 10.0 Hz, 1H), 3.51 (s, 3H), 3.02 – 2.92 (m, 1H), 2.31 (s, 3H), 1.34 – 1.26 (dd, J = 6.5, 1.5 Hz, 6H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 168.1$, 159.4, 150.3, 146.6, 145.7, 141.6, 141.2, 137.2, 133.1, 132.4, 130.0, 129.9, 129.2, 128.9, 127.1, 127.1, 126.6, 126.1, 126.0, 122.8, 121.8, 120.0, 115.2, 114.6, 69.8, 55.2, 49.1, 34.0, 23.9, 21.6. IR (film) $v_{max} = 2960$, 1667, 1598, 1387, 1362, 1275, 1261, 1164, 1088, 764, 750. HRMS (ESI, *m/z*) calcd for C₃₅H₃₅N₄O₄S [M+H]⁺: 607.2374, found: 607.2375. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK IA, *n*-hexane/2-propanol = 50 : 50, v = 1.0 mL/min, $\lambda = 254.0$ nm; $t_{major} = 14.2$ min, $t_{minor} = 32.4$ min).

(*R*, *Z*)-3-(4-cyclohexylphenyl)-1-(3-methoxyphenyl)-6-tosyl-1,5,6,13b-tetrahydro-2*H*-[1,2,4]triazocino[2,3-*c*]quinazolin-2-one

yellow oil, 61.1 mg, 95%, 88% *ee*, $[α]^{25}_{D} = 112.0$ (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ = 7.53 - 7.43 (m, 4H), 7.31 - 7.20 (m, 4H), 7.09 - 7.03 (d, *J* = 8.5 Hz, 2H), 7.02 - 6.92 (m, 3H), 6.89 - 6.85 (d, *J* = 1.5 Hz, 1H), 6.80 - 6.76 (d, *J* = 2.0 Hz, 1H), 6.76 - 6.71 (dd, *J* = 10.5, 7.0 Hz, 1H), 6.70 - 6.63 (dd, *J* = 8.5, 2.5 Hz, 1H), 6.35 (s, 1H), 6.07 (s, 1H), 5.11 - 5.00 (dd, *J* = 15.0, 6.5 Hz, 1H), 4.42 - 4.29 (dd, *J* = 15.0, 10.0 Hz, 1H), 3.51 (s, 3H), 2.63 - 2.50 (m, 1H), 2.30 (s, 3H), 1.96 - 1.83 (m, 4H), 1.81 - 1.74 (m, 1H), 1.52 - 1.38 (m, 4H), 1.33 - 1.25 (m, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ = 168.1, 159.4, 149.5, 146.6, 145.7, 141.6, 141.2, 137.2, 133.1, 132.3, 130.0, 129.9, 129.2, 128.9, 127.5, 127.1, 126.6, 126.1, 126.0, 122.8, 121.8, 120.0, 115.2, 114.6, 69.7, 55.2, 49.1, 44.4, 34.4, 26.9, 26.1, 21.7. IR (film) v_{max} = 2923, 2851, 1667, 1614, 1598, 1387, 1276, 1261, 1164, 1088, 764, 750. HRMS (ESI, *m/z*) calcd for C₃₈H₃₉N₄O₄S [M+H]⁺: 647.2687, found: 647.2691. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK IA, *n*-hexane/2-propanol = 50 : 50, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 27.2 min, t_{minor} = 66.9 min).

(*R*, *Z*)-3-(4-(tert-butyl)phenyl)-1-(3-methoxyphenyl)-6-tosyl-1,5,6,13b-tetrahydro-2*H*-[1,2,4]triazocino[2,3-*c*]quinazolin-2-one

white solid, 51.1 mg, 82%, Mp: 218 – 220 °C, 90% *ee*, $[\alpha]^{25}_{D} = 96.0$ (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.53 - 7.44$ (m, 6H), 7.29 – 7.21 (m, 2H), 7.09 – 7.04 (d, J = 8.0 Hz, 2H), 7.01 – 6.93 (m, 3H), 6.88 – 6.84 (m, 1H), 6.83 – 6.79 (d, J = 1.5 Hz, 1H), 6.79 – 6.73 (dd, J = 10.5, 7.0 Hz, 1H), 6.71 – 6.65 (dd, J = 8.5, 2.5 Hz, 1H), 6.36 (s, 1H), 6.07 (s, 1H), 5.10 – 5.01 (dd, J = 15.0, 6.5 Hz, 1H), 4.40 – 4.32 (dd, J = 15.0, 10.5 Hz, 1H), 3.52 (s, 3H), 2.31 (s, 3H), 1.37 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 168.1$, 159.4, 152.6, 146.6, 145.7, 141.5, 141.2, 137.2, 133.1, 132.0, 130.0, 129.9, 129.2, 128.9, 127.1, 126.3, 126.1, 126.0, 126.0, 122.9, 121.8, 120.0, 115.2, 114.6, 69.8, 55.2, 49.1, 34.8, 31.3, 21.6. IR (film) v_{max} = 2961, 1666, 1598, 1387, 1275, 1262, 1232, 1164, 764, 750. HRMS (ESI, *m/z*) calcd for C₃₆H₃₇N₄O₄S [M+H]⁺: 621.253, found: 621.2533. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK IA, *n*-hexane/2-propanol = 60 : 40, v = 1.0 mL/min, $\lambda = 254.0$ nm; t_{major} = 15.1 min, t_{minor} = 28.9 min).

(*R*, *Z*)-1-(3-methoxyphenyl)-3-(naphthalen-2-yl)-6-tosyl-1,5,6,13b-tetrahydro-2*H*-[1,2,4]-triazocino[2,3-*c*]quinazolin-2-one

yellow oil, 58.8 mg, 96%, 94% *ee*, $[α]^{25}_{D} = 128.0$ (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ = 8.11 – 8.01 (d, *J* = 2.0 Hz, 1H), 7.97 – 7.83 (m, 3H), 7.76 – 7.68 (dd, *J* = 8.5, 1.5 Hz, 1H), 7.58 – 7.44 (m, 4H), 7.28 – 7.23 (m, 1H), 7.23 – 7.17 (m, 1H), 7.10 – 7.04 (d, *J* = 8.0 Hz, 2H), 7.04 – 6.98 (t, *J* = 8.0 Hz, 1H), 6.98 – 6.86 (m, 5H), 6.71 – 6.66 (dd, *J* = 8.5, 2.5 Hz, 1H), 6.39 (s, 1H), 6.10 (s, 1H), 5.17 – 5.07 (dd, *J* = 15.0, 7.0 Hz, 1H), 4.47 – 4.37 (dd, *J* = 15.0, 10.5 Hz, 1H), 3.52 (s, 3H), 2.25 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ = 168.0, 159.4, 146.6, 145.8, 141.6, 141.1, 137.1, 133.6, 133.4, 133.0, 131.9, 130.0, 129.3, 128.9, 128.8, 128.7, 127.7, 127.1, 127.0, 126.7, 126.6, 126.2, 126.0, 124.1, 123.7, 121.8, 119.9, 115.3, 114.6, 69.8, 55.2, 49.1, 21.6. IR (film) v_{max} = 3055, 2923, 1661, 1614, 1598, 1391, 1237, 1087, 764, 724. HRMS (ESI, *m/z*) calcd for C₃₆H₃₁N₄O₄S [M+H]⁺: 615.2061, found: 615.2058. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK IA, *n*-hexane/2-propanol = 50 : 50, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 15.0 min, t_{minor} = 46.8 min).

(*R*, *Z*)-1-(3-methoxyphenyl)-3-(thiophen-3-yl)-6-tosyl-1,5,6,13b-tetrahydro-2*H*-[1,2,4]-triazocino[2,3-*c*]quinazolin-2-one

white solid, 51.8 mg, 91%, Mp: 117 – 119 °C, 90% *ee*, $[\alpha]^{25}_{D} = 88.0$ (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.57 - 7.53$ (dd, J = 3.0, 1.5 Hz, 1H), 7.53 – 7.48 (m, 2H), 7.42 – 7.38 (dd, J = 5.0, 3.0 Hz, 1H), 7.38 – 7.34 (dd, J = 5.0, 1.0 Hz, 1H), 7.28 – 7.19 (m, 2H), 7.13 – 7.08 (d, J = 8.0 Hz, 2H), 7.01 – 6.93 (m, 2H), 6.93 – 6.89 (dd, J = 7.5, 2.0 Hz, 1H), 6.88 – 6.86 (d, J = 1.5 Hz, 1H), 6.78 – 6.75 (d, J = 1.5 Hz, 1H), 6.75 – 6.70 (dd, J = 10.0, 7.0 Hz, 1H), 6.70 – 6.65 (dd, J = 8.5, 2.5 Hz, 1H), 6.33 (s, 1H), 6.05 (s, 1H), 5.09 – 5.01 (dd, J = 15.5, 7.0 Hz, 1H), 4.38 – 4.30 (dd, J = 15.5, 10.0 Hz, 1H), 3.51 (s, 3H), 2.34 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 167.5, 159.4, 146.5, 145.8, 141.2, 137.1, 136.9, 136.0, 133.0, 130.1, 130.0, 129.3, 128.8, 127.1, 126.8, 126.1, 126.0, 125.3, 124.6, 122.5, 121.7, 119.9, 115.2, 114.6, 69.7, 55.2, 48.9, 21.7. IR (film) <math>\nu_{max} = 2921, 1661, 1598, 1489, 1355, 1276, 1261, 1088, 764, 750.$ HRMS (ESI, m/z) calcd for C₃₀H₂₇N₄O₄S₂ [M+H]⁺: 571.1468, found: 571.1467. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK IA, *n*-hexane/2-propanol = 50 : 50, v = 1.0 mL/min, $\lambda = 254.0$ nm; t_{major} = 11.7 min, t_{minor} = 24.9 min).

(*R*, *Z*)-3-(4-chlorophenyl)-12-fluoro-1-(3-methoxyphenyl)-6-tosyl-1,5,6,13b-tetrahydro-2*H*-[1,2,4]triazocino[2,3-*c*]quinazolin-2-one

yellow oil, 52.0 mg, 84%, 96% *ee*, $[α]^{25}_{D} = 104.0$ (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ = 7.59 – 7.54 (m, 2H), 7.53 – 7.49 (m, 2H), 7.46 – 7.41 (m, 2H), 7.17 – 7.12 (d, *J* = 8.0 Hz, 2H), 7.03 – 6.89 (m, 3H), 6.88 – 6.83 (d, *J* = 1.5 Hz, 1H), 6.81 – 6.76 (m, 2H), 6.72 – 6.68 (dd, *J* = 8.5, 3.0 Hz, 1H), 6.68 – 6.63 (dd, *J* = 8.0, 2.5 Hz, 1H), 6.34 (s, 1H), 6.15 (s, 1H), 5.09 – 4.99 (dd, *J* = 15.0, 6.5 Hz, 1H), 4.36 – 4.27 (dd, *J* = 15.0, 10.0 Hz, 1H), 3.56 (s, 3H), 2.36 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ = 167.5, 160.6 (d, *J* = 245.9 Hz), 159.5, 146.1, 145.8, 140.3, 137.6 (d, *J* = 2.8 Hz), 136.9, 135.6, 133.1, 132.7, 130.1, 129.4, 129.3, 128.8, 128.0, 127.9, 124.6, 121.7, 120.9 (d, *J* = 7.8 Hz), 117.4 (d, *J* = 22.4 Hz), 115.2, 114.6, 113.1 (d, *J* = 23.1 Hz), 69.4, 55.2, 48.9, 21.7. ¹⁹F NMR (CDCl₃, 470 MHz): δ = -114.6. IR (film) v_{max} = 2961, 2922, 2852, 1661, 1604, 1490, 1385, 1260, 1162, 1088, 1014, 800, 762. HRMS (ESI, *m/z*) calcd for C₃₂H₂₇³⁵CIFN₄O₄S [M+H]⁺: 617.142, found: 617.1418. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK IA, *n*-hexane/2-propanol = 50 : 50, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 13.0 min, t_{minor} = 33.4 min).

(*R*, *Z*)-11-bromo-3-(4-chlorophenyl)-1-(3-methoxyphenyl)-6-tosyl-1,5,6,13b-tetrahydro-2*H*-[1,2,4]triazocino[2,3-*c*]quinazolin-2-one

yellow oil, 44.4 mg, 66%, 93% *ee*, $[\alpha]^{25}_{D} = 96.0$ (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ = 7.59 – 7.54 (m, 2H), 7.53 – 7.48 (d, *J* = 8.5 Hz, 2H), 7.44 – 7.39 (m, 2H), 7.38 – 7.32 (dd, *J* = 8.0, 2.0 Hz, 1H), 7.18 – 7.12 (d, *J* = 8.0 Hz, 2H), 7.12 – 7.08 (d, *J* = 2.0 Hz, 1H), 7.05 – 6.97 (t, *J* = 8.0 Hz, 1H), 6.91 – 6.88 (d, *J* = 1.5 Hz, 1H), 6.86 – 6.82 (d, *J* = 8.5 Hz, 1H), 6.81 – 6.75 (m, 2H), 6.74 – 6.68 (dd, *J* = 8.0, 7.0 Hz, 1H), 6.31 (s, 1H), 6.07 (s, 1H), 5.08 – 5.00 (dd, *J* = 15.5, 7.0 Hz, 1H), 4.36 – 4.27 (dd, *J* = 15.5, 10.0 Hz, 1H), 3.55 (s, 3H), 2.36 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ = 167.5, 159.6, 147.3, 146.2, 142.4, 140.4, 136.8, 135.6, 133.2, 132.6, 130.1 129.5, 129.3, 129.2, 128.9, 128.9, 128.5, 128.0, 124.7, 123.5, 121.7, 118.8, 115.2, 114.7, 69.4, 55.2, 48.9, 21.7. IR (film) $v_{max} = 2922$, 1667, 1606, 1589, 1490, 1386, 1275, 1261, 1163, 764, 750. HRMS (ESI, *m/z*) calcd for C₃₂H₂₇⁷⁹Br³⁵ClN₄O₄S [M+H]⁺: 677.0619, found: 677.0618. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK AD-H, *n*hexane/2-propanol = 60 : 40, *v* = 1.0 mL/min, $\lambda = 254.0$ nm; t_{minor} = 14.7 min, t_{major} = 21.7 min). (*R*, *Z*)-3-(4-chlorophenyl)-12-methoxy-1-(3-methoxyphenyl)-6-tosyl-1,5,6,13b-tetrahydro-2*H*-[1,2,4]triazocino[2,3-*c*]quinazolin-2-one

yellow oil, 57.3 mg, 91%, 92% *ee*, $[α]^{25}_{D} = 72.0$ (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ = 7.60 – 7.54 (m, 2H), 7.54 – 7.48 (d, *J* = 8.0 Hz, 2H), 7.46 – 7.39 (m, 2H), 7.16 – 7.09 (d, *J* = 8.5 Hz, 2H), 7.03 – 6.95 (t, *J* = 8.0 Hz, 1H), 6.90 – 6.86 (m, 1H), 6.86 – 6.81 (m, 2H), 6.81 – 6.76 (dd, *J* = 10.0, 7.0 Hz, 1H), 6.71 – 6.65 (m, 2H), 6.45 – 6.40 (d, *J* = 2.5 Hz, 1H), 6.35 (s, 1H), 6.15 (s, 1H), 5.08 – 5.01 (dd, *J* = 15.5, 6.5 Hz, 1H), 4.36 – 4.28 (dd, *J* = 15.5, 10.5 Hz, 1H), 3.80 (s, 3H), 3.54 (s, 3H), 2.35 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ = 167.6, 159.4, 158.0, 145.9, 144.6, 140.4, 137.0, 135.4, 135.0, 133.4, 132.8, 130.0, 129.3, 129.2, 128.9, 128.0, 127.3, 124.7, 121.7, 120.7, 115.7, 115.1, 114.6, 111.7, 69.8, 55.8, 55.1, 48.9, 21.7. IR (film) $v_{max} = 2922$, 2850, 1661, 1619, 1603, 1494, 1386, 1228, 1163, 1089, 836. HRMS (ESI, *m/z*) calcd for C₃₃H₃₀³⁵CIN₄O₅S [M+H]⁺: 629.1620, found: 629.1621. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK IA, *n*-hexane/2-propanol = 50 : 50, *v* = 1.0 mL/min, $\lambda = 254.0$ nm; t_{major} = 12.2 min, t_{minor} = 55.7 min).

(*R*, *Z*)-3-(4-chlorophenyl)-11-methoxy-1-(3-methoxyphenyl)-6-tosyl-1,5,6,13b-tetrahydro-2*H*-[1,2,4]triazocino[2,3-*c*]quinazolin-2-one

yellow oil, 43.3 mg, 69%, 94% *ee*, $[\alpha]^{25}_{D}$ = 80.0 (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ = 7.58 – 7.48 (m, 4H), 7.45 – 7.37 (m, 2H), 7.17 – 7.08 (d, *J* = 8.0 Hz, 2H), 7.05 – 6.96 (t, *J* = 8.0 Hz, 1H), 6.85 – 6.72 (m, 5H), 6.72 – 6.67 (m, 1H), 6.48 – 6.44 (d, *J* = 2.0 Hz, 1H), 6.33 (s, 1H), 6.09 (s, 1H), 5.09 – 5.00 (dd, *J* = 15.5, 7.0 Hz, 1H), 4.38 – 4.30 (dd, *J* = 15.5, 10.0 Hz, 1H), 3.74 (s, 3H), 3.54 (s, 3H), 2.35 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ = 167.5, 160.8, 159.4, 146.7, 145.9, 142.4, 140.6, 137.1, 135.4, 133.3, 132.9, 130.0, 129.3, 129.2, 128.9, 128.0, 127.9, 124.5, 121.7, 115.1, 114.7, 113.9, 112.3, 109.2, 69.7, 55.4, 55.2, 48.9, 21.7. IR (film) ν_{max} = 2921, 2851, 1660, 1603, 1570, 1493, 1387, 1231, 1163, 1088, 761. HRMS (ESI, *m/z*) calcd for C₃₃H₃₀³⁵ClN₄O₅S [M+H]⁺: 629.1620, found: 629.1618. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK IA, *n*-hexane/2-propanol = 50 : 50, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 14.9 min, t_{minor} = 25.6 min).

(*R*, *Z*)-3-(4-chlorophenyl)-1-(3-methoxyphenyl)-6-(phenylsulfonyl)-1,5,6,13b-tetrahydro-2*H*-[1,2,4]triazocino[2,3-*c*]quinazolin-2-one

yellow oil, 56.9 mg, 97%, 94% *ee*, $[α]^{25}_{D}$ = 128.0 (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ = 7.67 – 7.61 (m, 2H), 7.59 – 7.52 (m, 3H), 7.46 – 7.40 (m, 2H), 7.37 – 7.30 (m, 2H), 7.30 – 7.20 (m, 2H), 7.02 – 6.89 (m, 3H), 6.86 – 6.82 (d, *J* = 1.5 Hz, 1H), 6.82 – 6.76 (m, 2H), 6.73 – 6.65 (dd, *J* = 8.5, 2.5 Hz, 1H), 6.32 (s, 1H), 6.05 (s, 1H), 5.13 – 5.04 (dd, *J* = 15.0, 7.0 Hz, 1H), 4.42 – 4.31 (dd, *J* = 15.0, 10.0 Hz, 1H), 3.51 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ = 167.5, 159.4, 146.3, 141.0, 140.6, 136.9, 135.9, 135.5, 134.6, 133.2, 130.1, 129.4, 129.3, 129.3, 128.8, 128.0, 127.1, 126.3, 126.1, 124.3, 121.7, 119.8, 115.2, 114.6, 69.8, 55.2, 48.9. IR (film) v_{max} = 2923, 1661, 1614, 1598, 1490, 1387, 1261, 1164, 1087, 764, 752. HRMS (ESI, *m/z*) calcd for C₃₁H₂₆³⁵CIN₄O₄S [M+H]⁺: 585.1358, found: 585.1355. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK IA, *n*-hexane/2-propanol = 50 : 50, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 14.4 min, t_{minor} = 40.3 min).

(*R*, *Z*)-3-(4-chlorophenyl)-6-(mesitylsulfonyl)-1-(3-methoxyphenyl)-1,5,6,13b-tetrahydro-2*H*-[1,2,4]triazocino[2,3-*c*]quinazolin-2-one

yellow oil, 56.7 mg, 91%, 96% *ee*, $[α]^{25}_{D}$ = 200.0 (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ = 7.75 - 7.65 (m, 2H), 7.50 - 7.41 (m, 2H), 7.40 - 7.34 (d, *J* = 1.5 Hz, 1H), 7.25 - 7.18 (m, 2H), 7.12 - 7.05 (m, 1H), 7.02 - 6.94 (t, *J* = 8.5 Hz, 1H), 6.92 - 6.81 (m, 4H), 6.70 - 6.62 (dd, *J* = 8.5, 2.5 Hz, 1H), 6.44 - 6.41 (d, *J* = 1.5 Hz, 1H), 6.36 (s, 1H), 6.09 (s, 1H), 5.09 - 5.00 (dd, *J* = 15.0, 7.0 Hz, 1H), 4.46 - 4.34 (dd, *J* = 15.0, 10.5 Hz, 1H), 3.51 (s, 3H), 2.45 - 2.07 (m, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ = 167.8, 159.4, 145.9, 144.7, 141.4, 141.0, 140.2, 137.2, 135.4, 133.5, 132.3, 130.0, 129.3, 129.0, 128.3, 127.2, 126.3, 125.8, 125.2, 121.8, 120.1, 115.3, 114.5, 70.0, 55.2, 48.6, 22.5, 21.2. IR (film) v_{max} = 2922, 2851, 1662, 1599, 1490, 1276, 1261, 1160, 764, 750. HRMS (ESI, *m/z*) calcd for C₃₄H₃₂³⁵ClN₄O₄S [M+H]⁺: 627.1827, found: 627.1826. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK ID, *n*-hexane/2propanol = 50 : 50, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 18.9 min, t_{minor} = 30.6 min).

(*R*, *Z*)-6-((4-(tert-butyl)phenyl)sulfonyl)-3-(4-chlorophenyl)-1-(3-methoxyphenyl)-1,5,6, 13b-tetrahydro-2*H*-[1,2,4]triazocino[2,3-*c*]quinazolin-2-one

yellow oil, 61.5 mg, 96%, 97% *ee*, $[\alpha]^{25}_{D} = 80.0$ (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ = 7.52 - 7.46 (m, 4H), 7.45 - 7.38 (m, 2H), 7.31 - 7.27 (m, 1H), 7.25 - 7.19 (m, 3H), 7.06 -7.02 (d, *J* = 2.0 Hz, 1H), 7.02 - 6.96 (m, 2H), 6.81 - 6.74 (m, 2H), 6.71 - 6.65 (dd, *J* = 8.5, 3.0 Hz, 1H), 6.43 - 6.39 (d, *J* = 2.0 Hz, 1H), 6.33 (s, 1H), 6.05 (s, 1H), 5.13 - 5.05 (dd, *J* = 15.0, 6.5 Hz, 1H), 4.39 - 4.31 (dd, *J* = 15.0, 10.0 Hz, 1H), 3.51 (s, 3H), 1.21 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ = 167.4, 159.4, 158.7, 146.5, 141.2, 140.5, 136.9, 135.5, 133.2, 132.6, 130.1, 129.4, 129.3, 128.7, 127.8, 126.9, 126.4, 126.2, 126.1, 124.1, 121.6, 119.7, 115.2, 114.6, 69.8, 55.2, 48.9, 35.2, 30.9. HRMS (ESI, *m/z*) calcd for C₃₅H₃₄³⁵CIN₄O₄S [M+H]⁺: 641.1984, found: 641.1976. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK IA, *n*-hexane/2-propanol = 85 : 15, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 45.2 min, t_{minor} = 55.3 min).

(*R*, *Z*)-3-(4-chlorophenyl)-1-(3-methoxyphenyl)-6-((4-methoxyphenyl)sulfonyl)-1,5,6,13b-tetrahydro-2*H*-[1,2,4]triazocino[2,3-*c*]quinazolin-2-one

yellow oil, 57.2 mg, 93%, 96% *ee*, $[\alpha]^{25}_{D} = 160.0$ (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ = 7.62 - 7.55 (m, 2H), 7.55 - 7.49 (m, 2H), 7.47 - 7.39 (m, 2H), 7.30 - 7.20 (m, 2H), 7.02 -6.92 (m, 3H), 6.90 - 6.86 (d, *J* = 1.5 Hz, 1H), 6.84 - 6.82 (d, *J* = 2.0 Hz, 1H), 6.82 - 6.77 (dd, *J* = 10.0, 7.0 Hz, 1H), 6.76 - 6.72 (m, 2H), 6.70 - 6.65 (dd, *J* = 8.5, 2.5 Hz, 1H) 6.33 (s, 1H), 6.06 (s, 1H), 5.09 - 5.01 (dd, *J* = 15.0, 7.0 Hz, 1H), 4.39 - 4.30 (dd, *J* = 15.0, 10.0 Hz, 1H), 3.77 (s, 3H), 3.51 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ = 167.6, 164.4, 159.4, 146.5, 141.1, 140.5, 137.0, 135.5, 133.4, 131.1, 130.0, 129.3, 129.2, 128.1, 127.2, 126.6, 126.2, 126.1, 124.7, 121.7, 119.8, 115.1, 114.6, 69.7, 55.7, 55.2, 48.9. IR (film) v_{max} = 2924, 2852, 1661, 1614, 1597, 1492, 1387, 1264, 1231, 1157, 1090, 764. HRMS (ESI, *m/z*) calcd for C₃₂H₂₈³⁵CIN₄O₅S [M+H]⁺: 615.1463, found: 615.1462. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK AD-H, *n*-hexane/2-propanol = 70 : 30, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 30.5 min, t_{minor} = 39.2 min).

(2R, 4R)-1-(4-methoxyphenyl)-5-oxo-2,4-diphenyl-4-vinylpyrrolidine-3,3-dicarbo nitrile

white solid, 39.6 mg, 95%, Mp: 77 – 79 °C, 95% *ee*, $[\alpha]^{25}_{D} = 80.0$ (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.50 - 7.40$ (m, 5H), 7.38 – 7.27 (m, 5H), 7.24 – 7.18 (m, 2H), 6.88 – 6.81 (m, 2H), 6.58 – 6.49 (dd, *J* = 17.5, 11.0 Hz, 1H), 5.79 – 5.69 (dd, *J* = 17.5, 11.0 Hz, 2H), 5.27 (s, 1H), 3.76 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 169.8$, 158.1, 133.7, 133.1, 130.3, 130.1, 129.8, 129.3, 129.0, 128.9, 128.7, 128.4, 125.1, 122.1, 114.5, 112.0, 111.8, 65.8, 62.8, 55.4, 50.5. IR (film) $v_{max} = 2923$, 1721, 1511, 1457, 1363, 1251, 1031, 836, 736, 700. HRMS (ESI, *m/z*) calcd for C₂₇H₂₂N₃O₂ [M+H]⁺: 420.1707, found: 420.1706. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK ADH, *n*-hexane/2-propanol = 80 : 20, v = 1.0 mL/min, $\lambda = 254.0$ nm; $t_{major} = 10.3$ min, $t_{minor} = 16.3$ min).

(2*R*, 4*R*)-4-(4-chlorophenyl)-1-(4-methoxyphenyl)-5-oxo-2-phenyl-4-vinylpyrrolidine-3,3-dicarbonitrile

white solid, 41.4 mg, 91%, Mp: 227 – 229 °C, 91% *ee*, $[\alpha]^{25}_{D} = 56.0$ (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.47 - 7.42$ (m, 2H), 7.40 – 7.32 (m, 5H), 7.32 – 7.27 (m, 2H), 7.23 – 7.18 (m, 2H), 6.88 – 6.83 (m, 2H), 6.53 – 6.44 (dd, *J* = 17.5, 11.0 Hz, 1H), 5.78 – 5.67 (dd, *J* = 17.5, 11.0 Hz, 2H), 5.28 (s, 1H), 3.76 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 169.2$, 158.2, 136.1, 133.5, 132.0, 130.5, 130.3, 130.0, 129.5, 129.0, 128.6, 128.3, 125.0, 122.5, 114.5, 112.1, 111.5, 65.9, 62.3, 55.5, 50.3. IR (film) $\nu_{max} = 2916$, 1724, 1610, 1512, 1494, 1252, 1097, 1031, 809, 704. HRMS (ESI, *m/z*) calcd for C₂₇H₂₁³⁵ClN₃O₂ [M+H]⁺: 454.1317, found: 454.1312. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK ADH, *n*-hexane/2-propanol = 80 : 20, $\nu = 1.0$ mL/min, $\lambda = 254.0$ nm; $t_{major} = 13.4$ min, $t_{minor} = 25.3$ min).

(2R, 4R)-4-(4-bromophenyl)-1-(4-methoxyphenyl)-5-oxo-2-phenyl-4-vinylpyrrolidine-

3,3-dicarbonitrile

white solid, 44.4 mg, 89%, Mp: 208 – 210 °C, 91% *ee*, $[\alpha]^{25}_{D} = 48.0$ (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.63 - 7.57$ (m, 2H), 7.40 – 7.28 (m, 7H), 7.23 – 7.17 (m, 2H), 6.90 – 6.82 (m, 2H), 6.52 – 6.43 (dd, J = 17.5, 11.0 Hz, 1H), 5.78 – 5.73 (d, J = 11.0 Hz, 1H), 5.73 – 5.66 (d, J = 17.5 Hz, 1H), 5.27 (s, 1H), 3.76 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 169.2$, 158.2, 133.5, 132.5, 130.6, 130.5, 130.0, 129.0, 128.6, 128.2, 125.0, 124.4, 122.6, 114.5, 112.1, 111.5, 65.9, 62.3, 55.5, 50.2. IR (film) $\nu_{max} = 2925$, 1721, 1610, 1511, 1489, 1364, 1253, 1078, 1027, 804. HRMS (ESI, *m/z*) calcd for C₂₇H₂₁⁷⁹BrN₃O₂ [M+H]⁺: 498.0812, found: 498.0809. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK ADH, *n*-hexane/2-propanol = 80 : 20, $\nu = 1.0$ mL/min, $\lambda = 254.0$ nm; t_{major} = 14.2 min, t_{minor} = 30.2 min).

(2*R*, 4*R*)-1-(4-methoxyphenyl)-5-oxo-2-phenyl-4-(*p*-tolyl)-4-vinylpyrrolidine-3,3-dicarbonitrile

white solid, 34.1 mg, 79%, Mp: 229 – 231 °C, 95% *ee*, $[\alpha]^{25}_{D} = 64.0$ (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.37 - 7.23$ (m, 9H), 7.22 – 7.17 (m, 2H), 6.88 – 6.82 (m, 2H), 6.57 – 6.48 (dd, *J* = 18.0, 11.0 Hz, 1H), 5.77 – 5.69 (dd, *J* = 18.0, 11.0 Hz, 2H), 5.26 (s, 1H), 3.75 (s, 3H), 2.39 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 169.9$, 158.1, 140.0, 133.8, 130.3, 130.2, 130.0, 129.9, 128.9, 128.7, 128.6, 128.4, 125.1, 121.8, 114.4, 112.1, 111.9, 65.8, 62.7, 55.4, 50.6, 21.2. IR (film) $\nu_{max} = 2923$, 2853, 1722, 1511, 1457, 1363, 1252, 1029, 806, 704. HRMS (ESI, *m/z*) calcd for C₂₈H₂₄N₃O₂ [M+H]⁺: 434.1863, found: 434.1859. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK ADH, *n*-hexane/2-propanol = 80 : 20, $\nu = 1.0$ mL/min, $\lambda = 254.0$ nm; t_{major} = 17.8 min, t_{minor} = 30.2 min).

(2R, 4R)-1-(4-methoxyphenyl)-4-(naphthalen-2-yl)-5-oxo-2-phenyl-4-vinylpyrrolidine-

3,3-dicarbonitrile

white solid, 44.5 mg, 95%, Mp: 238 – 240 °C, 92% *ee*, $[\alpha]^{25}_{D} = 64.0$ (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.99 - 7.94$ (d, J = 9.0 Hz, 1H), 7.91 – 7.86 (d, J = 8.0 Hz, 1H), 7.85 – 7.81 (d, J = 2.0 Hz, 1H), 7.81 – 7.77 (d, J = 8.0 Hz, 1H), 7.62 – 7.49 (m, 3H), 7.35 – 7.23 (m, 7H), 6.90 – 6.85 (m, 2H), 6.65 – 6.57 (dd, J = 17.5, 11.0 Hz, 1H), 5.83 – 5.73 (dd, J = 17.5, 11.0 Hz, 2H), 5.33 (s, 1H), 3.76 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 169.8$, 158.2, 133.7, 133.4, 133.0, 130.4, 130.3, 130.1, 129.2, 129.0, 128.7, 128.7, 128.6, 128.5, 127.7, 127., 127.01, 125.8, 125.2, 122.5, 114.6, 112.1, 111.9, 66.0, 63.1, 55.5, 50.5. IR (film) $\nu_{max} = 2925$, 1722, 1512, 1457, 1363, 1300, 1250, 1180, 837. HRMS (ESI, *m/z*) calcd for C₃₁H₂₄N₃O₂ [M+H]⁺: 470.1863, found: 470.1857. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK ADH, *n*-hexane/2-propanol = 80 : 20, $\nu = 1.0$ mL/min, $\lambda = 254.0$ nm; t_{major} = 14.4 min, t_{minor} = 48.7 min).

(2*R*, 4*S*)-1-(4-methoxyphenyl)-5-oxo-2-phenyl-4-(thiophen-3-yl)-4-vinylpyrrolidine-3,3-dicarbonitrile

white solid, 41.4 mg, 97%, Mp: 143 – 145 °C, 92% *ee*, $[\alpha]^{25}_{D} = 72.0$ (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.49 - 7.44$ (m, 1H), 7.39 – 7.29 (m, 6H), 7.22 – 7.17 (m, 3H), 6.87 – 6.81 (m, 2H), 6.52 – 6.44 (dd, *J* = 17.5, 11.0 Hz, 1H), 5.74 – 5.67 (dd, *J* = 17.5, 11.0 Hz, 2H), 5.34 (s, 1H), 3.75 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 169.5$, 158.1, 133.3, 133.1, 130.4, 130.2, 129.0, 128.6, 128.5, 127.5, 127.3, 126.4, 125.0, 122.1, 114.5, 112.2, 111.6, 66.0, 60.2, 55.4, 50.2. IR (film) $\nu_{max} = 2923$, 1723, 1511, 1457, 1362, 1252, 1029, 835, 737, 702. HRMS (ESI, *m/z*) calcd for C₂₅H₂₀N₃O₂S [M+H]⁺: 426.1271, found: 426.1270. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK ADH, *n*-hexane/2-propanol = 80 : 20, $\nu = 1.0$ mL/min, $\lambda = 254.0$ nm; t_{major} = 14.5 min, t_{minor} = 25.8 min).

(2*R*, 4*R*)-2-(4-fluorophenyl)-1-(4-methoxyphenyl)-5-oxo-4-phenyl-4-vinylpyrrolidine-3,3-dicarbonitrile

white solid, 35.7 mg, 82%, Mp: 76 – 78 °C, 94% *ee*, $[\alpha]^{25}_{D} = 56.0$ (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.50 - 7.44$ (m, 3H), 7.44 – 7.40 (m, 2H), 7.32 – 7.26 (m, 2H), 7.21 – 7.14 (m, 2H), 7.06 – 6.98 (m, 2H), 6.90 – 6.83 (m, 2H), 6.59 – 6.48 (dd, *J* = 18.0, 11.0 Hz, 1H), 5.82 – 5.70 (dd, *J* = 18.0, 11.0 Hz, 2H), 5.25 (s, 1H), 3.77 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 169.7$, 163.7 (d, *J* = 249.4 Hz), 158.3, 133.6, 132.8, 130.6 (d, *J* = 8.5 Hz), 129.9, 129.4, 128.8, 128.1, 125.9 (d, *J* = 3.0 Hz), 125.1, 122.0, 116.4, 116.2, 114.6, 111.8 (d, *J* = 5.0 Hz), 65.2, 62.8, 55.5, 50.5. ¹⁹F NMR (CDCl₃, 470 MHz): – 109.6. $\delta =$ IR (film) v_{max} = 2923, 1720, 1511, 1447, 1363, 1274, 1254, 1179, 1030, 837, 750. HRMS (ESI, *m/z*) calcd for C₂₇H₂₁FN₃O₂ [M+H]⁺: 438.1612, found: 438.1610. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK ADH, *n*-hexane/2-propanol = 80 : 20, *v* = 1.0 mL/min, $\lambda = 254.0$ nm; t_{major} = 10.7 min, t_{minor} = 21.9 min).

(2*R*, 4*R*)-1-(4-methoxyphenyl)-5-oxo-4-phenyl-2-(*p*-tolyl)-4-vinylpyrrolidine-3,3-dicarbonitrile

white solid, 37.3 mg, 86%, Mp: 216 – 218 °C, 95% *ee*, $[\alpha]^{25}_{D} = 40.0$ (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.50 - 7.39$ (m, 5H), 7.23 – 7.15 (m, 4H), 7.15 – 7.09 (d, J = 2.0 Hz, 2H), 6.89 – 6.80 (m, 2H), 6.58 – 6.47 (dd, J = 17.5, 11.0 Hz, 1H), 5.78 – 5.68 (dd, J = 17.5, 11.0 Hz, 2H), 5.24 (s, 1H), 3.75 (s, 3H), 2.29 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 169.7$, 158.1, 140.5, 133.8, 133.2, 129.8, 129.7, 129.3, 128.9, 128.5, 128.5, 127.1, 125.1, 122.0, 114.4, 112.1, 111.3, 65.74, 62.80, 55.4, 50.6, 21.3. $\delta =$ IR (film) v_{max} = 2923, 1724, 1512, 1457, 1364, 1252, 1179, 1032, 754, 699. HRMS (ESI, *m/z*) calcd for C₂₈H₂₄N₃O₂ [M+H]⁺: 434.1863, found: 434.1864. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK ADH, *n*-hexane/2-propanol = 80 : 20, *v* = 1.0 mL/min, $\lambda = 254.0$ nm; t_{major} = 10.6 min, t_{minor} = 16.5 min).
(2*S*, 4*R*)-2-(furan-2-yl)-1-(4-methoxyphenyl)-5-oxo-4-phenyl-4-vinylpyrrolidine-3,3-dicarbonitrile

white solid, 30.7 mg, 75%, Mp: 170 – 172 °C, 97% *ee*, $[\alpha]^{25}_{D} = 24.0$ (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.54 - 7.42$ (m, 6H), 7.24 – 7.18 (m, 2H), 6.93 – 6.87 (m, 2H), 6.61 – 6.52 (dd, J = 17.0, 10.5 Hz, 1H), 6.48 – 6.45 (d, J = 3.5 Hz, 1H), 6.38 – 6.34 (dd, J = 3.5, 2.0 Hz, 1H), 5.75 – 5.69 (d, J = 10.5 Hz, 1H), 5.69 – 5.64 (d, J = 17.0 Hz, 1H), 5.46 (s, 1H), 3.79 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 168.6, 158.8, 144.8, 144.0, 134.1, 133.6, 129.7, 129.3, 128., 128.21, 126.0, 122.5, 114.6, 113.8, 112.3, 111.6, 111.3, 62.2, 61.6, 55.5, 48.5. <math>\delta =$ IR (film) $\nu_{max} = 2923, 1719, 1512, 1457, 1367, 1250, 1180, 836, 733.$ HRMS (ESI, *m/z*) calcd for C₂₅H₂₀N₃O₃ [M+H]⁺: 410.1499, found: 410.1501. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK ADH, *n*-hexane/2-propanol = 80 : 20, $\nu = 1.0$ mL/min, $\lambda = 254.0$ nm; t_{major} = 21.7 min, t_{minor} = 27.7 min).

(2*R*, 3*S*, 4*R*)-3-(aminomethyl)-1-(4-methoxyphenyl)-5-oxo-2,4-diphenyl-4-vinylpyrrolidine-3-carbonitrile

white solid, 63.3 mg, 75%, Mp: 235 – 237 °C, 95% *ee*, $[\alpha]^{25}_{D} = 96.0$ (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.53 - 7.43$ (m, 4H), 7.41 – 7.27 (m, 8H), 6.88 – 6.78 (m, 2H), 6.56 – 6.45 (dd, *J* = 17.0, 10.5 Hz, 1H), 5.61 (s, 1H), 5.54 – 5.48 (d, *J* = 17.0 Hz, 1H), 5.48 – 5.42 (d, *J* = 10.5 Hz, 1H), 3.74 (s, 3H), 2.62 – 2.52 (d, *J* = 13.5 Hz, 1H), 2.52 – 2.44 (d, *J* = 13.5 Hz, 1H), 1.34 (s, 2H). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 170.9$, 157.3, 138.3, 137.8, 135.7, 130.5, 129.1, 128.7, 128.5, 128.5, 127.9, 124.0, 121.2, 118.9, 114.2, 64.5, 60.7, 55.6, 55.4, 47.0. HRMS (ESI, *m/z*) calcd for C₂₇H₂₆N₃O₂ [M+H]⁺: 424.2020, found: 424.2015. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK ADH, *n*-hexane/2-propanol = 75 : 25, $\nu = 1.0$ mL/min, $\lambda = 254.0$ nm; t_{major} = 14.3 min, t_{minor} = 51.5 min).

NMR Spectra of Substrates and Products

 ^1H NMR (500 MHz) and ^{13}C NMR (125 MHz) spectra of 1a

 ^1H NMR (500 MHz) ^{13}C NMR (125 MHz) and ^{19}F NMR (470 MHz) spectra of 1b

 ^1H NMR (500 MHz) ^{13}C NMR (125 MHz) and ^{19}F NMR (470 MHz) spectra of 1c

 ^1H NMR (500 MHz) and ^{13}C NMR (125 MHz) spectra of 1e

 ^1H NMR (500 MHz) and ^{13}C NMR (125 MHz) spectra of 1f

 1 H NMR (500 MHz) 13 C NMR (125 MHz) and 19 F NMR (470 MHz) spectra of 1g

インション 1222 -

190 180

 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 $^{-1}$ 1 11

— 2.271

 ^1H NMR (500 MHz) and ^{13}C NMR (125 MHz) spectra of 1i

7 64 7 64 7 664 7 664 7 664 7 664 7 664 7 664 7 664 7 664 7 664 7 664 7 7 664 7 7 664 7 7 664 7 7 664 7 4 66 7 4 46 7 46 7 4 46 7 4 46 7 4 46 7 4 46 7 4 46 7 4 46 7 4 46 7 46

 ^1H NMR (500 MHz) ^{13}C NMR (125 MHz) and ^{19}F NMR (470 MHz) spectra of 1m

 ^1H NMR (500 MHz) ^{13}C NMR (125 MHz) and ^{19}F NMR (470 MHz) spectra of 1n

 ^1H NMR (500 MHz) ^{13}C NMR (125 MHz) and ^{19}F NMR (470 MHz) spectra of 1σ

 ^1H NMR (500 MHz) and ^{13}C NMR (125 MHz) spectra of 1t

 ^1H NMR (500 MHz), ^{13}C NMR (125 MHz) and ^{19}F NMR (470 MHz) spectra of **3ba**

 ^1H NMR (500 MHz), ^{13}C NMR (125 MHz) and ^{19}F NMR (470 MHz) spectra of 3ca

 ^1H NMR (500 MHz) and ^{13}C NMR (125 MHz) spectra of 3ea

 1 H NMR (500 MHz) and 13 C NMR (125 MHz) spectra of **3fa**

 ^1H NMR (500 MHz), ^{13}C NMR (125 MHz) and ^{19}F NMR (470 MHz) spectra of 3ga

 $^1\mathrm{H}$ NMR (500 MHz) and $^{13}\mathrm{C}$ NMR (125 MHz) spectra of **3ia**

$\begin{array}{c} 1.2235 \\ 2.235 \\ 2.2335 \\ 2.235$

 1 H NMR (500 MHz) and 13 C NMR (125 MHz) spectra of **3ja**

7.7.559 7.7.559 7.7.559 7.7.559 7.7.557 7.7.259 7.7.259 7.7.2559 7

100 90 f1 (ppm) $^1\mathrm{H}$ NMR (500 MHz) and $^{13}\mathrm{C}$ NMR (125 MHz) spectra of **31a**

 160 150 140 130 120 110

 ^1H NMR (500 MHz), ^{13}C NMR (125 MHz) and ^{19}F NMR (470 MHz) spectra of **3ma**

 $^1\mathrm{H}$ NMR (500 MHz), $^{13}\mathrm{C}$ NMR (125 MHz) and $^{19}\mathrm{F}$ NMR (470 MHz) spectra of **3na**

 ^1H NMR (500 MHz), ^{13}C NMR (125 MHz) and ^{19}F NMR (470 MHz) spectra of **30a**

S80

 ^1H NMR (500 MHz) and ^{13}C NMR (125 MHz) spectra of 3ra

$\begin{array}{c} 7.25\\$

7.55 1.7.25 1.7.55 1.7.

7.7.555 (1) 1.7.555 (1)

¹H NMR (500 MHz), ¹³C NMR (125 MHz) and ¹⁹F NMR (470 MHz) spectra of **3qb**

$\begin{array}{c} 7/7/7 \\ 7/7/5 \\ 7/75 \\ 7/75 \\ 7/75 \\ 7/75 \\ 7/75 \\ 7/75 \\ 7/75 \\ 7/75 \\ 7/75 \\$

$\begin{array}{l} 7.569\\ 7.562\\ 7.$

$\begin{array}{c} 7.5.369\\ 6.5.25.269\\ 6.5.25.269\\ 6.5.25.269\\ 6.5.25.269\\ 6.5.25.269\\ 6.5.25.269\\ 6.5.25.269\\ 6.5.25.269\\ 6.5.25.269\\ 6.5.253\\ 6.5.2$

 ^1H NMR (500 MHz) and ^{13}C NMR (125 MHz) spectra of 3qi

S101

 ^1H NMR (500 MHz) and ^{13}C NMR (125 MHz) spectra of 4f

 ^1H NMR (500 MHz) and ^{13}C NMR (125 MHz) spectra of 6ba

 ^1H NMR (500 MHz) and ^{13}C NMR (125 MHz) spectra of 6ca

 ^1H NMR (500 MHz) and ^{13}C NMR (125 MHz) spectra of 6da

 ^1H NMR (500 MHz) and ^{13}C NMR (125 MHz) spectra of 6ea

 ^1H NMR (500 MHz) and ^{13}C NMR (125 MHz) spectra of 6fa

7, 477 7, 477 7, 477 7, 477 7, 477 7, 477 7, 477 7, 477 7, 477 7, 472 7, 472 7, 472 7, 472 7, 472 7, 422 7, 7, 169 6, 683 6, 683 6, 68800 6, 68800 6, 68800 6, 68800 6, 68800 6, 68800 6, 6

 $^1\mathrm{H}$ NMR (500 MHz), $^{13}\mathrm{C}$ NMR (125 MHz) and $^{19}\mathrm{F}$ NMR (470 MHz) spectra of **6ab**

 ^1H NMR (500 MHz) and ^{13}C NMR (125 MHz) spectra of 6ac

 ^1H NMR (500 MHz) and ^{13}C NMR (125 MHz) spectra of 6ad

HPLC Chromatograms of All Products HPLC chromatogram of racemic 3aa

[min] [min] [mAU*s] [mAU] %
----|-----|-----|------|-------|
1 8.724 BB 0.3282 1.77930e4 819.70538 49.9814
2 16.598 MM 0.9627 1.78062e4 308.27737 50.0186

HPLC chromatogram of racemic 3ba

1 8.777 BB 0.3337 1.15038e4 516.84399 49.8798 2 15.080 BB 0.6532 1.15592e4 260.73074 50.1202

HPLC chromatogram of chiral 3ba

HPLC chromatogram of racemic 3ca

----|-----| 1 12.161 BB 0.4908 1.01460e4 309.18802 50.4343 2 24.216 MM 2.1396 9971.23145 77.67324 49.5657

HPLC chromatogram of chiral 3ca

[IIIII] [IIIII] [IIIIO 'S] % ----|-----|-----|------|------| 1 8.440 VB 0.3221 2.27468e4 49.8292 2 14.905 MM 0.7899 2.29027e4 50.1708

HPLC chromatogram of chiral 3da

----|-----| 1 15.439 MM 0.7295 3.49062e4 49.7790 2 23.041 MM 1.9846 3.52162e4 50.2210

HPLC chromatogram of chiral 3ea

----|-----| 1 14.495 BB 0.6062 1.21084e4 301.09158 49.8601 2 22.985 MM 1.8310 1.21764e4 110.83334 50.1399

HPLC chromatogram of chiral 3fa

HPLC chromatogram of racemic 3ga

1 20.972 BB 0.8731 1.59504e4 50.1490

2 24.845 BB 1.3688 1.58556e4 49.8510

HPLC chromatogram of chiral 3ga

HPLC chromatogram of racemic 3ha

1 7.183 BB 0.2732 4367.15967 238.93665 50.0301 2 15.318 MM 0.9143 4361.90723 79.51097 49.9699

HPLC chromatogram of chiral 3ha

[min] [min] [mAU*s] % ----|-----|------|------|------| 1 12.822 BB 0.5243 6986.02930 50.1784 2 21.951 BB 1.2013 6936.34082 49.8216

HPLC chromatogram of chiral 3ia

S123

[IIIII] [IIII] [IIII] [IIII] [IIIII] [IIII] [IIIII] [IIII] [IIIII] [IIIII] [IIIII] [

HPLC chromatogram of chiral 3ja

HPLC chromatogram of racemic 3ka

----|-----| 1 9.037 BB 0.3603 4583.00537 190.09694 50.2988 2 17.926 BB 0.9254 4528.54688 69.75281 49.7012

HPLC chromatogram of chiral 3ka

HPLC chromatogram of racemic 3la

HPLC chromatogram of chiral 3la

HPLC chromatogram of racemic 3ma

----|-----|-----|-----|-----| 1 8.109 BB 0.3446 4959.45898 50.1475 2 10.964 BB 0.5214 4930.29053 49.8525

HPLC chromatogram of chiral 3ma

HPLC chromatogram of racemic 3na

----|------|------|------|------| 1 8.343 BB 0.3746 8036.51709 49.9966 2 19.368 BB 0.9140 8037.61084 50.0034

HPLC chromatogram of chiral 3na

HPLC chromatogram of racemic 3oa

1 9.880 BB 0.4144 1.18162e4 424.94348 50.0960 2 18.341 MM 1.0121 1.17709e4 193.84132 49.9040

HPLC chromatogram of chiral 30a

----|-----| 1 8.928 BB 0.3619 1.82076e4 745.71851 50.1274 2 15.386 BB 0.6963 1.81150e4 375.16321 49.8726

HPLC chromatogram of racemic 3qa

HPLC chromatogram of chiral 3qa

HPLC chromatogram of racemic 3ra

HPLC chromatogram of chiral 3ra

HPLC chromatogram of racemic 3sa

[mm] [mm] [mAO 's] % ----|-----| 1 9.387 BB 0.3873 1.02630e4 50.2641 2 16.718 BB 0.7589 1.01552e4 49.7359

HPLC chromatogram of chiral 3sa

----|-----| 1 15.326 BB 0.7129 2.21786e4 459.67737 50.0358 2 26.285 BB 1.5522 2.21469e4 190.23903 49.9642

HPLC chromatogram of chiral 3ta

HPLC chromatogram of racemic 3ua

----|-----| 1 7.907 BB 0.3277 1.23604e4 559.49518 50.0558 2 15.432 BB 0.7984 1.23329e4 220.21907 49.9442

HPLC chromatogram of chiral 3ua

----|-----|------|------|------| 1 13.259 BB 0.5638 1.12174e4 50.3572 2 37.952 BB 2.6629 1.10582e4 49.6428

HPLC chromatogram of chiral 3va

----|------|------|------|------|

1 13.468 BB 0.5889 1.36397e4 96.4101

2 42.881 MM 2.1820 507.88211 3.5899

[IIIII] [IIIII]

HPLC chromatogram of chiral 3wa

HPLC chromatogram of racemic 3xa

[min] [min] [mAU*s] % ----|-----|------|------|------| 1 27.193 BB 1.3514 1.42704e4 49.7911 2 57.432 MM 7.7491 1.43901e4 50.2089

HPLC chromatogram of chiral 3xa

2 66.873 MM 5.1071 823.53241 6.1294

HPLC chromatogram of racemic 3ya

----|-----| 1 15.494 MM 0.7844 6930.44287 147.25853 50.3930 2 28.464 MM 2.1938 6822.34375 51.83133 49.6070

HPLC chromatogram of chiral 3ya

HPLC chromatogram of chiral 3za

----|------|------|------|-------| 1 11.717 BB 0.4856 1.28185e4 50.0608 2 23.204 BB 1.3798 1.27874e4 49.9392

HPLC chromatogram of chiral 3z'a

- 1 11.718 MM 0.5561 1.93661e4 95.1845
- 2 24.921 MM 1.3796 979.75549 4.8155

----|-----| 1 12.922 MM 0.5909 1.79990e4 507.67300 49.9228 2 28.723 BB 1.8281 1.80547e4 132.71982 50.0772

HPLC chromatogram of chiral 3qb

HPLC chromatogram of racemic 3qc

HPLC chromatogram of chiral 3qc

HPLC chromatogram of racemic 3qd

[min] [min] [mAU*s] % ----|------|------|-------| 1 12.292 MM 0.6190 3800.56201 50.6241

2 53.978 MM 3.7083 3706.85840 49.3759

HPLC chromatogram of chiral 3qd

- 1 12.217 MM 0.6147 7357.34717 96.2331
- 2 55.734 MM 3.3545 287.99057 3.7669
HPLC chromatogram of racemic 3qe

----|-----| 1 15.033 MM 0.7379 4298.45361 50.0238 2 25.154 MM 1.3865 4294.36523 49.9762

HPLC chromatogram of chiral 3qe

HPLC chromatogram of racemic 3qf

[min] [min] [mAU*s] % ----|-----|------|------|-------| 1 14.526 MM 0.7261 5803.68066 49.5605 2 38.768 MM 2.7109 5906.61914 50.4395

HPLC chromatogram of chiral 3qf

1 14.402 MM 0.7270 4421.93359 97.1068

2 40.346 MM 2.3291 131.74649 2.8932

HPLC chromatogram of racemic 3qg

----|-----| 1 19.383 MM 1.4354 5161.94287 59.93750 50.6452 2 30.429 MM 3.2496 5030.42432 25.80011 49.3548

HPLC chromatogram of chiral 3qg

2 30.552 MM 3.1344 440.87170 2.2315

HPLC chromatogram of racemic 3qh

HPLC chromatogram of chiral 3qh

HPLC chromatogram of racemic 3qi

HPLC chromatogram of chiral 3qi

HPLC chromatogram of racemic 6aa

[min] [min] [mAU*s] [mAU] % ----|-----| 1 10.430 BB 0.3099 3412.05347 165.27567 50.2034 2 16.429 BB 0.4940 3384.41138 102.83238 49.7966

HPLC chromatogram of chiral 6aa

HPLC chromatogram of racemic 6ba

1 13.415 BB 0.4378 3409.54370 116.38366 50.0047

 $2\ 25.451\ BB\ 0.8644\ 3408.90674\ 58.80105\ 49.9953$

HPLC chromatogram of chiral 6ba

2 25.256 MM 1.0438 178.36073 2.84792 4.5253

HPLC chromatogram of racemic 6ca

HPLC chromatogram of chiral 6ca

HPLC chromatogram of racemic 6da

[min] [min] [mAU*s] [mAU] % ----|-----|-----|------|-------| 1 17.731 BB 0.5955 5110.96631 128.36464 50.0586 2 29.975 BB 1.0157 5099.00293 74.29411 49.9414

HPLC chromatogram of chiral 6da

2 30.204 MM 1.1956 165.57541 2.30816 2.5242

HPLC chromatogram of racemic 6ea

----|-----| 1 14.224 BB 0.4838 1.36801e4 429.24008 49.8732 2 48.489 BB 1.6573 1.37497e4 117.48980 50.1268

HPLC chromatogram of chiral 6ea

HPLC chromatogram of racemic 6fa

HPLC chromatogram of chiral 6fa

HPLC chromatogram of racemic 6ab

HPLC chromatogram of chiral 6ab

2 21.893 MM 0.9230 248.28287 4.48323 2.9707

HPLC chromatogram of racemic 6ac

[min] [min] [mAU*s] [mAU] % ----|-----|-----|------|-------| 1 10.571 BB 0.3360 8675.61914 387.80081 49.9306 2 16.488 BB 0.5284 8699.72949 242.01027 50.0694

HPLC chromatogram of chiral 6ac

HPLC chromatogram of racemic 6ad

HPLC chromatogram of chiral 6ad

HPLC chromatogram of racemic 7

----|-----| 1 14.305 BB 0.4858 6426.32715 194.83614 49.0023

2 51.780 MM 2.1814 6688.00684 51.09893 50.9977

HPLC chromatogram of chiral 7

X-Ray Crystallographic Data of 3ea, 6aa and 7

Crystallographic data for **3ea** have been deposited with the Cam-bridge Crystallographic Data Centre as deposition number 2208234. These data can be obtained free of charge via <u>www.ccdc.cam</u>.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

Table S1. Crystal data and structure refinement for 3ea

Identification code	3ea
Empirical formula	$C_{31}H_{25}ClN_4O_3S$
Formula weight	569.06
Temperature	297.0 К
Wavelength	1.54178 Å
Crystal system	Monoclinic
Space group	P 1 21 1
Unit cell dimensions	$a = 11.6897(6) \text{ Å} \qquad \alpha = 90^{\circ}$
	$b = 8.7462(4) \text{ Å}$ $\beta = 97.984(3)^{\circ}$
	$c = 27.9426(14) \text{ Å} \qquad \gamma = 90^{\circ}$
Volume	2829.2(2) Å ³
Ζ	4
Density (calculated)	1.336 Mg/m ³
Absorption coefficient	2.208 mm ⁻¹
F(000)	1184
Crystal size	0.19 x 0.12 x 0.1 mm ³
Theta range for data collection	3.194 to 68.397°.
Index ranges	-13<=h<=13, -10<=k<=9, -33<=l<=33
Reflections collected	71651
Independent reflections	9849 [R(int) = 0.0686]
Completeness to theta = 67.679°	98.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7362 and 0.5944
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	9849 / 1 / 723

Goodness-of-fit on F ²	1.118
Final R indices [I>2sigma(I)]	R1 = 0.0471, wR2 = 0.1158
R indices (all data)	R1 = 0.0620, wR2 = 0.1270
Absolute structure parameter	0.077(7)
Extinction coefficient	n/a
Largest diff. peak and hole	0.274 and -0.425 e.Å ⁻³

Table S2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for 3ea. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	X	У	Z	U (eq)
S(01)	1814(1)	6120(2)	4804(1)	68(1)
S(02)	4987(1)	6834(1)	8175(1)	65(1)
Cl(03)	388(1)	2012(2)	10337(1)	96(1)
Cl(04)	-1476(1)	8051(2)	7739(1)	102(1)
N(005)	1917(3)	7732(4)	6358(1)	44(1)
O(006)	2989(3)	9790(4)	6638(1)	65(1)
O(007)	5670(3)	2601(5)	9904(1)	75(1)
N(008)	3774(3)	5318(4)	8708(1)	54(1)
N(009)	4332(3)	3231(4)	9269(1)	50(1)
N(00A)	1396(3)	7380(4)	5197(1)	55(1)
N(00B)	4648(3)	6426(4)	8724(1)	57(1)
O(00C)	813(4)	5225(5)	4641(1)	89(1)
N(00D)	996(3)	6678(4)	5589(1)	49(1)
O(00E)	3947(3)	7368(4)	7902(1)	82(1)
O(00F)	2363(3)	7019(5)	4476(1)	87(1)
C(00G)	2821(3)	8712(5)	6359(1)	47(1)
O(00H)	5974(4)	7795(5)	8266(1)	94(1)
C(00I)	3626(3)	8450(4)	5988(1)	46(1)
N(00J)	1763(4)	5020(5)	8535(2)	71(1)
C(00K)	1130(3)	7943(4)	6708(1)	45(1)
C(00L)	3048(4)	2820(5)	8503(1)	51(1)
C(00M)	3390(4)	2927(5)	9541(1)	51(1)
C(00N)	1752(3)	6376(4)	6040(1)	43(1)
C(00O)	3259(4)	8644(5)	5520(2)	52(1)
C(00P)	1237(4)	5056(5)	6282(1)	48(1)
C(00Q)	7293(4)	2590(6)	9138(2)	57(1)
N(00R)	-677(3)	5594(5)	5828(2)	66(1)
C(00S)	5442(4)	3116(5)	9498(2)	55(1)
C(00T)	4805(3)	7933(5)	6176(1)	46(1)
C(00U)	58(4)	4788(5)	6186(2)	56(1)

C(00V)	91(4)	8681(5)	6577(2)	54(1)
C(00W)	6397(4)	3706(6)	9237(1)	54(1)
C(00X)	4047(4)	3706(5)	8759(1)	48(1)
C(00Y)	1387(4)	7308(5)	7161(2)	54(1)
C(00Z)	-709(4)	8738(6)	6901(2)	62(1)
C(010)	2024(4)	8850(5)	5292(2)	58(1)
C(011)	2658(5)	5841(6)	8663(2)	66(1)
C(012)	-431(5)	3627(6)	6437(2)	69(1)
C(013)	5018(4)	7107(6)	6601(2)	60(1)
C(014)	4781(5)	4403(6)	5490(2)	66(1)
C(015)	6457(4)	5173(6)	9117(2)	59(1)
C(016)	1966(4)	3498(6)	8414(2)	59(1)
C(017)	-457(4)	8057(6)	7343(2)	62(1)
C(018)	3195(4)	1344(6)	8346(2)	62(1)
C(019)	2889(4)	4107(6)	9759(2)	61(1)
C(01A)	8446(4)	3018(7)	9173(2)	72(1)
C(01B)	593(4)	7346(6)	7481(2)	63(1)
C(01C)	1947(4)	3837(6)	9999(2)	69(1)
C(01D)	5566(4)	6364(6)	9153(2)	64(1)
C(01E)	2835(4)	4896(6)	5130(2)	62(1)
C(01F)	4408(5)	3191(6)	5753(2)	68(1)
C(01G)	-178(4)	6449(5)	5554(2)	59(1)
C(01H)	4487(5)	4262(6)	7645(2)	64(1)
C(01I)	5722(4)	8130(6)	5914(2)	64(1)
C(01J)	6988(4)	1139(6)	8965(2)	66(1)
C(01K)	2987(4)	1449(5)	9574(2)	58(1)
C(01L)	4005(5)	5271(6)	5184(2)	65(1)
C(01M)	1924(4)	4149(5)	6609(2)	57(1)
C(01N)	259(5)	2760(6)	6768(2)	78(2)
C(01O)	6969(4)	6623(7)	6474(2)	71(1)
C(01P)	6087(4)	6454(7)	6745(2)	72(1)
C(01Q)	5360(4)	5128(6)	7906(2)	60(1)
C(01R)	1445(5)	2999(6)	6851(2)	75(1)
C(01S)	1548(4)	2371(6)	10027(2)	63(1)
C(01T)	4744(6)	2860(7)	7459(2)	77(2)
C(01U)	9255(5)	2018(9)	9035(2)	83(2)
C(01V)	3245(5)	2819(6)	5679(2)	72(1)
C(01W)	1035(5)	2658(7)	8173(2)	75(2)
C(01X)	2054(4)	1167(6)	9817(2)	66(1)
C(01Y)	6483(5)	4605(8)	7964(2)	80(2)
C(01Z)	6780(4)	7467(7)	6061(2)	72(1)
C(020)	1208(5)	1191(8)	8029(2)	82(2)

C(021)	2273(5)	543(7)	8108(2)	77(2)
C(022)	2458(5)	3658(6)	5373(2)	69(1)
C(023)	6725(6)	3193(9)	7772(2)	93(2)
C(024)	5238(6)	2344(7)	6115(2)	91(2)
C(025)	7799(5)	165(7)	8827(2)	79(2)
C(026)	5853(7)	2298(8)	7526(2)	93(2)
C(027)	8936(5)	605(9)	8859(2)	87(2)
C(028)	6137(10)	752(10)	7338(3)	151(4)
S(01)	1814(1)	6120(2)	4804(1)	68(1)
S(02)	4987(1)	6834(1)	8175(1)	65(1)
Cl(03)	388(1)	2012(2)	10337(1)	96(1)
Cl(04)	-1476(1)	8051(2)	7739(1)	102(1)
N(005)	1917(3)	7732(4)	6358(1)	44(1)
O(006)	2989(3)	9790(4)	6638(1)	65(1)
O(007)	5670(3)	2601(5)	9904(1)	75(1)
N(008)	3774(3)	5318(4)	8708(1)	54(1)
N(009)	4332(3)	3231(4)	9269(1)	50(1)
N(00A)	1396(3)	7380(4)	5197(1)	55(1)
N(00B)	4648(3)	6426(4)	8724(1)	57(1)
O(00C)	813(4)	5225(5)	4641(1)	89(1)
N(00D)	996(3)	6678(4)	5589(1)	49(1)
O(00E)	3947(3)	7368(4)	7902(1)	82(1)
O(00F)	2363(3)	7019(5)	4476(1)	87(1)
C(00G)	2821(3)	8712(5)	6359(1)	47(1)
O(00H)	5974(4)	7795(5)	8266(1)	94(1)
C(00I)	3626(3)	8450(4)	5988(1)	46(1)
N(00J)	1763(4)	5020(5)	8535(2)	71(1)
C(00K)	1130(3)	7943(4)	6708(1)	45(1)
C(00L)	3048(4)	2820(5)	8503(1)	51(1)
C(00M)	3390(4)	2927(5)	9541(1)	51(1)
C(00N)	1752(3)	6376(4)	6040(1)	43(1)
C(00O)	3259(4)	8644(5)	5520(2)	52(1)
C(00P)	1237(4)	5056(5)	6282(1)	48(1)
C(00Q)	7293(4)	2590(6)	9138(2)	57(1)
N(00R)	-677(3)	5594(5)	5828(2)	66(1)
C(00S)	5442(4)	3116(5)	9498(2)	55(1)
C(00T)	4805(3)	7933(5)	6176(1)	46(1)
C(00U)	58(4)	4788(5)	6186(2)	56(1)
C(00V)	91(4)	8681(5)	6577(2)	54(1)
C(00W)	6397(4)	3706(6)	9237(1)	54(1)
C(00X)	4047(4)	3706(5)	8759(1)	48(1)
C(00Y)	1387(4)	7308(5)	7161(2)	54(1)

C(00Z)	-709(4)	8738(6)	6901(2)	62(1)
C(010)	2024(4)	8850(5)	5292(2)	58(1)
C(011)	2658(5)	5841(6)	8663(2)	66(1)
C(012)	-431(5)	3627(6)	6437(2)	69(1)
C(013)	5018(4)	7107(6)	6601(2)	60(1)
C(014)	4781(5)	4403(6)	5490(2)	66(1)
C(015)	6457(4)	5173(6)	9117(2)	59(1)
C(016)	1966(4)	3498(6)	8414(2)	59(1)
C(017)	-457(4)	8057(6)	7343(2)	62(1)
C(018)	3195(4)	1344(6)	8346(2)	62(1)
C(019)	2889(4)	4107(6)	9759(2)	61(1)
C(01A)	8446(4)	3018(7)	9173(2)	72(1)
C(01B)	593(4)	7346(6)	7481(2)	63(1)
C(01C)	1947(4)	3837(6)	9999(2)	69(1)
C(01D)	5566(4)	6364(6)	9153(2)	64(1)
C(01E)	2835(4)	4896(6)	5130(2)	62(1)
C(01F)	4408(5)	3191(6)	5753(2)	68(1)
C(01G)	-178(4)	6449(5)	5554(2)	59(1)
C(01H)	4487(5)	4262(6)	7645(2)	64(1)
C(01I)	5722(4)	8130(6)	5914(2)	64(1)
C(01J)	6988(4)	1139(6)	8965(2)	66(1)
C(01K)	2987(4)	1449(5)	9574(2)	58(1)
C(01L)	4005(5)	5271(6)	5184(2)	65(1)
C(01M)	1924(4)	4149(5)	6609(2)	57(1)
C(01N)	259(5)	2760(6)	6768(2)	78(2)
C(01O)	6969(4)	6623(7)	6474(2)	71(1)
C(01P)	6087(4)	6454(7)	6745(2)	72(1)
C(01Q)	5360(4)	5128(6)	7906(2)	60(1)
C(01R)	1445(5)	2999(6)	6851(2)	75(1)
C(01S)	1548(4)	2371(6)	10027(2)	63(1)
C(01T)	4744(6)	2860(7)	7459(2)	77(2)
C(01U)	9255(5)	2018(9)	9035(2)	83(2)
C(01V)	3245(5)	2819(6)	5679(2)	72(1)
C(01W)	1035(5)	2658(7)	8173(2)	75(2)
C(01X)	2054(4)	1167(6)	9817(2)	66(1)
C(01Y)	6483(5)	4605(8)	7964(2)	80(2)
C(01Z)	6780(4)	7467(7)	6061(2)	72(1)
C(020)	1208(5)	1191(8)	8029(2)	82(2)
C(021)	2273(5)	543(7)	8108(2)	77(2)
C(022)	2458(5)	3658(6)	5373(2)	69(1)
C(023)	6725(6)	3193(9)	7772(2)	93(2)
C(024)	5238(6)	2344(7)	6115(2)	91(2)

C(025)	7799(5)	165(7)	8827(2)	79(2)
C(026)	5853(7)	2298(8)	7526(2)	93(2)
C(027)	8936(5)	605(9)	8859(2)	87(2)
C(028)	6137(10)	752(10)	7338(3)	151(4)

Table S3. Bond lengths [Å] and angles [°] for 3ea

S(01)-N(00A)	1.675(4)
S(01)-O(00C)	1.429(4)
S(01)-O(00F)	1.426(4)
S(01)-C(01E)	1.760(5)
S(02)-N(00B)	1.676(4)
S(02)-O(00E)	1.422(4)
S(02)-O(00H)	1.421(4)
S(02)-C(01Q)	1.753(5)
Cl(03)-C(01S)	1.736(5)
Cl(04)-C(017)	1.734(4)
N(005)-C(00G)	1.360(5)
N(005)-C(00K)	1.443(5)
N(005)-C(00N)	1.478(5)
O(006)-C(00G)	1.223(5)
O(007)-C(00S)	1.216(5)
N(008)-N(00B)	1.404(5)
N(008)-C(00X)	1.448(6)
N(008)-C(011)	1.372(6)
N(009)-C(00M)	1.446(5)
N(009)-C(00S)	1.369(5)
N(009)-C(00X)	1.477(5)
N(00A)-N(00D)	1.393(5)
N(00A)-C(010)	1.486(6)
N(00B)-C(01D)	1.494(6)
N(00D)-C(00N)	1.460(5)
N(00D)-C(01G)	1.377(5)
C(00G)-C(00I)	1.511(5)
C(00I)-C(00O)	1.329(6)
C(00I)-C(00T)	1.477(6)
N(00J)-C(011)	1.278(6)
N(00J)-C(016)	1.402(7)
C(00K)-C(00V)	1.380(6)
С(00К)-С(00Ү)	1.377(6)
C(00L)-C(00X)	1.499(6)
C(00L)-C(016)	1.388(6)

C(00L)-C(018)	1.382(7)
C(00M)-C(019)	1.371(6)
C(00M)-C(01K)	1.384(7)
C(00N)-C(00P)	1.504(6)
C(00O)-C(010)	1.506(6)
C(00P)-C(00U)	1.387(6)
C(00P)-C(01M)	1.381(6)
C(00Q)-C(00W)	1.485(6)
C(00Q)-C(01A)	1.390(6)
C(00Q)-C(01J)	1.387(7)
N(00R)-C(00U)	1.412(6)
N(00R)-C(01G)	1.269(6)
C(00S)-C(00W)	1.507(6)
C(00T)-C(013)	1.382(6)
C(00T)-C(01I)	1.390(6)
C(00U)-C(012)	1.400(7)
C(00V)-C(00Z)	1.390(6)
C(00W)-C(015)	1.330(7)
C(00Y)-C(01B)	1.375(6)
C(00Z)-C(017)	1.367(7)
C(012)-C(01N)	1.370(8)
C(013)-C(01P)	1.382(7)
C(014)-C(01F)	1.394(7)
C(014)-C(01L)	1.383(7)
C(015)-C(01D)	1.487(7)
C(016)-C(01W)	1.405(7)
C(017)-C(01B)	1.383(7)
C(018)-C(021)	1.377(7)
C(019)-C(01C)	1.387(7)
C(01A)-C(01U)	1.381(8)
C(01C)-C(01S)	1.371(7)
C(01E)-C(01L)	1.394(7)
C(01E)-C(022)	1.383(7)
C(01F)-C(01V)	1.385(8)
C(01F)-C(024)	1.497(7)
C(01H)-C(01Q)	1.393(7)
C(01H)-C(01T)	1.381(8)
C(01I)-C(01Z)	1.375(7)
C(01J)-C(025)	1.369(7)
C(01K)-C(01X)	1.384(6)
C(01M)-C(01R)	1.373(7)
C(01N)-C(01R)	1.389(8)

C(01O)-C(01P)	1.369(7)
C(01O)-C(01Z)	1.364(7)
C(01Q)-C(01Y)	1.378(7)
C(01S)-C(01X)	1.378(7)
C(01T)-C(026)	1.375(9)
C(01U)-C(027)	1.363(10)
C(01V)-C(022)	1.377(7)
C(01W)-C(020)	1.368(9)
C(01Y)-C(023)	1.390(9)
C(020)-C(021)	1.358(8)
C(023)-C(026)	1.389(10)
C(025)-C(027)	1.374(8)
C(026)-C(028)	1.504(11)
N(00A)-S(01)-C(01E)	107.46(18)
O(00C)-S(01)-N(00A)	105.6(2)
O(00C)-S(01)-C(01E)	107.4(3)
O(00F)-S(01)-N(00A)	104.9(2)
O(00F)-S(01)-O(00C)	121.2(2)
O(00F)-S(01)-C(01E)	109.6(2)
N(00B)-S(02)-C(01Q)	108.45(19)
O(00E)-S(02)-N(00B)	105.6(2)
O(00E)-S(02)-C(01Q)	107.1(2)
O(00H)-S(02)-N(00B)	104.5(2)
O(00H)-S(02)-O(00E)	120.9(3)
O(00H)-S(02)-C(01Q)	109.7(3)
C(00G)-N(005)-C(00K)	119.1(3)
C(00G)-N(005)-C(00N)	122.9(3)
C(00K)-N(005)-C(00N)	117.8(3)
N(00B)-N(008)-C(00X)	121.3(3)
C(011)-N(008)-N(00B)	116.8(4)
C(011)-N(008)-C(00X)	121.9(4)
C(00M)-N(009)-C(00X)	118.2(3)
C(00S)-N(009)-C(00M)	118.8(3)
C(00S)-N(009)-C(00X)	122.9(3)
N(00D)-N(00A)-S(01)	112.7(3)
N(00D)-N(00A)-C(010)	116.8(3)
C(010)-N(00A)-S(01)	120.4(3)
N(008)-N(00B)-S(02)	112.3(3)
N(008)-N(00B)-C(01D)	116.1(3)
C(01D)-N(00B)-S(02)	120.4(3)
N(00A)-N(00D)-C(00N)	122.1(3)

C(01G)-N(00D)-N(00A)	116.7(3)
C(01G)-N(00D)-C(00N)	120.8(3)
N(005)-C(00G)-C(00I)	117.5(3)
O(006)-C(00G)-N(005)	122.9(4)
O(006)-C(00G)-C(00I)	119.6(4)
C(00O)-C(00I)-C(00G)	120.5(4)
C(00O)-C(00I)-C(00T)	123.2(4)
C(00T)-C(00I)-C(00G)	116.3(3)
C(011)-N(00J)-C(016)	116.2(4)
C(00V)-C(00K)-N(005)	120.0(4)
C(00Y)-C(00K)-N(005)	119.5(3)
C(00Y)-C(00K)-C(00V)	120.3(4)
C(016)-C(00L)-C(00X)	119.7(4)
C(018)-C(00L)-C(00X)	120.8(4)
C(018)-C(00L)-C(016)	119.6(4)
C(019)-C(00M)-N(009)	119.9(4)
C(019)-C(00M)-C(01K)	120.2(4)
C(01K)-C(00M)-N(009)	119.9(4)
N(005)-C(00N)-C(00P)	111.9(3)
N(00D)-C(00N)-N(005)	112.8(3)
N(00D)-C(00N)-C(00P)	107.1(3)
C(00I)-C(00O)-C(010)	126.2(4)
C(00U)-C(00P)-C(00N)	119.4(4)
C(01M)-C(00P)-C(00N)	120.4(4)
C(01M)-C(00P)-C(00U)	120.1(4)
C(01A)-C(00Q)-C(00W)	120.8(5)
C(01J)-C(00Q)-C(00W)	120.9(4)
C(01J)-C(00Q)-C(01A)	118.0(5)
C(01G)-N(00R)-C(00U)	115.8(4)
O(007)-C(00S)-N(009)	122.3(4)
O(007)-C(00S)-C(00W)	119.8(4)
N(009)-C(00S)-C(00W)	117.8(3)
C(013)-C(00T)-C(00I)	120.9(4)
C(013)-C(00T)-C(01I)	117.2(4)
C(01I)-C(00T)-C(00I)	121.6(4)
C(00P)-C(00U)-N(00R)	122.9(4)
C(00P)-C(00U)-C(012)	119.3(5)
C(012)-C(00U)-N(00R)	117.8(4)
C(00K)-C(00V)-C(00Z)	119.4(4)
C(00Q)-C(00W)-C(00S)	117.0(4)
C(015)-C(00W)-C(00Q)	121.6(4)
C(015)-C(00W)-C(00S)	121.4(4)

N(008)-C(00X)-N(009)	112.7(3)
N(008)-C(00X)-C(00L)	108.0(4)
N(009)-C(00X)-C(00L)	111.8(3)
С(01В)-С(00Ү)-С(00К)	120.5(4)
C(017)-C(00Z)-C(00V)	119.6(4)
N(00A)-C(010)-C(00O)	113.1(4)
N(00J)-C(011)-N(008)	124.7(5)
C(01N)-C(012)-C(00U)	119.8(5)
C(00T)-C(013)-C(01P)	121.0(4)
C(01L)-C(014)-C(01F)	121.1(5)
C(00W)-C(015)-C(01D)	126.6(5)
N(00J)-C(016)-C(01W)	117.8(5)
C(00L)-C(016)-N(00J)	122.9(4)
C(00L)-C(016)-C(01W)	119.2(5)
C(00Z)-C(017)-Cl(04)	119.8(4)
C(00Z)-C(017)-C(01B)	121.3(4)
C(01B)-C(017)-Cl(04)	118.9(4)
C(021)-C(018)-C(00L)	120.3(5)
C(00M)-C(019)-C(01C)	120.3(5)
C(01U)-C(01A)-C(00Q)	120.4(6)
C(00Y)-C(01B)-C(017)	118.9(5)
C(01S)-C(01C)-C(019)	119.1(5)
C(015)-C(01D)-N(00B)	113.8(4)
C(01L)-C(01E)-S(01)	119.8(4)
C(022)-C(01E)-S(01)	119.4(4)
C(022)-C(01E)-C(01L)	120.4(5)
C(014)-C(01F)-C(024)	120.8(6)
C(01V)-C(01F)-C(014)	118.1(5)
C(01V)-C(01F)-C(024)	121.0(5)
N(00R)-C(01G)-N(00D)	125.5(4)
C(01T)-C(01H)-C(01Q)	119.9(5)
C(01Z)-C(01I)-C(00T)	121.2(4)
C(025)-C(01J)-C(00Q)	120.9(5)
C(00M)-C(01K)-C(01X)	119.9(5)
C(014)-C(01L)-C(01E)	119.1(5)
C(01R)-C(01M)-C(00P)	120.5(5)
C(012)-C(01N)-C(01R)	120.6(5)
C(01Z)-C(01O)-C(01P)	118.8(5)
C(01O)-C(01P)-C(013)	120.9(4)
C(01H)-C(01Q)-S(02)	118.7(4)
C(01Y)-C(01Q)-S(02)	121.5(4)
C(01Y)-C(01Q)-C(01H)	119.8(5)

C(01M)-C(01R)-C(01N)	119.6(5)
C(01C)-C(01S)-Cl(03)	119.5(4)
C(01C)-C(01S)-C(01X)	121.4(4)
C(01X)-C(01S)-Cl(03)	119.1(4)
C(026)-C(01T)-C(01H)	121.1(6)
C(027)-C(01U)-C(01A)	120.7(5)
C(022)-C(01V)-C(01F)	121.7(5)
C(020)-C(01W)-C(016)	119.7(5)
C(01S)-C(01X)-C(01K)	119.1(5)
C(01Q)-C(01Y)-C(023)	119.4(6)
C(01O)-C(01Z)-C(01I)	120.9(4)
C(021)-C(020)-C(01W)	120.9(5)
C(020)-C(021)-C(018)	120.3(6)
C(01V)-C(022)-C(01E)	119.4(5)
C(026)-C(023)-C(01Y)	121.1(6)
C(01J)-C(025)-C(027)	120.6(6)
C(01T)-C(026)-C(023)	118.6(6)
C(01T)-C(026)-C(028)	121.6(8)
C(023)-C(026)-C(028)	119.8(8)
C(01U)-C(027)-C(025)	119.4(6)

Table S4. Anisotropic displacement parameters $(\text{\AA}^2 x 10^3)$ for 3ea. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$\text{\AA}^2 a^{*2}U_{11} + ... + 2 \text{ h k } a^* \text{ b}^* U_{12}$]

A						
	U^{11}	U ²²	U ³³	U^{23}	U ¹³	U^{12}
S(01)	79(1)	82(1)	40(1)	-4(1)	-2(1)	6(1)
S(02)	82(1)	56(1)	55(1)	11(1)	1(1)	-13(1)
Cl(03)	70(1)	127(1)	96(1)	15(1)	34(1)	-4(1)
Cl(04)	84(1)	141(1)	90(1)	-19(1)	46(1)	-4(1)
N(005)	43(2)	44(2)	47(2)	-7(1)	7(1)	0(1)
O(006)	62(2)	56(2)	80(2)	-24(2)	16(2)	-10(2)
O(007)	67(2)	108(3)	48(2)	25(2)	7(2)	5(2)
N(008)	57(2)	49(2)	53(2)	1(2)	4(2)	-1(2)
N(009)	50(2)	62(2)	39(2)	6(2)	6(2)	-2(2)
N(00A)	58(2)	60(2)	44(2)	6(2)	-3(2)	3(2)
N(00B)	68(2)	52(2)	49(2)	-1(2)	-2(2)	-8(2)
O(00C)	94(3)	105(3)	60(2)	-27(2)	-18(2)	-9(2)
N(00D)	45(2)	54(2)	46(2)	1(2)	-3(1)	2(2)
O(00E)	101(3)	71(2)	67(2)	18(2)	-8(2)	16(2)
O(00F)	103(3)	112(3)	47(2)	18(2)	12(2)	18(2)
C(00G)	44(2)	45(2)	50(2)	-4(2)	5(2)	-1(2)
O(00H)	111(3)	83(3)	86(3)	12(2)	3(2)	-51(2)

C(00I)	43(2)	44(2)	49(2)	0(2)	5(2)	-1(2)
N(00J)	56(3)	81(3)	74(3)	5(2)	7(2)	3(2)
C(00K)	41(2)	46(2)	48(2)	-12(2)	7(2)	2(2)
C(00L)	54(3)	58(3)	40(2)	6(2)	4(2)	-8(2)
C(00M)	53(2)	59(3)	39(2)	7(2)	3(2)	-2(2)
C(00N)	43(2)	47(2)	39(2)	-5(2)	3(2)	4(2)
C(00O)	50(2)	52(2)	53(2)	7(2)	6(2)	0(2)
C(00P)	51(3)	44(2)	47(2)	-7(2)	6(2)	1(2)
C(00Q)	53(3)	75(3)	42(2)	3(2)	1(2)	-3(2)
N(00R)	50(2)	67(2)	78(3)	0(2)	1(2)	-2(2)
C(00S)	54(3)	65(3)	43(2)	4(2)	3(2)	0(2)
C(00T)	41(2)	50(2)	46(2)	-1(2)	6(2)	-6(2)
C(00U)	54(3)	51(2)	63(3)	-8(2)	5(2)	-6(2)
C(00V)	51(3)	48(2)	63(3)	-5(2)	7(2)	3(2)
C(00W)	51(3)	71(3)	39(2)	5(2)	1(2)	-6(2)
C(00X)	56(3)	48(2)	39(2)	4(2)	6(2)	-4(2)
C(00Y)	51(2)	64(3)	47(2)	-9(2)	4(2)	6(2)
C(00Z)	42(2)	64(3)	80(3)	-14(2)	12(2)	5(2)
C(010)	59(3)	58(3)	56(3)	14(2)	-2(2)	3(2)
C(011)	72(4)	64(3)	60(3)	0(2)	6(2)	12(3)
C(012)	64(3)	61(3)	82(3)	-7(3)	14(3)	-19(2)
C(013)	53(3)	76(3)	50(2)	9(2)	8(2)	2(2)
C(014)	77(3)	67(3)	56(3)	-10(2)	16(2)	11(3)
C(015)	61(3)	73(3)	41(2)	4(2)	-2(2)	-13(2)
C(016)	58(3)	65(3)	52(2)	5(2)	7(2)	-5(2)
C(017)	52(3)	70(3)	67(3)	-22(2)	18(2)	-6(2)
C(018)	70(3)	61(3)	55(2)	0(2)	5(2)	-11(2)
C(019)	74(3)	59(3)	54(3)	-3(2)	19(2)	-5(2)
C(01A)	51(3)	107(4)	59(3)	-13(3)	5(2)	-18(3)
C(01B)	75(3)	69(3)	48(2)	-8(2)	13(2)	-1(2)
C(01C)	71(3)	77(3)	60(3)	1(2)	16(2)	7(3)
C(01D)	80(3)	62(3)	47(2)	-6(2)	0(2)	-16(2)
C(01E)	73(3)	65(3)	48(2)	-14(2)	9(2)	7(2)
C(01F)	97(4)	53(3)	54(3)	-8(2)	13(3)	18(3)
C(01G)	51(3)	57(3)	64(3)	-6(2)	-8(2)	7(2)
C(01H)	75(3)	73(3)	45(2)	7(2)	10(2)	-1(3)
C(01I)	52(3)	83(3)	61(3)	19(2)	16(2)	2(2)
C(01J)	54(3)	78(3)	67(3)	-1(3)	11(2)	-6(2)
C(01K)	64(3)	60(3)	52(2)	6(2)	11(2)	-1(2)
C(01L)	91(4)	60(3)	45(2)	-4(2)	19(2)	11(3)
C(01M)	66(3)	54(3)	52(2)	1(2)	7(2)	4(2)
C(01N)	95(4)	54(3)	88(4)	10(3)	21(3)	-14(3)

C(01O)	46(3)	86(4)	79(3)	7(3)	0(2)	3(2)
C(01P)	58(3)	97(4)	60(3)	23(3)	3(2)	3(3)
C(01Q)	68(3)	71(3)	41(2)	16(2)	5(2)	-2(2)
C(01R)	97(4)	57(3)	71(3)	13(2)	14(3)	8(3)
C(01S)	51(3)	87(4)	51(3)	9(2)	8(2)	1(2)
C(01T)	108(5)	71(3)	52(3)	2(2)	14(3)	-1(3)
C(01U)	53(3)	128(5)	70(3)	-11(4)	9(3)	-6(3)
C(01V)	103(4)	48(3)	67(3)	-5(2)	17(3)	6(3)
C(01W)	57(3)	96(4)	71(3)	10(3)	3(2)	-12(3)
C(01X)	65(3)	76(3)	58(3)	13(2)	9(2)	-9(3)
C(01Y)	69(4)	118(5)	53(3)	19(3)	3(3)	1(3)
C(01Z)	46(3)	96(4)	77(3)	11(3)	16(2)	3(3)
C(020)	74(4)	92(4)	77(3)	2(3)	-2(3)	-31(3)
C(021)	89(4)	69(3)	72(3)	-8(3)	3(3)	-21(3)
C(022)	87(4)	59(3)	61(3)	-17(2)	12(3)	-1(3)
C(023)	90(4)	127(6)	64(3)	15(4)	11(3)	43(4)
C(024)	112(5)	87(4)	73(4)	4(3)	7(3)	37(3)
C(025)	77(4)	82(4)	77(3)	-11(3)	11(3)	-1(3)
C(026)	132(6)	94(4)	54(3)	15(3)	16(4)	39(4)
C(027)	66(4)	123(5)	74(4)	-13(4)	14(3)	12(3)
C(028)	255(11)	105(6)	97(5)	16(4)	38(6)	79(7)

Table S5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for 3ea.

	х	У	Z	U(eq)
H(00N)	2508	6060	5962	52
H(00O)	3819	8654	5314	62
H(00V)	-73	9137	6274	65
H(00X)	4722	3505	8596	57
H(00Y)	2102	6850	7252	65
H(00Z)	-1411	9237	6817	74
H(01A)	1623	9469	5504	70
H(01B)	2012	9399	4990	70
H(011)	2545	6867	8731	79
H(012)	-1222	3445	6379	83
H(013)	4434	6988	6792	72
H(014)	5564	4633	5521	79
H(015)	7125	5485	8998	71
H(018)	3921	889	8401	75

H(019)	3181	5093	9746	73
H(01D)	8675	3982	9289	87
H(01C)	760	6901	7785	76
H(01E)	1591	4640	10139	82
H(01F)	5942	7354	9192	77
H(01H)	5206	6171	9440	77
H(01G)	-644	6966	5309	71
H(01J)	3733	4627	7596	77
H(01I)	5618	8721	5635	77
H(01K)	6223	823	8942	79
H(01Q)	3341	646	9433	70
H(01L)	4261	6094	5017	77
H(01M)	2716	4318	6666	69
H(01N)	-69	2005	6940	94
H(01O)	7684	6171	6571	85
H(01P)	6209	5892	7030	86
H(01R)	1912	2383	7068	90
H(01T)	4157	2286	7286	92
H(01U)	10026	2313	9062	100
H(01V)	2990	1981	5839	86
H(01W)	305	3097	8111	90
H(01X)	1774	178	9839	80
H(01Y)	7073	5191	8130	96
H(01Z)	7374	7597	5875	87
H(020)	587	630	7875	98
H(021)	2380	-447	8001	93
H(022)	1680	3395	5331	82
H(023)	7483	2842	7810	112
H(02A)	5957	2211	5991	137
H(02B)	4922	1361	6176	137
H(02C)	5368	2916	6411	137
H(025)	7579	-802	8710	95
H(027)	9482	-56	8761	105
H(02D)	5521	52	7372	227
H(02E)	6841	383	7519	227
H(02F)	6231	834	7003	227

X-Ray Crystallographic Data of 6aa

Crystallographic data for **6aa** have been deposited with the Cam-bridge Crystallographic Data Centre as deposition number 2219264. These data can be obtained free of charge via <u>www.ccdc.cam</u>.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

Table S6. Crystal data and structure refinement for 6aa.

Identification code	6aa
Empirical formula	C ₂₇ H ₂₁ N ₃ O ₂
Formula weight	419.47
Temperature/K	100.01(10)
Crystal system	monoclinic
Space group	P21
a/Å	8.30066(14)
b/Å	8.18447(13)
c/Å	16.4485(3)
α/°	90
β/°	104.3873(18)
γ/°	90
Volume/Å ³	1082.41(3)
Ζ	2
$\rho_{calc}g/cm^3$	1.287
μ/mm^{-1}	0.659
F(000)	440.0
Crystal size/mm ³	0.15 imes 0.08 imes 0.08
Radiation	Cu Ka (λ = 1.54184)
2Θ range for data collection/°	5.546 to 153.332
Index ranges	-10≤h≤9, -9≤k≤10, -20≤l≤20
Reflections collected	20288
Independent reflections	4370 [$R_{int} = 0.0414$, $R_{sigma} = 0.0282$]
Data/restraints/parameters	4370/1/290
Goodness-of-fit on F ²	1.090
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0327, wR_2 = 0.0856$
Final R indexes [all data]	$R_1 = 0.0338, wR_2 = 0.0864$
Largest diff. peak/hole / e Å ⁻³	0.13/-0.20
Flack parameter	-0.12(10)

Atom	X	У	Z	U(eq)
O24	3969.0(18)	2883.9(18)	3739.0(9)	25.0(3)
O31	1788.9(18)	9428.3(19)	5104.2(9)	27.4(3)
N7	3787(2)	5154(2)	2898.4(10)	20.2(3)
N26	4298(2)	3689(3)	226.4(12)	33.5(4)
N28	8232(2)	4574(2)	2407.5(14)	34.4(5)
C12	2690(2)	6369(2)	1469.8(12)	21.1(4)
C17	1045(2)	6068(3)	1483.6(13)	22.7(4)
C4	2292(2)	8473(3)	4530.5(12)	22.3(4)
C23	6817(3)	1115(3)	3328.9(13)	24.9(4)
C8	4074(2)	3542(2)	3087.9(12)	19.7(4)
C13	3023(3)	7359(3)	841.1(13)	25.2(4)
C11	4158(2)	5698(2)	2122.0(12)	20.2(4)
C6	3828(3)	7883(3)	3507.2(13)	24.3(4)
C10	5012(2)	4123(3)	1852.9(12)	21.2(4)
C5	3359(3)	8985(3)	4052.1(13)	25.2(4)
C27	6836(2)	4345(3)	2156.9(13)	24.4(4)
C18	5783(2)	1335(2)	2532.0(13)	21.6(4)
C1	3240(2)	6298(2)	3435.5(12)	20.2(4)
C21	8331(3)	-994(3)	2805.9(14)	29.4(5)
C3	1652(3)	6898(3)	4435.2(13)	24.0(4)
С9	4426(2)	2650(2)	2330.7(12)	21.0(4)
C19	6046(3)	383(3)	1871.7(13)	26.3(4)
C29	2801(3)	1915(3)	1818.4(14)	24.8(4)
C2	2105(2)	5805(3)	3888.4(12)	22.3(4)
C25	4616(2)	3899(3)	936.0(13)	24.5(4)
C16	-234(3)	6771(3)	879.9(14)	26.1(4)
C14	1737(3)	8046(3)	234.5(14)	30.8(5)
C22	8076(3)	-53(3)	3462.4(14)	28.0(5)
C20	7314(3)	-769(3)	2010.1(14)	29.4(5)
C15	106(3)	7771(3)	259.8(13)	30.2(5)
C30	1431(3)	1701(3)	2069.9(16)	33.7(5)
C32	2566(3)	10983(3)	5278.0(16)	33.8(5)

Table S7. Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for 6aa. Ueq is defined as 1/3 of the trace of the orthogonalised UIJ tensor.

uispiaceme	пі тастої ехро	Juciit takes ti	-2π	[II a U]]+2II	$\mathbf{K} \mathbf{a} = \mathbf{U} + \mathbf{U}_{12} + \cdots$	·]•
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
O24	31.6(8)	20.6(7)	25.0(7)	2.8(6)	10.9(6)	3.8(6)
O31	31.1(7)	26.3(8)	26.8(8)	-4.8(6)	10.6(6)	2.1(6)
N7	22.3(8)	18.6(8)	20.5(8)	1.2(6)	6.9(6)	0.6(6)
N26	37.5(10)	38.2(11)	26.2(10)	0.6(8)	10.4(8)	9.7(9)
N28	25.7(9)	30.9(10)	48.0(12)	4.3(9)	11.8(8)	-0.8(8)
C12	22.3(9)	19.0(9)	22.3(9)	-0.7(8)	6.3(8)	0.5(8)
C17	24.0(10)	21.3(10)	24.1(10)	-2.5(8)	8.2(8)	-0.2(8)
C4	22.1(9)	24.6(10)	19.1(9)	-1.4(8)	3.0(7)	5.7(8)
C23	25.4(10)	23.9(11)	25.1(10)	-1.4(8)	5.5(8)	1.7(8)
C8	18.9(9)	18.0(9)	22.4(9)	1.1(8)	5.3(7)	0.9(7)
C13	25.1(10)	25.6(10)	25.6(10)	3.6(8)	7.6(8)	1.3(8)
C11	20.5(9)	20.7(10)	21.3(9)	0.4(8)	9.1(7)	-1.5(7)
C6	27.1(10)	21.7(10)	26.0(10)	1.5(9)	10.3(8)	0.4(8)
C10	19.7(9)	22.3(10)	22.0(9)	1.7(8)	5.8(7)	1.4(8)
C5	27.8(10)	20.0(10)	28.2(10)	-0.6(8)	8.0(8)	-0.5(8)
C27	24.3(10)	22.6(10)	27.8(10)	3.4(8)	9.3(8)	1.8(8)
C18	21.3(9)	17.7(9)	26.5(10)	0.0(8)	7.4(8)	-1.2(7)
C1	21.1(9)	20.2(9)	18.8(9)	0.7(8)	3.9(7)	2.4(8)
C21	27.2(10)	24.7(11)	35.7(12)	1.4(9)	6.6(9)	5.0(9)
C3	23.3(10)	27.6(10)	22.3(10)	1.4(8)	7.8(8)	1.4(8)
C9	20.1(9)	20.2(10)	22.8(9)	1.1(8)	5.4(8)	0.4(8)
C19	28.0(10)	25.1(11)	24.8(10)	-2.1(8)	4.5(8)	2.0(9)
C29	23.5(10)	22.6(10)	27.2(10)	-0.7(8)	4.1(8)	0.5(8)
C2	22.3(10)	20.4(10)	24.0(10)	0.3(8)	5.3(8)	-0.6(8)
C25	25.2(9)	22.6(10)	27.0(11)	1.4(8)	9.0(8)	4.8(8)
C16	21.3(10)	25.3(11)	30.5(11)	-6.3(9)	4.3(8)	3.2(8)
C14	36.3(12)	29.9(12)	25.5(10)	7.2(9)	6.5(9)	4.4(9)
C22	25.7(10)	28.1(11)	28.2(11)	1.1(9)	2.8(8)	4.0(9)
C20	32.3(11)	26.7(11)	29.7(11)	-5.2(9)	9.0(9)	5.7(9)
C15	29.5(11)	29.4(11)	27.6(11)	0.2(9)	-0.5(9)	7.1(9)
C30	27.8(11)	37.3(13)	35.8(12)	-1.8(10)	7.7(9)	-6.5(10)
C32	31.8(11)	30.3(12)	40.3(13)	-15.5(10)	10.5(9)	-1.6(10)

Table S8. Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 6aa. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O24	C8	1.221(2)	C11	C10	1.586(3)
O31	C4	1.368(2)	C6	C5	1.393(3)
O31	C32	1.423(3)	C6	C1	1.381(3)
N7	C8	1.363(3)	C10	C27	1.483(3)
N7	C11	1.456(2)	C10	С9	1.581(3)
N7	C1	1.436(2)	C10	C25	1.473(3)
N26	C25	1.144(3)	C18	С9	1.533(3)
N28	C27	1.144(3)	C18	C19	1.397(3)
C12	C17	1.393(3)	C1	C2	1.398(3)
C12	C13	1.394(3)	C21	C22	1.385(3)
C12	C11	1.512(3)	C21	C20	1.382(3)
C17	C16	1.386(3)	C3	C2	1.385(3)
C4	C5	1.388(3)	С9	C29	1.526(3)
C4	C3	1.388(3)	C19	C20	1.389(3)
C23	C18	1.389(3)	C29	C30	1.315(3)
C23	C22	1.393(3)	C16	C15	1.390(3)
C8	С9	1.533(3)	C14	C15	1.384(3)
C13	C14	1.386(3)			

Table S9. Bond Lengths for 6aa.

Table S10. Bond Angles for 6aa.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C4	O31	C32	116.67(16)	C4	C5	C6	119.30(19)
C8	N7	C11	115.70(16)	N28	C27	C10	177.2(2)
C8	N7	C1	123.67(16)	C23	C18	С9	122.94(18)
C1	N7	C11	120.54(16)	C23	C18	C19	118.79(18)
C17	C12	C13	119.38(19)	C19	C18	С9	118.16(17)
C17	C12	C11	122.98(18)	C6	C1	N7	120.41(17)
C13	C12	C11	117.63(17)	C6	C1	C2	119.76(18)
C16	C17	C12	119.62(19)	C2	C1	N7	119.84(18)
O31	C4	C5	124.45(19)	C20	C21	C22	119.3(2)
O31	C4	C3	115.78(18)	C2	C3	C4	120.98(19)
C5	C4	C3	119.77(19)	C8	С9	C10	100.66(15)
C18	C23	C22	120.1(2)	C18	С9	C8	115.91(16)
O24	C8	N7	125.51(18)	C18	С9	C10	110.06(15)
O24	C8	С9	124.91(18)	C29	С9	C8	108.36(15)
N7	C8	С9	109.44(16)	C29	С9	C10	111.41(16)
C14	C13	C12	120.7(2)	C29	С9	C18	110.12(16)
N7	C11	C12	115.13(16)	C20	C19	C18	120.65(19)
N7	C11	C10	101.70(15)	C30	C29	C9	126.5(2)

C12	C11	C10	115.74(16)	C3	C2	C1	119.18(19)
C1	C6	C5	120.91(18)	N26	C25	C10	178.4(2)
C27	C10	C11	107.24(17)	C17	C16	C15	120.76(19)
C27	C10	С9	109.87(16)	C15	C14	C13	119.8(2)
С9	C10	C11	105.50(14)	C21	C22	C23	120.9(2)
C25	C10	C11	112.67(17)	C21	C20	C19	120.3(2)
C25	C10	C27	108.05(16)	C14	C15	C16	119.8(2)
C25	C10	C9	113.33(17)				

Table S11. Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 6aa.

Atom	Х	У	Z	U(eq)
H17	801.66	5384.91	1904.54	27
H23	6666.52	1762.63	3783.69	30
H13	4142.46	7564.94	828.43	30
H11	5017.84	6577.7	2265.01	24
Н6	4562.03	8227.51	3180.43	29
Н5	3765.82	10074.2	4095.81	30
H21	9194.98	-1785.2	2901.45	35
Н3	891.69	6564.25	4749.82	29
H19	5351.31	525.31	1322.82	32
H29	2775.84	1579.36	1262.52	30
H2	1650.16	4734.15	3821.96	27
H16	-1355.33	6567.85	889.93	31
H14	1975.32	8703.47	-197.16	37
H22	8768.54	-205.87	4010.94	34
H20	7483.12	-1405.58	1555.45	35
H15	-779.31	8263.51	-145.08	36
H30A	1393.16	2016.62	2620.6	40
H30B	479.62	1229.75	1701.05	40
H32A	2205.17	11692.3	4786.38	51
H32B	3776.79	10849.49	5408.36	51
H32C	2252.36	11477.68	5759.08	51

X-Ray Crystallographic Data of 7

Crystallographic data for 7 have been deposited with the Cam-bridge Crystallographic Data Centre as deposition number 2221630. These data can be obtained free of charge via <u>www.ccdc.cam</u>.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

Table S12. Crystal data and structure refinement for 7.

Identification code	7		
Empirical formula	C ₂₇ H ₂₅ N ₃ O ₂		
Formula weight	423.50		
Temperature/K	173.00		
Crystal system	orthorhombic		
Space group	P212121		
a/Å	9.76060(10)		
b/Å	10.33100(10)		
c/Å	21.9651(3)		
α/°	90		
β/°	90		
γ/°	90		
Volume/Å ³	2214.89(4)		
Ζ	4		
$\rho_{calc}g/cm^3$	1.270		
μ/mm^{-1}	0.645		
F(000)	896.0		
Crystal size/mm ³	0.13 imes 0.12 imes 0.1		
Radiation	Cu K α (λ = 1.54184)		
2Θ range for data collection/°	8.05 to 151.714		
Index ranges	-8≤h≤12, -12≤k≤12, -26≤l≤27		
Reflections collected	15467		
Independent reflections	4549 [Rint = 0.0316, Rsigma = 0.0287]		
Data/restraints/parameters	4549/0/306		
Goodness-of-fit on F ²	1.040		
Final R indexes [I>= 2σ (I)]	R1 = 0.0309, wR2 = 0.0739		
Final R indexes [all data]	R1 = 0.0344, WR2 = 0.0755		
Largest diff. peak/hole / e Å ⁻³	0.17/-0.16		
Flack parameter	0.02(10)		

	/ 1		0	
Atom	Х	у	Z	U(eq)
O(2)	4712.9(12)	6137.7(12)	2596.1(6)	28.3(3)
O(1)	3637.7(16)	4722.7(16)	5375.2(6)	39.6(3)
N(1)	6394.0(14)	5165.9(14)	3162.1(6)	21.7(3)
N(3)	8219.3(16)	2237.2(15)	2468.5(7)	27.3(3)
N(2)	10468.4(15)	4802.6(15)	2012.9(7)	26.8(3)
C(16)	9372.2(16)	4741.6(15)	2194.8(7)	19.7(3)
C(18)	5867.0(16)	5702.4(15)	2648.4(8)	20.6(3)
C(5)	5648.0(16)	5027.4(17)	3718.2(8)	22.7(3)
C(8)	7781.9(15)	4649.2(16)	3103.3(7)	19.6(3)
C(15)	7942.9(15)	4604.2(15)	2394.7(7)	18.1(3)
C(19)	6994.2(15)	5722.1(15)	2159.7(7)	19.1(3)
C(17)	7432.6(16)	3255.0(15)	2174.2(8)	21.3(3)
C(9)	8871.6(16)	5383.6(16)	3454.1(7)	21.2(3)
C(6)	5171.1(18)	6115.1(17)	4028.7(8)	25.4(3)
C(14)	8728.0(18)	6669.2(17)	3637.0(8)	24.6(3)
C(7)	4492.8(18)	5976.0(18)	4575.6(9)	27.9(4)
C(20)	7675.4(17)	7056.1(16)	2208.1(8)	23.5(3)
C(22)	6525.0(17)	5481.4(16)	1506.4(8)	22.6(3)
C(10)	10085.9(17)	4729.8(18)	3591.7(7)	25.7(3)
C(2)	4281.4(18)	4748(2)	4823.4(8)	28.4(4)
C(13)	9788(2)	7289.6(18)	3947.3(8)	29.4(4)
C(4)	5409.3(19)	3806.7(17)	3957.1(9)	28.2(4)
C(23)	5212.8(19)	5049.5(17)	1355.0(9)	29.6(4)
C(27)	7481(2)	5631(2)	1041.7(9)	31.6(4)
C(11)	11145.4(18)	5351(2)	3894.7(8)	31.7(4)
C(12)	10993(2)	6634(2)	4075.1(8)	32.8(4)

Table S13. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 7. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.
C(21)	7018(2)	8152.8(18)	2229.6(10)	32.6(4)
C(3)	4726(2)	3656.9(18)	4508.9(9)	30.8(4)
C(25)	5856(2)	4909(2)	296.0(9)	39.8(5)
C(24)	4888(2)	4771(2)	748.5(10)	39.1(5)
C(26)	7159(2)	5335(2)	441.0(9)	39.6(5)
C(1)	3454(3)	3499(3)	5661.6(11)	50.4(6)

Table S14. Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 7. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

A	A					
Atom	U11	U22	U33	U23	U13	U12
O(2)	18.4(5)	29.1(6)	37.4(7)	0.1(5)	0.2(5)	6.3(5)
O(1)	41.3(7)	47.2(8)	30.3(6)	-0.9(6)	13.5(6)	-6.1(7)
N(1)	17.4(6)	23.2(6)	24.5(6)	0.1(5)	1.4(5)	1.4(5)
N(3)	29.0(7)	18.7(7)	34.1(8)	0.2(6)	-2.6(7)	3.6(6)
N(2)	20.6(7)	29.1(7)	30.7(7)	-3.2(6)	1.5(6)	-2.5(6)
C(16)	21.0(8)	18.6(7)	19.7(7)	-1.4(6)	-4.3(6)	0.4(6)
C(18)	18.6(7)	16.7(7)	26.6(8)	-1.9(6)	-1.4(6)	0.4(5)
C(5)	17.2(7)	26.7(8)	24.3(7)	-0.9(6)	0.7(6)	-0.2(6)
C(8)	17.5(7)	21.0(7)	20.4(7)	1.2(6)	0.7(6)	1.4(6)
C(15)	15.7(6)	18.2(7)	20.4(7)	-0.2(6)	-1.8(5)	1.0(5)
C(19)	15.3(7)	18.3(7)	23.6(8)	0.2(6)	-1.6(6)	1.3(6)
C(17)	17.8(7)	18.3(7)	27.7(8)	-2.3(6)	-2.7(6)	-0.4(6)
C(9)	19.8(7)	27.6(8)	16.2(6)	0.5(6)	1.6(6)	-0.8(6)
C(6)	23.2(8)	24.1(8)	28.7(8)	-1.1(7)	1.4(7)	0.9(6)
C(14)	26.5(8)	27.2(8)	20.2(7)	0.3(6)	-0.1(6)	1.0(7)
C(7)	24.6(8)	30.9(9)	28.2(9)	-6.0(7)	2.6(7)	2.0(7)
C(20)	20.9(7)	22.0(8)	27.7(8)	2.1(6)	-3.7(6)	-2.4(6)
C(22)	23.6(8)	19.6(7)	24.6(8)	0.9(6)	-6.6(6)	3.6(6)
C(10)	23.6(8)	33.4(8)	20.1(7)	0.3(7)	-0.2(6)	3.7(7)

C(2)	21.2(7)	39.3(10)	24.8(8)	-1.3(7)	3.3(6)	-3.9(7)
C(13)	38.2(9)	31.1(9)	18.8(7)	-1.2(7)	0.3(7)	-7.6(7)
C(4)	26.0(8)	25.2(8)	33.4(9)	-2.2(7)	5.0(7)	-0.3(7)
C(23)	25.2(8)	29.2(9)	34.3(9)	-1.6(7)	-6.6(7)	-0.6(7)
C(27)	28.3(9)	40.5(10)	26.1(9)	3.4(7)	-3.1(7)	0.0(7)
C(11)	22.7(8)	48.8(11)	23.7(8)	1.9(8)	-3.7(7)	2.7(8)
C(12)	30.3(9)	47.5(11)	20.7(8)	0.3(7)	-4.1(7)	-11.4(8)
C(21)	31.0(9)	21.4(8)	45.6(11)	-0.1(8)	-1.9(8)	-2.0(7)
C(3)	29.4(9)	28.5(9)	34.6(10)	4.5(7)	4.1(8)	-4.4(7)
C(25)	52.4(12)	39.6(11)	27.6(9)	-4.8(8)	-15.2(9)	6.5(9)
C(24)	38.4(10)	34.6(10)	44.3(11)	-4.9(9)	-19.7(9)	-1.3(9)
C(26)	44.4(11)	48.7(12)	25.6(9)	0.5(9)	-1.2(8)	5.1(10)
C(1)	59.3(15)	55.1(14)	36.9(11)	7.2(10)	17.2(11)	-13.9(12)

Table S15. Bond Lengths for 7.

	0				
Atom	Atom	Length/Å	Atom	Atom	Length/Å
O(2)	C(18)	1.218(2)	C(9)	C(14)	1.395(2)
O(1)	C(2)	1.366(2)	C(9)	C(10)	1.397(2)
O(1)	C(1)	1.424(3)	C(6)	C(7)	1.379(3)
N(1)	C(18)	1.358(2)	C(14)	C(13)	1.395(3)
N(1)	C(5)	1.429(2)	C(7)	C(2)	1.396(3)
N(1)	C(8)	1.462(2)	C(20)	C(21)	1.303(3)
N(3)	C(17)	1.454(2)	C(22)	C(23)	1.397(2)
N(2)	C(16)	1.144(2)	C(22)	C(27)	1.391(3)
C(16)	C(15)	1.469(2)	C(10)	C(11)	1.387(3)
C(18)	C(19)	1.537(2)	C(2)	C(3)	1.391(3)
C(5)	C(6)	1.395(2)	C(13)	C(12)	1.386(3)
C(5)	C(4)	1.386(2)	C(4)	C(3)	1.392(3)
C(8)	C(15)	1.565(2)	C(23)	C(24)	1.399(3)

C(8)	C(9)	1.517(2)	C(27)	C(26)	1.390(3)
C(15)	C(19)	1.568(2)	C(11)	C(12)	1.391(3)
C(15)	C(17)	1.557(2)	C(25)	C(24)	1.378(3)
C(19)	C(20)	1.534(2)	C(25)	C(26)	1.384(3)
C(19)	C(22)	1.527(2)			

Table S16. Bond Angles for 7.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C(2)	O(1)	C(1)	117.85(17)	N(3)	C(17)	C(15)	109.89(13)
C(18)	N(1)	C(5)	123.91(14)	C(14)	C(9)	C(8)	123.52(15)
C(18)	N(1)	C(8)	115.24(13)	C(14)	C(9)	C(10)	118.90(16)
C(5)	N(1)	C(8)	120.74(13)	C(10)	C(9)	C(8)	117.57(15)
N(2)	C(16)	C(15)	176.16(17)	C(7)	C(6)	C(5)	120.15(16)
O(2)	C(18)	N(1)	125.38(16)	C(13)	C(14)	C(9)	120.26(16)
O(2)	C(18)	C(19)	126.24(15)	C(6)	C(7)	C(2)	120.35(16)
N(1)	C(18)	C(19)	108.33(13)	C(21)	C(20)	C(19)	124.78(16)
C(6)	C(5)	N(1)	120.49(15)	C(23)	C(22)	C(19)	123.44(16)
C(4)	C(5)	N(1)	120.03(15)	C(27)	C(22)	C(19)	118.06(15)
C(4)	C(5)	C(6)	119.48(15)	C(27)	C(22)	C(23)	118.40(16)
N(1)	C(8)	C(15)	101.06(12)	C(11)	C(10)	C(9)	120.81(17)
N(1)	C(8)	C(9)	114.98(13)	O(1)	C(2)	C(7)	115.56(17)
C(9)	C(8)	C(15)	116.72(13)	O(1)	C(2)	C(3)	124.66(18)
C(16)	C(15)	C(8)	112.92(12)	C(3)	C(2)	C(7)	119.78(16)
C(16)	C(15)	C(19)	113.04(13)	C(12)	C(13)	C(14)	120.26(17)
C(16)	C(15)	C(17)	107.29(13)	C(5)	C(4)	C(3)	120.76(17)
C(8)	C(15)	C(19)	104.25(12)	C(22)	C(23)	C(24)	120.01(18)
C(17)	C(15)	C(8)	107.68(13)	C(26)	C(27)	C(22)	121.38(18)
C(17)	C(15)	C(19)	111.60(12)	C(10)	C(11)	C(12)	119.86(17)
C(18)	C(19)	C(15)	100.55(12)	C(13)	C(12)	C(11)	119.90(17)

C(20)	C(19)	C(18)	105.89(13)	C(2)	C(3)	C(4)	119.45(17)
C(20)	C(19)	C(15)	112.52(13)	C(24)	C(25)	C(26)	119.80(18)
C(22)	C(19)	C(18)	116.07(13)	C(25)	C(24)	C(23)	120.67(18)
C(22)	C(19)	C(15)	111.51(13)	C(25)	C(26)	C(27)	119.7(2)
C(22)	C(19)	C(20)	109.97(13)				

Table S17. Torsion Angles for 7.

А	В	С	D	Angle/°	А	В	С	D	Angle/°
O(2)	C(18)	C(19)	C(15)	-159.11(16)	C(8)	C(9)	C(14)	C(13)	-178.62(15)
O(2)	C(18)	C(19)	C(20)	83.62(19)	C(8)	C(9)	C(10)	C(11)	177.99(15)
O(2)	C(18)	C(19)	C(22)	-38.7(2)	C(15)	C(8)	C(9)	C(14)	95.90(18)
O(1)	C(2)	C(3)	C(4)	-178.02(18)	C(15)	C(8)	C(9)	C(10)	-83.29(18)
N(1)	C(18)	C(19)	C(15)	23.58(16)	C(15)	C(19)	C(20)	C(21)	-157.52(19)
N(1)	C(18)	C(19)	C(20)	-93.69(15)	C(15)	C(19)	C(22)	C(23)	103.61(18)
N(1)	C(18)	C(19)	C(22)	143.99(14)	C(15)	C(19)	C(22)	C(27)	-72.61(19)
N(1)	C(5)	C(6)	C(7)	-177.78(16)	C(19)	C(15)	C(17)	N(3)	-172.11(13)
N(1)	C(5)	C(4)	C(3)	177.75(17)	C(19)	C(22)	C(23)	C(24)	-175.85(16)
N(1)	C(8)	C(15)	C(16)	151.76(13)	C(19)	C(22)	C(27)	C(26)	175.12(18)
N(1)	C(8)	C(15)	C(19)	28.68(15)	C(17)	C(15)	C(19)	C(18)	84.28(15)
N(1)	C(8)	C(15)	C(17)	-89.98(14)	C(17)	C(15)	C(19)	C(20)	-163.46(13)
N(1)	C(8)	C(9)	C(14)	-22.2(2)	C(17)	C(15)	C(19)	C(22)	-39.35(18)
N(1)	C(8)	C(9)	C(10)	158.58(14)	C(9)	C(8)	C(15)	C(16)	26.30(19)
C(16)	C(15)	C(19)	C(18)	-154.68(13)	C(9)	C(8)	C(15)	C(19)	-96.78(15)
C(16)	C(15)	C(19)	C(20)	-42.42(18)	C(9)	C(8)	C(15)	C(17)	144.56(14)
C(16)	C(15)	C(19)	C(22)	81.70(16)	C(9)	C(14)	C(13)	C(12)	0.1(3)
C(16)	C(15)	C(17)	N(3)	63.55(17)	C(9)	C(10)	C(11)	C(12)	1.2(3)
C(18)	N(1)	C(5)	C(6)	-62.3(2)	C(6)	C(5)	C(4)	C(3)	-1.4(3)
C(18)	N(1)	C(5)	C(4)	118.52(19)	C(6)	C(7)	C(2)	O(1)	178.01(17)
C(18)	N(1)	C(8)	C(15)	-14.90(17)	C(6)	C(7)	C(2)	C(3)	-1.7(3)

C(18)	N(1)	C(8)	C(9)	111.72(16)	C(14)	C(9)	C(10)	C(11)	-1.2(2)
C(18)	C(19)	C(20)	C(21)	-48.6(2)	C(14)	C(13)	C(12)	C(11)	-0.2(3)
C(18)	C(19)	C(22)	C(23)	-10.7(2)	C(7)	C(2)	C(3)	C(4)	1.6(3)
C(18)	C(19)	C(22)	C(27)	173.07(15)	C(20)	C(19)	C(22)	C(23)	-130.85(17)
C(5)	N(1)	C(18)	O(2)	0.6(3)	C(20)	C(19)	C(22)	C(27)	52.9(2)
C(5)	N(1)	C(18)	C(19)	177.94(14)	C(22)	C(19)	C(20)	C(21)	77.5(2)
C(5)	N(1)	C(8)	C(15)	161.53(14)	C(22)	C(23)	C(24)	C(25)	0.5(3)
C(5)	N(1)	C(8)	C(9)	-71.85(19)	C(22)	C(27)	C(26)	C(25)	1.4(3)
C(5)	C(6)	C(7)	C(2)	0.2(3)	C(10)	C(9)	C(14)	C(13)	0.6(2)
C(5)	C(4)	C(3)	C(2)	-0.1(3)	C(10)	C(11)	C(12)	C(13)	-0.5(3)
C(8)	N(1)	C(18)	O(2)	176.90(15)	C(4)	C(5)	C(6)	C(7)	1.4(3)
C(8)	N(1)	C(18)	C(19)	-5.76(18)	C(23)	C(22)	C(27)	C(26)	-1.3(3)
C(8)	N(1)	C(5)	C(6)	121.54(17)	C(27)	C(22)	C(23)	C(24)	0.4(3)
C(8)	N(1)	C(5)	C(4)	-57.6(2)	C(24)	C(25)	C(26)	C(27)	-0.4(3)
C(8)	C(15)	C(19)	C(18)	-31.67(14)	C(26)	C(25)	C(24)	C(23)	-0.5(3)
C(8)	C(15)	C(19)	C(20)	80.59(15)	C(1)	O(1)	C(2)	C(7)	-177.1(2)
C(8)	C(15)	C(19)	C(22)	-155.30(13)	C(1)	O(1)	C(2)	C(3)	2.6(3)
C(8)	C(15)	C(17)	N(3)	-58.27(17)					

Table S18.	Hydrogen Atom	Coordinates (Å	×10 ⁴) and Isotro	pic Displacement	Parameters
(Å ² ×10 ³) fo	or 7.				

Atom	х	У	Z	U(eq)
H(8)	7773.4	3737.39	3256.05	24
H(17A)	6449.27	3152.81	2273.57	26
H(17B)	7537.78	3189.13	1726.95	26
H(6)	5313.87	6953.87	3863.16	30
H(14)	7905.19	7124.03	3549.89	30
H(7)	4167.78	6719.92	4784.86	33
H(20)	8647.59	7084.79	2223.54	28

H(10)	10187.34	3848.75	3476.32	31
H(13)	9683.01	8164.88	4071.47	35
H(4)	5715.44	3063.46	3741.77	34
H(23)	4540.46	4944.62	1663.87	35
H(27)	8371.54	5940.76	1136.89	38
H(11)	11973.21	4902.2	3978.81	38
H(12)	11713.56	7060.52	4285.55	39
H(3)	4564.61	2816.78	4669.45	37
H(25)	5628.4	4711.08	-114.12	48
H(24)	3991.6	4484.35	647.48	47
H(26)	7831.85	5425.76	131.35	47
H(1A)	2822.85	2970.73	5419.05	76
H(1B)	3072.42	3625.6	6069.94	76
H(1C)	4339.54	3056.85	5692.82	76
H(21A)	7500(20)	8980(20)	2256(10)	25(5)
H(3A)	7670(30)	1560(30)	2543(13)	46(7)
H(3B)	8940(30)	2000(20)	2221(11)	38(6)
H(21B)	6050(40)	8120(30)	2222(15)	73(10)