Supporting Information

Direct formation of amide/peptide bonds from carboxylic acids: no traditional coupling reagents, 1-pot, and green

Kaitlyn M. Freiberg, Rahul D. Kavthe, Rohan M. Thomas, David M. Fialho, Paris Dee, Matthew Scurria, Bruce H. Lipshutz*

Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106 USA

> Phone: 805-893-2521 Fax: 805-893-8265 Email: <u>lipshutz@chem.ucsb.edu</u> Website: <u>https://lipshutz.chem.ucsb.edu/</u>

Contents

1.	General information	S2
2.	Synthesis of di-2-pyridyldithiocarbonate (DPDTC)	S2
3.	Optimization of the reaction conditions	S3
	3.1. Optimization of S-(2-pyridyl) thioester formation	S3
	3.2. Optimization of amide bond formation from S-(2-pyridyl) thioesters	S5
	3.3. NMR Yield Calculations	. S10
4.	One pot amide bond formation from carboxylic acid	. S14
5.	General Purification Procedures for amides	. S15
	5.1. General Purification Method for General Procedure A	. S15
	5.2. General Purification Method for General Procedure B	. S15
	5.3. General Purification Method for General Procedure C	. S15
6.	Synthesis of starting materials	. S16
7.	PMI and E Factor Calculations	. S17
8.	Large Scale Reaction	. S19
9.	Recycle Study	. S20
10.	Multi-step, 1-pot: chemocatalysis sequence procedures	.S21
11.	Analytical data	. S24
12.	References	. S50
13.	NMR Spectra	. S52

1. General information

A solution of 2 wt % surfactant/H₂O was prepared by dissolving the surfactant in degassed HPLC grade water and was stored under argon. TPGS-750-M was obtained from a contract manufacturer, but is also available from Sigma-Aldrich (catalog #733857). All commercially available reagents were purchased from Sigma-Aldrich, Combi-Blocks, Ambeed Inc., Acros Organics, BLD Pharma, Fischer Scientific, or ChemScene and used without further purification. Thin layer chromatography (TLC) was done using Silica Gel 60 F254 plates (Merck, 0.25 mm thick). The developed TLC plate was analyzed by a UV lamp (254 nm). The plates were further analyzed with the use of an aqueous ceric ammonium molybdate stain or ethanolic vanillin and developed with a heat gun. All commercially available reagents were used without further purification. Flash chromatography was performed using Silicycle Silicaflash® P60 unbonded grade silica.

¹H, ¹³C, and ¹⁹F NMR were recorded at 25 °C on either an Agilent Technologies 400 MHz, a Bruker Avance III HD 400 MHz, or a Agilent Technologies 500 MHz, a Bruker Avance III HD 400 MHz spectrometer in CDCl₃, DMSO-*d*₆, or benzene-*d*₆ with residual CHCl₃ (¹H = 7.26 ppm, ¹³C = 77.16 ppm), DMSO (¹H = 2.54 ppm, ¹³C = 40.45 ppm), and benzene (¹H = 7.16 ppm, ¹³C = 128.06 ppm) as the internal standard. Chemical shifts are reported in parts per million (ppm, or Hz). The data presented will be reported as follows; chemical shift, multiplicity (s = singlet, bs = broad singlet, d = doublet, dd = doublet of doublet, t = triplet, q = quartet, quin = quintet, m = multiplet), coupling constant (if applicable), and integration. High-resolution mass analyses (HRMS) were recorded on Waters GCT Premier GC TOF or Agilent 6230 TOF LC/MS System.

2. Synthesis of di-2-pyridyldithiocarbonate (DPDTC)

All glassware was flame dried. To a 500 ml round-bottom flask equipped with a PTFE-coated magnetic stir bar was added 2- mercaptopyridine (6 equiv, 60 mmol, 6.67 g), then the flask was sealed with a rubber septum and anhydrous acetone (100 ml) was added via syringe under a positive flow of argon, followed by anhydrous Et₃N (6 equiv, 60 mmol, 8.36 mL) and the solution was stirred until all components were fully dissolved. An ice bath was used to cool the resulting solution, an argon balloon was affixed to the septum via a needle, then a solution of triphosgene (1 equiv, 10 mmol, 2.967 g) in acetone (12.5 mL) was slowly added over the course of 15 min. The ice was replaced as needed to keep the solution cool during addition of triphosgene to prevent excessive generation of phosgene gas. Upon full addition, triethylammonium chloride was observed to precipitate. The reaction was allowed to warm to rt and stir overnight. Upon completion, the septum was removed inside a fume hood and allowed to expel any excess phosgene

gas, then the reaction mixture was filtered to remove triethylammonium chloride, and the filtrate was concentrated in vacuo to afford a crude oil containing crystals of remaining triethylammonium chloride. The crude residue was redissolved in EtOAc in 10 ml portions and filtered into a separatory funnel. The combined organic extracts were washed with saturated aqueous NaHCO₃ (100 mL), followed by DI water (100 mL), followed by saturated brine (100 mL). The organic layer was separated and dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo* and residual solvent was removed under high vacuum overnight to afford DPDTC as a light-yellow solid (6.596 g, 89% yield).

Caution: Triphosgene is acutely toxic and releases toxic phosgene gas on contact with moisture. It should be handled on small scale in a fume hood or glove box and weighed out using a pre-weighed, tightly sealed container.

Note: Commercial sources of inexpensive 2-mercaptopyridine may require purification prior to use due to the presence of the derived disulfide. This can be accomplished via recrystallization from EtOAc.

3. Optimization of the reaction conditions

3.1. Optimization of S-(2-pyridyl) thioester formation

General Procedure for thioester formation under neat conditions: To a 1-dram vial, a PTFEcoated stir bar, carboxylic acid (1 equiv, 0.125 mmol, 36.8 mg) and DPDTC (1.05 equiv, 0.1275 mmol, 31.7 mg) were added. Upon completion, 1,3,5- trimethoxzybenzene and CDCl₃ was added to the reaction vial and stirred for 15 minutes until fully homogeneous. The NMR was then directly taken. The contents were stirred at various temperatures and times. For all of the following optimization reactions, ¹H NMR yields were calculated using 1,3,5-trimethoxybenzene as the internal standard, integrating for the product at 7.88 ppm as described in section 3.3.

Table S1. Screening of equivalents of DPDTC

Table S2. Screening of temperature and time

entry	temperature (°C)	time (h)	NMR yield (%) ^a
1	40	1	9
2	40	2	37
3	40	3	55
4	40	4	72
5	50	1	42
6	50	2	71
7	50	3	70
8	50	4	84
9	60	1	71
10	60	2	88
11	60	3	93
12	60	4	98

Figure S1. Effect of time and temperature on thioester formation

Table S3. Screening of additives

^a Yields were determined by ¹H NMR using 1,3,5-trimethylbenzene as an internal standard.

3.2. Optimization of amide bond formation from S-(2-pyridyl) thioesters

General Procedure for amide bond formation from S-(2-pyridyl) thioesters: To a 1-dram vial, a PTFE-coated stir bar, pyridyl thioester (1 equiv, 0.10 mmol, 38.7 mg) and 3,4,5-trimethoxyaniline (1 equiv, 0.11 mmol, 20.2 mg) was added. Unless otherwise state 1.1 equiv of trimethoxyaniline was used. The contents were stirred at various temperatures, times, and in various solvents, or under aqueous conditions. Solvent or 2 wt % TPGS-750-M / H₂O was subsequently added when noted. Upon completion 1,3,5-trimthoxybenzene and CDCl₃ was added to the reaction vial and stirred for 15 minutes until fully homogeneous. For aqueous systems, the reaction was extracted with EtOAc until no product remained in the aqueous layer. The combined organics were dried with anhydrous MgSO₄ and concentrated via rotary evaporator. For screening reactions with organic solvents, the reaction was concentrated via rotary evaporator. 1,3,5-Trimethoxybenzene and CDCl₃ were then added and stirred for 15 minutes until fully homogeneous. The NMR was then directly taken.

For all reactions, ¹H NMR yields were calculated using 1,3,5-trimethoxybenzene as the internal standard, integrating for the product at 7.65 ppm as described in section 3.3. To each of the resulting reaction mixtures 1,3,5-trimethoxybenzene was directly added. The yield was determined by ¹H NMR relative to the amount of internal standard added.

F 1 equiv	+ H_2N - 1.1 equiv	2 M solvent 60 °C, 2 - 4 h	
entry	solvent (2 M, 50 µL)	NMR yield (%) ^b (2 h)	NMR yield (%) ^b (4 h)
1	mineral oil	44	74
2	mineral oil	-	66
3	EtOAc	84	97
4	2-Me-THF	75	98
5	acetone	80	98
6	isopropyl acetate	83	99
7	EtOAc	84	-
8	TEA	86	-
9	TEA (5 equiv)	92	-

Table 4. Screening of solvent for amide bond formation under highly concentrated mixtures

 $a100 \,\mu L \, of mineral \, oil \, used.$ ^bYields were determined by ¹H NMR using 1,3,5-trimethylbenzene as an internal standard.

Table S5. Screening of equivalents of amine

Table S6. Screening of temperature for amide bond formation under highly concentrated mixtures

F 1 equiv	+ H_2N O $2 M EtOAc$ x °C, 4 h 1.1 eq	
entry	temperature (°C)	NMR yield (%) ^a
1	40	84
2	50	95
3	60	97

^a Yields were determined by ¹H NMR using 1,3,5-trimethylbenzene as an internal standard.

Table S7. Screening of additive under neat conditions

3	40 °C	2	7
4	40 °C	2	5
5	40 °C	6	12
6	40 °C	8	10
7	40 °C	16	95
8	50 °C	2	31
9	50 °C	16	90
10	60 °C	2	89
11	60 °C	6	95
12	60 °C	8	89
13	60 °C	16	>95

Figure S2. Effect of time and temperature of amide formation under aqueous micellar conditions

entry	co-solvent (10 vol %)	NMR yield (%) ^a
1	TPGS-750-M	89
2	MC-1	52
3	Triton-X 100	70

4	SDS	54
5	on water ^a	61

^a Reaction time was 4 h. ^b Yields were determined by ¹H NMR using 1,3,5-trimethylbenzene as an internal standard.

Table S10. Screening of co-solvent in 2 wt % TPGS-750-M/H₂O

3.3. NMR Yield Calculations

All NMR yields were calculated as follows using 1,3,5-trimethoxybenzene as the internal standard.

Figure S1: ¹H NMR spectrum of 5-(4-fluoro-5-isopropyl-2-methoxyphenyl)thiophene-2-carboxylic acid in DMSO-d₆.

Figure S3: Example of ¹H NMR yield of pyridyl thioester from carboxylic acid in DMSO-d₆.

Figure S4: ¹H NMR spectrum of S-(pyridin-2-yl) 5-(4-fluoro-5-isopropyl-2-methoxyphenyl)-thiophene-2-carbothioate in CDCl₃

Figure S5: ¹HNMR spectrum of 5-(4-fluoro-5-isopropyl-2-methoxyphenyl)-*N*-(3,4,5-trimethoxyphenyl)thiophene-2-carboxamide in CDCl₃

Figure S6: Example of ¹H NMR yield of amide from 2-pyridylthioester in CDCl₃

4. One pot amide bond formation from carboxylic acid

General procedure of amide bond formation under neat conditions (Method A): To a 1-dram vial, a PTFE-coated stir bar, carboxylic acid (1 equiv, 0.250 mmol) and DPDTC (1.05 equiv, 0.263 mmol, 65.2 mg) was added. The contented were stirred at 60 °C until full consumption of the acid, as determined by TLC (~4-6 h). Because the reaction is neat, it is important for the completion of the reaction for all contents to not be on the sides of the reaction vessel. In addition, the stirring

should not be too vigorous to cause splashing up the sides of the vial. Upon complete consumption of the thioester the amine was directly added, in 1-pot to the vial and stirred until complete consumption of the thioester. The crude reaction mixture was dissolved in EtOAc and washed with 1 M NaOH (1 mL x 3) and concentrated via rotary evaporation.

General procedure of amide bond formation by using EtOAc (2 M) (Method B):

Upon complete consumption of the thioester, amine (1.05 equiv, 0.263 mmol), followed by EtOAc (2 M, 125 μ L) was directly added, and stirred at 60 °C until complete consumption of the thioester. The crude reaction mixture was dissolved in EtOAc and washed with 1 M NaOH (1 mL x 3), then 1 M HCl (1 mL x 3), the EtOAc was then concentrated via rotary evaporation.

General procedure for amide bond formation by using aqueous conditions (Method C):

Upon complete consumption of the thioester, amine (1.05 equiv, 0.263 mmol), EtOAc (10 vol %, 50 μ L), and 2 wt % TPGS-750-M/H₂O (0.5 M, 0.5 mL), respectively, was directly added, and stirred at 60 °C until complete consumption of the thioester. The crude reaction mixture was washed with 1 M NaOH (1 mL x 3) and dried over anhydrous MgSO₄.

5. General Purification Procedures for amides

5.1. General Purification Method for General Procedure A

Method A-1

The crude reaction mixture was dissolved in EtOAc and washed with 1 M NaOH (1 mL x 3) and concentrated via rotary evaporation.

Method A-2

The crude reaction mixture was dissolved in EtOAc and washed with 1 M NaOH (1 mL x 3), then 1 M HCl (1 mL x 3), and dried over anhydrous $MgSO_4$. The combined EtOAc layers were then concentrated via rotary evaporation.

Method A-3

The crude reaction mixture was washed with 1 M NaOH (1 mL x 3) and dried over anhydrous $MgSO_4$ and concentrated via rotary evaporation to afford the crude product.

5.2. General Purification Method for General Procedure B

The crude reaction mixture was extracted with EtOAc until no product could be observed in the EtOAc, as determined by TLC. The extracts were then concentrated and purified via silica gel chromatography. The eluent varied per substrate.

5.3. General Purification Method for General Procedure C

The crude reaction mixture was extracted with EtOAc until no product remained as determined by TLC. The extracted layers were combined and then washed with 1 M NaOH (3 times) followed by

1 M HCl (3 times). The crude material was then obtained via rotary evaporation followed by purification via silica gel chromatography. The eluent varied per substrate.

6. Synthesis of starting materials

Synthesis of 5-(4-fluoro-5-isopropyl-2-methoxyphenyl)thiophene-2-carboxylic acid

To an oven dried round bottom flask with a PTFE coated stir bar were added 5-bromo-2-furoic acid (1 equiv, 7.4 mmol, 1.55 g, (4-fluoro-5-isopropyl-2-methoxyphenyl)boronic acid (1.2 equiv, 8.88 mmol, 1.905 g), and Pd(dtbpf)Cl₂ (1 mole %, 97.6 mg). The round bottom flask was then capped with a rubber septum and purged with argon. Triethylamine (3 equiv, 22.2 mmol, 2.27 mL) and 2 wt % TPGS-750-M/H₂O (0.5 M, 12.7 mL) was then added via syringe and stirred vigorously overnight (16 h) at 45 °C (internal temperature). The reaction was then quenched by the addition of concentrated HCl. The precipitate was filtered and redissolved in EtOAc and then washed with 50% sodium bicarbonate/water solution. The EtOAc layer was either reconcentrated *in vacuo* or precipitated with concentrated HCl. The resulting compound was an off-white/light brown solid (1.85 g, 85% yield). $R_f = 0.50$ (1:1 EtOAc/hexanes).

Synthesis of 8-bromo-5-methyl-6-oxo-5,6-dihydro-4H-benzo[f]imidazo[1,5-a][1,4]diazepine-3-carboxylic acid

To an oven dried round bottom flask with a PTFE coated stir bar were added ethyl 8-bromo-5methyl-6-oxo-5,6-dihydro-4H-benzo[f]imidazo[1,5-a][1,4]diazepine-3-carboxylate (300 mg, 0.83 mmol), THF (6 mL), MeOH (2 mL) and a solution of lithium hydroxide (59.3 mg, 0.24 mmol) in water (2 mL) was added. The mixture was stirred at rt for 16 h. The volatiles were removed *in vacuo* and the residue treated with 10% aqueous citric acid solution. The resultant precipitate was filtered and dried under suction to give the title compound 8-bromo-5-methyl-6-oxo-5,6-dihydro-4H-benzo[f]imidazo[1,5-a][1,4]diazepine-3-carboxylic acid as a white solid (251 mg, 90% yield). Synthesis of 3-(3-(tert-butylthio)-1-(4-chlorobenzyl)-5-(quinolin-2-ylmethoxy)-1H-indol-2-yl)-2,2-dimethylpropanoic acid

To an oven dried round bottom flask with a PTFE coated stir bar were added methyl 3-(3-(*t*-butylthio)-1-(4-chlorobenzyl)-5-(quinolin-2-ylmethoxy)-1H-indol-2-yl)-2,2-dimethylpropanoate (200 mg, 0.33 mmol), THF (6 mL), MeOH (2 mL), and a solution of lithium hydroxide (23.76 mg, 0.1 mmol) in water (2 mL) added. The mixture was stirred at rt for 48 h. The volatiles were removed *in vacuo* and the residue treated with 10% aqueous citric acid solution. The resultant precipitate was filtered and dried under suction to give the title compound 8-bromo-5-methyl-6-oxo-5,6-dihydro-4H-benzo[f]imidazo[1,5-a][1,4]diazepine-3-carboxylic acid as a yellow solid (140 mg, 72% yield).

7. PMI and E Factor Calculations

2. PMI for neat reaction forming a secondary amide on a 0.25 mmol scale

PMI and E Factor for a neat reaction (conditions a)

$$E \ Factor = \frac{mass \ waste \ organics}{mass \ product} = \frac{(mass \ DPDTC + mass_{excess \ amine} + mass_{EtOAc})}{(massproduct)} \ (massproduct) = \frac{0.0652 \ g + 0.00138g + 0.451g}{0.0527} = 9.77$$

$$PMI = \frac{mass \ waste \ organics}{mass \ product} = \frac{(mass \ DPDTC + mass_{excess \ amine} + mass_{aq})}{(massproduct)} \ (massproduct) = \frac{0.0652 \ g + 0.00138g + 0.451g + 1.02g}{0.0527} = 29.1$$

PMI and E Factor for a reaction using 2 M EtOAc (conditions b)

$$E \ Factor = \frac{mass \ waste \ organics}{mass \ product} = \frac{(mass \ DPDTC + mass_{excess \ amine} + mass_{EtOAC})}{(massproduct)} \ (massproduct) = \frac{0.0652 \ g + 0.00138g + 0.634g}{0.0542} = 12.9$$

$$PMI = \frac{mass \ waste \ organics}{mass \ product} = \frac{(mass \ DPDTC + mass_{excess \ amine} + mass_{aq})}{(massproduct)} \ (massproduct)$$

$$= \frac{0.0652 \ g + 0.00138g + 0.634g + 1.02g}{0.0542} = 31.7$$

PMI and E Factor for 0.5 M 2 wt % TPGS-750-M/H₂O, 10 vol % EtOAc reaction on 1 mmol scale (conditions c)

$$E \ Factor = \frac{mass \ waste \ organics}{mass \ product} = \frac{(mass \ DPDTC + mass_{excess \ amine} + mass_{EtOAc})}{(massproduct)} \ (massproduct) = \frac{0.012416g + 0.0053575g + 2.233g}{0.234} = 23.2$$

$$PMI = \frac{mass \ waste \ organics}{mass \ product} = \frac{(mass \ DPDTC + mass_{excess \ amine} + mass_{aq})}{(massproduct)} \ (massproduct)$$

$$= \frac{0.0652 \ g + 0.00138g + 0.634g + 5.06g}{0.234} = 31.3$$

Table 10: Comparison PMI

entry	reagent	reaction	work-up	overall PMI
1	T3P	12	31	43
2	CDI	16	36	52
3	HATU	11	23	34
4	EDC	15	31	46
5	oxalyl chloride	12	48	60
6	DPDTC	1.2	27.9	29.1
7	DPDTC (1°	0.94	14.4	15.3
/	amide)			

8. Large Scale Reaction

A 100 mL round-bottom flask containing a PTFE-coated magnetic stir bar was charged with phenylpropionic acid (1.501 g, 10 mmol) and DPDTC (2.607 g, 10.5 mmol) and stirred at 60 °C for 4 h. Benzylamine (1.147 mL, 10.5 mmol) was then added, followed by EtOAc (10 vol %, 2 mL) and 2 wt % TPGS-750-M (0.5 M, 18 mL) and stirred for 6 h at 60 °C (internal temperature, block set to 65 °C). The resulting contents of the reaction were extracted with EtOAc (3 x 3.0 mL). The crude product was purified via General Purification Method A-2 to provide the desired compound **5** as a white solid (2.25 g, 94 %). $R_f = 0.41$ (1:1 EtOAc/hexanes).

a.) Initial reaction, b.) after thioester formation, c.) after addition of benzyl amine and TPGS-750- M/H_2O

9. Recycle Study

second recycle : 93%

To a 2-dram vial equipped with a Teflon coated stir bar was added phenylpropionic acid (150.2 mg, 1 mmol) and DPDTC (260.7 mg, 1.05 mmol) and stirred at 60 °C for 3 h. Benzylamine (115 μ L, 1.05 mmol) was then added, followed by EtOAc (10 vol %, 200 μ L) and 2 wt % TPGS-750-M (0.5 M, 1.8 mL) and stirred for 4 h at 60 °C (internal temperature, block set to 65 °C). The resulting contents of the reaction were extracted with EtOAc (3 x 3.0 mL). The combined organic layer was washed with 1 M NaOH (3 x 2 mL) and 1 M HCl (3 x 2 mL). The resulting organic layer was washed with brine (1 x 2 mL) and dried over anhydrous MgSO₄ and concentrated *in vacuo* to afford a white solid (234 mg, 98% yield). The recovered 2 wt % TPGS-750-M was used in the followed reaction.

1st Recycle

To a 2-dram vial equipped with a Teflon coated stir bar was added phenylpropionic acid (150.2 mg, 1 mmol) and DPDTC (260.7 mg, 1.05 mmol) and stirred at 60 °C for 3 h. Benzylamine (115 μ L, 1.05 mmol) was then added, followed by EtOAc (10 vol %, 200 μ L) and the recycled 2 wt % TPGS-750-M (0.5 M, 1.8 mL) from the previous reaction and the resulting mixture was stirred for 4 h at 60 °C (internal temperature, block set to 65 °C). The resulting mixture was purified using the same conditions as stated above, resulting in a white solid (225 mg, 94% yield). The recovered 2 wt % TPGS-750-M/H₂O was used in the followed reaction.

2nd Recycle

To a 2-dram vial equipped with a Teflon coated stir bar was added phenylpropionic acid (150.2 mg, 1 mmol) and DPDTC (260.7 mg, 1.05 mmol) and stirred at 60 °C for 3 h. Benzylamine (115 μ L, 1.05 mmol) was then added, followed by EtOAc (10 vol %, 200 μ L) and the recycled 2 wt % TPGS-750-M/H₂O (0.5 M, 1.8 mL) from the previous reaction and the mixture was then stirred for 4 h at 60 °C (internal temperature, block set to 65 °C). The resulting mixture was purified using the same conditions as stated above, resulting in a white solid (222 mg, 93% yield).

At this point 0.3 mL of the 2 wt % TPGS-750-M/H₂O solution remained and was lost due to small scale extraction and no further recycling of the aqueous medium was pursued.

10. Multi-step, 1-pot: chemocatalysis sequence procedures

Scheme 1: 3-Step, 1-pot sequence to afford a nitrile as a drug derivative

To a 1-dram vial equipped with a PTFE coated stir bar was added was added probenecid (1 equiv, 0.25 mmol, 71.4 mg), DPDTC (1.1 equiv, 0.26 mmol, 65.2 mg) and stirred for 4.5 h at 60 °C internal temperature. The reaction was carried forward without isolation or workup. To the vial, NH₄OH (2 equiv, 0.50 mmol, 63 μ L) was then added and stirred for 0.5 h at 60 °C internal temperature. To the reaction mixture was added 1 M NaOH (1 mL x 3) after which the NaOH layer was removed, which removed the by-product 2-mercaptopyridine. The reaction mixture was then washed with water (1 mL x 2). To the vial containing the primary amide 43, Oxone (20 mole %, 15.4 mg) was added followed by the addition of DMSO (20 vol %, 100 μ L). The mixture was then heated with a heat gun until the primary amide dissolved. A 2 wt % TPGS-750-M/H₂O solution (0.5 M, 0.45 mL) was added, followed by methoxyacetonitrile (4 equiv, 1 mmol, 74.4 µL), and from a stock solution of Pd(OAc)₂ in THF, 50 µL was then introduced. The stock solution contained 5.6 mg of Pd(OAc)₂ in 500 µL of THF. This procedure was followed according to the previously described by Wood, et al.¹ The reaction mixture was stirred overnight until complete as determined by TLC. The entire reaction mixture was poured onto a silica plug and eluted with 20 % EtOAc/80% hexanes resulting in a compound 44 white solid (59.9 mg, 90% yield). $\mathbf{R}_{\mathbf{f}} = 0.38$ (20% EtOAc/80% hexanes).

Procedure: To a 1-dram vial equipped with a PTFE coated stir bar was added was added bezafibrate (1 equiv, 0.250 mmol, 90.5 mg) and DPDTC (1 equiv, 0.25 mmol, 65.2 mg) and the mixture was stirred for 3 h at 60 °C internal temperature. The reaction mixture was carried forward without isolation or workup. To the vial, NH4OH (2 equiv, 0.50 mmol, 63 µL) was added and stirred for 1 h at 60 °C internal temperature. To the reaction mixture was added 1 M NaOH (1 mL x 2) after which the NaOH layer was removed after centrifugation. Then, 1 M HCl (1 mL x 2) was added, followed by deionized water (1 mL x 2). Toluene (1 mL x 2) was added and sequentially evaporated under vacuum to remove any remaining water, as the following amide dehydration is sensitive to the presence of water. To the same vial with the primary amide 42, NMM (2 equiv, 0.5 mmol, 100 µL) was directly added followed by the addition of 2-MeTHF (0.2 M, 1.25 mL) and trifluoroacetic anhydride (4 equiv, 1 mmol, 140 µL). The reaction was stirred for 10 min on ice followed by stirring for 2 h at rt. The reaction mixture was then quenched with brine and extracted with EtOAc. The combined organics were washed with 1:1 1 M HCl/brine and 1:1 sat NaHCO₃/brine, followed by a brine wash. The organics were then dried over anhydrous MgSO₄ and concentrated *in vacuo*, resulting in a product 45 white solid (71 mg, 79 % yield). $\mathbf{R}_{f} = 0.44$ (20% EtOAc/80% hexanes).

Scheme 3: A 4-step, 1-pot sequence utilizing a Merck Informer Library acid to form ester 7

To a 2-dram vial equipped with a PTFE coated stir bar was added was added 3-bromo-5-(trifluoromethyl) benzoic acid (1 equiv, 0.250 mmol, 67.3 mg) and DPDTC (1.05 equiv, 0.263 mmol, 65.3 mg) and the mixture was then stirred for 4 h at 60 °C internal temperature. The reaction was carried forward without isolation or workup. To the vial, 4-aminoacetophenone (1.05 equiv, 0.263 mmol, 35.5 mg) and EtOAc (2 M, 125 μ L) was added and stirred for 3 h at 60 °C internal temperature. The reaction mixture was washed with 1 M NaOH (3 x 1 mL), and then 1 M HCl (3 x 1 mL). To the same vial, NaBH₄ (2 equiv, 0.5 mmol, 18.9 mg) was added and the mixture was stirred on ice for 10 min and then at rt for 2 h. This mixture was then azeotropically dried with toluene. To the same vial, compound **47** (1 equiv, 0.25 mmol, 132 mg), DMAP (0.10 equiv, 0.025 mmol, 3.1 mg) and dry EtOAc (0.5 M, 125 μ L), were added and stirred for 12 h at 60 °C. The EtOAc was dried over anhydrous K₂CO₃ and anhydrous MgSO₄ and stored on sieves before use. The reaction was applied directly onto SiO₂ and then purified via column chromatography using a gradient of 10% EtOAc/Hexane) resulting in a product **48** white solid (90 mg, 45% yield). **R**_f = 0.40 (20% EtOAc/80% hexanes).

11. Analytical data

S,S-Di(pyridin-2-yl) carbonodithioate (1):

¹**H NMR (400 MHz, CDCl**₃): δ 8.58 (ddd, *J* = 4.8, 2.0, 1.0 Hz, 2H), 7.73 – 7.60 (m, 4H), 7.26 (ddd, *J* = 7.3, 4.8, 1.5 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃): δ 185.60, 150.60, 150.58, 137.46, 130.43, 124.12, 77.48, 77.16, 76.85.

N-[p-[(2-Dimethylamino)ethoxy]benzyl]-3,4,5-trimethoxybenzamide (2): Compound (2) was prepared according to Method C with the following modifications. In step 1: 1.5 equiv of DPDTC and 0.5 M TPGS-750-M/H₂O for 16 h at 45 °C. In step 2: 1.1 equiv of amine was added at rt for 16 h. The crude product was purified by flash column chromatography (10% EtOAc/hexanes) afforded **1** (88.4 mg, 91% yield) as a white solid; **Rr:** 0.57 (30% EtOAc/hexanes). R_f: 0.36 (30% MeOH/70% DCM).

¹**H** NMR (400 MHz, CDCl₃): δ 7.30 – 7.26 (m, 2H), 7.00 (s, 2H), 6.94 – 6.86 (m, 2H), 6.28 (s, 1H), 4.57 (d, J = 5.6 Hz, 2H), 4.10 (t, J = 5.6 Hz, 2H), 3.89 (s, 6H), 3.87 (s, 3H), 2.81 (t, J = 5.6 Hz, 2H), 2.39 (s, 6H).

¹³C NMR (126 MHz, CDCl₃): δ 167.08, 158.41, 153.37, 141.13, 130.62, 130.02, 129.50, 114.99, 104.52, 77.41, 77.16, 76.91, 65.88, 61.07, 58.18, 56.52, 45.76, 43.89. Spectral data matched those previously reported.²

Benzofuran-2-carboxylic acid *N*-(**4-methylphenyl**)**amide** (**3**): Compound **3** was prepared according to Method C with the following modifications. In step 1: 1.5 equiv of DPDTC, 10 mol % DMAP, and 0.5 M TPGS-750-M/H₂O for 16 h at 45 °C. In step 2: 1.1 equiv of amine was added at rt for 16 h. The crude product was purified by flash column chromatography (30 % EtOAc in hexanes) afforded **1** (37.1 mg, 59% yield) as white solid. **Rf:** 0.40 (30% EtOAc/70% hexanes).

¹**H** NMR (500 MHz, CDCl₃): δ 8.31 (s, 1H), 7.73 (dt, *J* = 7.8, 1.0 Hz, 1H), 7.65 – 7.57 (m, 4H), 7.48 (ddd, *J* = 8.4, 7.2, 1.3 Hz, 1H), 7.35 (ddd, *J* = 8.0, 7.3, 1.0 Hz, 1H), 7.23 (d, *J* = 8.2 Hz, 2H), 2.38 (s, 3H).

¹³C NMR (126 MHz, CDCl₃): δ 156.48, 154.80, 148.65, 134.68, 134.53, 129.69, 127.77, 127.18, 123.91, 122.86, 120.04, 111.80, 111.27, 77.28, 77.03, 76.77, 20.96. Spectral data matched those previously reported.³

N-(*p*-Tolyl)-1-naphthamide (4): Compound 4 was prepared according to Method C with the following modifications. In step 1: 1.5 equiv of DPDTC, 10 mol % DMAP, and 0.5 M TPGS-750-M/H₂O for 16 h at 45 °C. In step 2: 1.1 equiv of amine was added at rt for 16 h. The crude product was purified by flash column chromatography (30 % EtOAc in hexanes) afforded **3** (60.6 mg, 98% yield) as white solid; **R**_f: 0.20 (30% EtOAc/70% hexanes).

¹**H NMR (500 MHz, CDCl₃):** δ 8.40 (d, *J* = 8.1 Hz, 1H), 7.99 (d, *J* = 8.3 Hz, 1H), 7.95 – 7.91 (m, 1H), 7.77 (d, *J* = 7.0 Hz, 1H), 7.64 (s, 1H), 7.62 – 7.51 (m, 5H), 7.24 (d, *J* = 7.9 Hz, 2H), 2.39 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 167.47, 135.51, 134.63, 134.36, 133.77, 130.95, 130.11, 129.64, 128.42, 127.32, 126.57, 125.33, 125.06, 124.75, 120.07, 77.37, 77.05, 76.74, 20.96. Spectral data matched those previously reported.⁴

N-Benzyl-3-phenylpropionamide (5): Compound (5) was obtained using General Procedure A on a 0.25 mmol scale. The crude product was purified via General Purification Method 1-B, as described in Section 5.2, to provide the desired compound as a white solid (53 mg, 88%). $\mathbf{R}_{\mathbf{f}} = 0.41$ (50% EtOAc/50% hexanes).

¹H NMR (400 MHz, CDCl₃): δ 7.36 − 7.26 (m, 5H), 7.24 − 7.11 (m, 5H), 5.58 (s, 1H), 4.40 (d, *J* = 5.5 Hz, 2H), 3.00 (t, *J* = 7.6 Hz, 2H), 2.52 (t, *J* = 7.6 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃): δ 172.03, 140.80, 138.19, 128.66, 128.57, 128.42, 127.72, 127.44, 126.27, 43.55, 38.44, 31.74. Spectral data matched those previously reported.⁵

N-Phenylbenzofuran-2-carboxamide (6): Compound (6) was obtained using General Procedure A on a 0.25 mmol scale. The crude product was purified via General Purification Method 1-A, as described in Section 5.1, to provide the desired compound as a white solid (53 mg, 90%). $\mathbf{R}_{f} = 0.71$ (50% EtOAc/50% hexanes).

¹H NMR (400 MHz, CDCl₃): δ 8.34 (s, 1H), 7.72 (ddt, J = 7.6, 5.4, 1.2 Hz, 3H), 7.60 (d, J = 1.0 Hz, 1H), 7.57 (dq, J = 8.2, 0.9 Hz, 1H), 7.46 (ddd, J = 8.4, 7.2, 1.3 Hz, 1H), 7.43 – 7.36 (m, 2H), 7.33 (ddd, J = 8.1, 7.2, 1.0 Hz, 1H), 7.22 – 7.15 (m, 1H).¹³C NMR (126 MHz, CDCl₃): δ 156.64, 154.83, 148.48, 137.23, 129.20, 127.73, 127.29, 124.86, 123.96, 122.91, 120.07, 111.84, 111.50. Spectral data matched those previously reported.⁶

N-(3,4-Dimethoxyphenethyl)-3,4-methylenedioxybenzamide (7): Compound 7 was obtained using General Procedure A on a 0.25 mmol scale. The crude product was purified via General Purification Method 1-A, as described in Section 5.1, to provide the desired compound as a white solid (81.6 mg, 99%). $\mathbf{R}_{\mathbf{f}} = 0.24$ (50% EtOAc/50% hexanes).

¹**H** NMR (400 MHz, CDCl₃): δ 7.19 (d, J = 7.6 Hz, 2H), 6.84 – 6.71 (m, 4H), 6.08 (s, 1H), 6.00 (s, 2H), 3.85 (d, J = 9.0 Hz, 6H), 3.65 (q, J = 6.4 Hz, 2H), 2.85 (t, J = 6.7 Hz, 2H).

13C NMR (101 MHz, CDCl₃:): δ 166.75, 150.28, 149.09, 147.97, 147.74, 131.45, 128.87, 121.34, 120.69, 111.99, 111.43, 107.99, 107.53, 101.69, 55.87, 41.32, 35.26. Spectral data matched those previously reported.⁷

N-(3,4-Dimethoxyphenethyl)benzo[d][1,3]dioxole-5-carboxamide (8): Compound 8 was obtained using General Procedure A on a 0.25 mmol scale. The crude product was purified via General Purification Method 1-A, as described in Section 5.1, to provide the desired compound as a white solid (89.7 mg, 98%). $\mathbf{R}_{f} = 0.50$ (50% EtOAc/50% hexanes).

¹**H** NMR (400 MHz, CDCl₃): δ 7.47 (d, J = 1.7 Hz, 1H), 7.41 (dd, J = 8.3, 1.8 Hz, 1H), 7.07 (d, J = 8.2 Hz, 1H), 6.83 (d, J = 7.9 Hz, 1H), 6.79 – 6.72 (m, 2H), 6.02 (d, J = 7.2 Hz, 1H), 3.86 (d, J = 7.4 Hz, 6H), 3.69 (td, J = 6.8, 5.8 Hz, 2H), 2.88 (t, J = 6.9 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃): δ 165.78, 149.17, 147.85, 145.87, 143.95, 131.67, 131.14, 131.06, 122.74, 120.68, 111.90, 111.43, 109.21, 108.79, 77.30, 77.05, 76.79, 55.94, 55.88, 41.41, 35.14.

¹⁹F NMR (376 MHz, CDCl₃): δ -49.78.

HRMS: *m*/*z* calcd for C₁₈H₁₉F₂NO₅; 366.115305 [M+1]: found 366.1127.

5-(2,5-Dimethylphenoxy)-*N*-(2-fluoro-4-morpholinophenyl)-2,2-dimethylpentanamide (9): Compound 9 was obtained using General Procedure A on a 0.25 mmol scale. The crude product was purified via General Purification Method 2, followed by flash chromatography (eluent: gradient 20% to 35% EtOAc/hexanes) to provide the desired compound as a white solid (104 mg, 97%). $\mathbf{R}_{f} = 0.60$ (50% EtOAc/50% hexanes). ¹**H NMR (500 MHz, CDCl₃):** δ 7.48 (dd, J = 14.1, 2.5 Hz, 1H), 7.32 (s, 1H), 7.09 (dd, J = 9.0, 2.4 Hz, 1H), 7.02 (d, J = 7.4 Hz, 1H), 6.90 (t, J = 9.0 Hz, 1H), 6.68 (d, J = 7.5 Hz, 1H), 6.63 (s, 1H), 3.96 (d, J = 5.2 Hz, 2H), 3.92 – 3.86 (m, 4H), 3.11 – 3.02 (m, 4H), 2.31 (s, 3H), 2.19 (s, 3H), 1.88 – 1.80 (m, 4H), 1.35 (s, 6H).

¹³**C NMR (126 MHz, CDCl₃):** δ 175.64, 156.82, 156.41, 154.45, 136.58, 133.15 (d, *J* = 10.6 Hz), 130.36, 123.51, 120.91, 118.75, 115.84 (d, *J* = 3.2 Hz), 112.20, 109.31 (d, *J* = 25.3 Hz), 77.29, 77.04, 76.78, 67.84, 66.99, 51.15, 42.79, 37.66, 25.62, 25.15, 21.40, 15.85.

¹⁹F NMR (**376** MHz, CDCl₃): δ -121.05.

HRMS: *m*/*z* calcd for C₂₂H₂₅F₆N₂O₃S; 429.5223 [M+1]: found 429.5222.

N-(4-Cyanophenyl)-5-methylisoxazole-3-carboxamide (10): Compound 10 was obtained using General Procedure A on a 0.25 mmol scale. The crude product was purified via General Purification Method 2, followed by flash chromatography (eluent: gradient 30% EtOAc/70% hexanes to 50% EtOAc/50% hexanes) to provide the desired compound as a pale-yellow solid (54.5 mg, 96%). $R_f = 0.29$ (30% EtOAc/70% hexanes).

¹**H** NMR (400 MHz, CDCl₃): δ 8.69 (s, 1H), 7.83 – 7.76 (m, 2H), 7.72 – 7.64 (m, 2H), 6.54 (d, J = 1.0 Hz, 1H), 2.53 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 172.27, 158.46, 157.11, 140.99, 133.45, 119.83, 118.64, 107.96, 101.52, 12.46.

HRMS: *m*/*z* calcd for C₁₂H₁₀N₃O₂; 228.077302 [M+1]: found 228.0768.

N-3,5-*bis*(Trifluoromethyl)benzyl)-4-(*N*,*N*-dipropylsulfamoyl)benzamide (11): Compound 11was obtained using General Procedure A on a 0.25 mmol scale. The crude product was purified

via General Purification Method 2, followed by flash chromatography (eluent: gradient 20% EtOAc/80% hexanes to 60% EtOAc/40% hexanes) to provide the desired compound as a white solid (101.2 mg, 79%). $\mathbf{R}_{f} = 0.37$ (30% EtOAc/70% hexanes).

¹**H NMR (400 MHz, CDCl₃):** δ 7.88 – 7.78 (m, 5H), 7.73 (dd, J = 8.4, 2.3 Hz, 2H), 7.19 (p, J = 5.9 Hz, 1H), 4.75 (d, J = 6.0 Hz, 2H), 3.10 – 2.97 (m, 4H), 1.50 (h, J = 7.4 Hz, 4H), 0.83 (t, J = 7.4 Hz, 6H).

¹³**C NMR (126 MHz, CDCl₃):** δ 166.57, 142.89, 140.78, 137.52, 132.01 (q, *J* = 33.3 Hz), 128.05 (q, *J* = 3.8 Hz), 127.93, 127.22, 124.29, 121.60 (h, *J* = 4.0 Hz), 77.29, 77.03, 76.78, 49.93, 43.31, 21.87, 11.09.

¹⁹F NMR: (471 MHz, CDCl₃): δ -62.82.

HRMS: *m*/*z* calcd for C₂₂H₂₅F₆N₂OS; 511. 149008 [M+1]: found 511.1490.

1-*t*-Butoxycarbonyl-4-(cyclopropanecarbonyl) piperazine (12): Compound 12 was prepared according to Method A as described above with modification of reaction time: thioester formation (4 h) and amide formation (4 h). The crude product was purified by flash column chromatography (15% EtOAc/80% hexanes) to afford 12 (55.2 mg, 87% yield) as white solid; $\mathbf{R}_{f} = 0.25$ (30% EtOAc/70% hexanes).

¹**H NMR (400 MHz, CDCl₃)**: δ 3.62 (s, 4H), 3.45 (d, J = 23.2 Hz, 4H), 1.71 (ddd, J = 12.7, 8.0, 4.7 Hz, 1H), 1.47 (s, 9H), 1.04 - 0.96 (m, 2H), 0.78 (dt, J = 8.0, 3.3 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃): δ 172.24, 154.65, 80.22, 45.35, 44.04, 43.48, 41.91, 28.41, 11.06, 7.56. Spectral data matched those previously reported.⁸

t-Butyl *N-[N-(*3-(trifluoromethyl)-5-bromo-benzoyl) carbamimidoyl]carbamate (13): Compound 13 was prepared according to Method A as described above with modification of reaction time: thioester formation (4 h) and amide formation (4 h). The NMM (1 equiv) was added during amide bond formation. The crude product was purified by flash column chromatography (10% EtOAc/hexanes) to afford 13 (96.4 mg, 94% yield) as a white solid; R_{f} : 0.55 (15% EtOAc/85% hexanes).

¹**H NMR (400 MHz, CDCl₃):** δ 9.06 (s, 1H), 8.63 (s, 2H), 8.49 (t, *J* = 1.7 Hz, 1H), 8.37 (s, 1H), 7.85 (d, *J* = 2.0 Hz, 1H), 1.52 (s, 9H).

¹³**C NMR (126 MHz, CDCl₃)**: δ 175.67, 159.62, 152.92, 140.22, 135.50, 132.14 (q, *J* = 33.2 Hz), 130.97 (q, *J* = 3.78 Hz), 124.76, (q, *J* = 3.78 Hz), 122.93, (q, *J* = 273.4 Hz), 83.93, 27.77.

¹⁹F NMR (376 MHz, CDCl₃): δ -62.80.

HRMS: *m*/*z* calcd for C₁₄H₁₅BrF₃N₃O₃; [M+1]: 410.0327 found 410.0318.

N-[2-(4-Methoxyphenyl)ethyl]-3-pyridinecarboxamide (14): Compound 14 was obtained using General Procedure B on a 0.25 mmol scale. The crude product was purified via General Purification Method A to provide the desired compound as a pale-yellow oil (59 mg, 92%). $\mathbf{R}_{\mathbf{f}} = 0.44$ (50% EtOAc/50% hexanes).

¹**H** NMR (500 MHz, CDCl₃): δ 8.72 – 8.67 (m, 1H), 7.86 (dd, J = 6.3, 2.8 Hz, 1H), 7.81 (td, J = 7.6, 1.9 Hz, 1H), 7.76 (dt, J = 7.9, 1.2 Hz, 1H), 7.37 (q, J = 4.3 Hz, 3H), 7.31 (t, J = 8.8 Hz, 4H), 2.32 (s, 3H).

¹³C NMR (126 MHz, CDCl₃): δ 164.27, 158.26, 149.96, 148.05, 137.35, 131.00, 129.75, 126.09, 122.20, 114.04, 55.28, 40.97, 35.06.

HRMS: *m*/*z* calcd for C₁₅H₁₇N₂O₂; 257.1290 [M+1]: found 257.1294.

5-(4-Fluoro-5-isopropyl-2-methoxyphenyl)-*N*-(3,4,5-trimethoxyphenyl) thiophene-2carboxamide (15): Compound 15 was obtained using the General Procedure, Method B, on a 0.25 mmol scale. The crude product was purified via General Purification Method 2, followed by silica gel column chromatography (eluent: gradient 30% EtOAc/70% hexanes to 50% EtOAc/50% hexanes) to provide the desired compound as a pale-yellow solid (101 mg, 89% yield). $R_f = 0.46$ (50% EtOAc/50% hexanes).

¹**H** NMR (400 MHz, CDCl₃): δ 7.81 (s, 1H), 7.61 (t, J = 5.2 Hz, 1H), 7.51 (dd, J = 8.4, 2.6 Hz, 1H), 7.41 (d, J = 4.0 Hz, 1H), 6.97 (s, 2H), 6.69 (dd, J = 11.8, 2.8 Hz, 1H), 3.92 (d, J = 4.5 Hz, 3H), 3.89 – 3.80 (m, 9H), 3.19 (p, J = 6.9 Hz, 1H), 1.28 (dd, J = 7.0, 2.2 Hz, 6H).

¹³**C NMR (126 MHz, CDCl₃):** δ 162.06, 160.42, 160.08, 154.97 (d, *J* = 10.1 Hz), 153.36, 144.74, 137.16, 134.78, 133.95, 128.23, 127.62 (d, *J* = 15.6 Hz), 126.96 (d, *J* = 7.4 Hz), 125.12, 118.12, 99.95 (d, *J* = 27.6 Hz), 97.85, 77.30, 77.05, 76.79, 61.01, 56.11, 55.96, 26.94, 22.75.

¹⁹**F NMR (376 MHz, CDCl₃):** δ -114.95 (dd, J = 11.9, 8.5 Hz).

HRMS: *m*/*z* calcd for C₂₄H₂₇FNO₅S; 460.159399 [M+1]: found 460.1574.

N-(*t*-Butoxycarbonyl)-(*S*)-alanine (*R*)-1-phenylethylamide (16): Compound 16 was prepared according to Method B as described above with modification of 10 mol % DMAP, EtOAc (2 M), rt, then rt, and reaction time. The thioester formation (12 h) and amide formation (12 h.) The crude product was purified by flash column chromatography (20% EtOAc in hexanes) afforded 16 (77.5 mg, 93% yield) as white solid; $\mathbf{R}_{f} = 0.57$ (30% EtOAc/70% hexanes).

¹**H NMR (400 MHz, DMSO-***d*₆): δ 8.30 (d, *J* = 8.1 Hz, 1H), 7.29 (d, *J* = 1.5 Hz, 2H), 7.21 (tdd, *J* = 5.1, 4.0, 2.8 Hz, 1H), 6.37(d, *J* = 9.7 Hz, 1H), 4.94 (p, *J* = 7.2 Hz, 1H), 3.87 (d, *J* = 9.7 Hz, 1H), 1.39 (s, 9H), 1.35 (d, *J* = 7.0 Hz, 3H), 0.82 (s, 9H).

¹³C NMR (101 MHz, DMSO-*d*₆): δ 169.31, 155.22, 144.39, 128.13, 126.64, 126.11, 78.08, 61.85, 47.77, 34.21, 28.14, 26.62, 22.35. Spectral data matched those previously reported.⁹

2-Methyl-N-(6-nitrobenzo[d]thiazol-2-yl)-4'-(trifluoromethyl)-[1,1'-biphenyl]-3-

carboxamide (17): Compound 17 was obtained using General Procedure B on a 0.25 mmol scale. The crude product was purified via General Purification Method 2, followed by flash chromatography (eluent: 30% EtOAc/70% hexanes) to provide the desired compound as a yellow solid (93.4 mg, 82%). **R**_f = 0.66 (50% EtOAc/50% hexanes).

¹**H** NMR (400 MHz, CDCl₃): $\delta 8.72 - 8.67$ (m, 1H), 7.86 (dd, J = 6.3, 2.8 Hz, 1H), 7.81 (td, J = 7.6, 1.9 Hz, 1H), 7.76 (dt, J = 7.9, 1.2 Hz, 1H), 7.41 - 7.34 (m, 3H), 7.31 (t, J = 8.8 Hz, 4H), 2.32 (s, 3H).

¹³C NMR (126 MHz, CDCl₃): δ 192.33, 151.84, 150.60, δ 148.54 (d, *J* = 2.3 Hz), 142.55, 139.70, 138.51, 137.29, 134.03, 133.39, 130.72, 130.49, 127.72, 125.74, 123.73, 121.54, 121.13, 120.76, 119.70, 119.50, 17.77.

¹⁹F NMR (**376** MHz, CDCl₃): δ -57.78.

HRMS: *m/z* calcd for C₂₁H₁₆N₃O₃S; 390.091239 [M+2]: found 390.0912.

N-Hexadecyl-2-(phenylthio)acetamide (18): Compound 18 was obtained using General Procedure C on a 0.25 mmol scale. The crude product was purified via extraction with EtOAc (2 mL x 3). The EtOAc was washed with 1 M NaOH (2 mL x 3), followed by a brine wash (2 mL x 1). The EtOAc was evaporated via rotary evaporation and the resulting solid was washed with acetone, removing the yellow color and providing the desired compound as a white solid (97 mg, 99%). **R**_f = 0.70 (50% EtOAc/50% hexanes).

¹**H** NMR (500 MHz, CDCl₃): δ 7.28 (s, 2H), 7.06 (t, J = 7.6 Hz, 2H), 6.97 (t, J = 7.4 Hz, 1H), 6.32 (s, 1H), 3.42 (s, 2H), 3.14 (q, J = 6.7 Hz, 2H), 1.54 – 1.36 (m, 20H), 1.31 – 1.18 (m, 6H), 1.10 (q, J = 8.1 Hz, 2H), 1.02 (t, J = 6.6 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃): 166.36, 135.61, 129.06, 127.99, 127.89, 127.69, 127.50, 127.32, 125.91, 70.64, 39.42, 36.56, 31.99, 29.86, 29.84, 29.81, 29.79, 29.71, 29.62, 29.50, 29.48, 29.30, 26.69, 22.77, 14.02.

HRMS: *m*/*z* calcd for C₂₄H₄₂NOS; 392.2987 [M+1]: found 392.2978.

N-(4-Acetylphenyl)-3-bromo-5-(trifluoromethyl)benzamide (19): Compound 19 was obtained using General Procedure C on a 0.25 mmol scale. The crude product was purified via General Purification Method 3, followed by flash chromatography (eluent: 30% EtOAc/70% hexanes) to provide the desired compound as a white solid (87 mg, 90%). $\mathbf{R}_{\mathbf{f}} = 0.66$ (50% EtOAc/ 50% hexanes)

¹**H** NMR (400 MHz, CDCl₃): δ 8.64 (s, 1H), 8.21 (d, J = 1.7 Hz, 1H), 8.07 (d, J = 1.9 Hz, 1H), 7.99 – 7.93 (m, 2H), 7.91 (d, J = 1.8 Hz, 1H), 7.81 – 7.74 (m, 2H), 2.59 (s, 3H).

¹³**C NMR (126 MHz, CDCl₃):** δ 197.45, 163.27, 141.85, 137.14, 133.83, 133.51, 132.93 (q, *J* = 33.7 Hz), 131.77 (q, *J* = 3.7 Hz), 129.82, 123.73, 123.43, 122.99, 122.96, 122.94, 122.91, 119.80, 77.30, 77.04, 76.79, 26.54.

¹⁹F NMR (376 MHz, CDCl₃): δ -62.83.

HRMS: *m*/*z* calcd for C₁₆H₁₂BrF₃NO₂; [M+1] 386.000349: found 386.0044.

t-Butyl 4-(furan-2-carbonyl)piperazine-1-carboxylate (20): Compound 20 was obtained using General Procedure C on a 0.5 mmol scale. The crude product was purified via General Purification Method 2, followed by flash chromatography (eluent: gradient 10% EtOAc/90% hexanes to 30% EtOAc/70% hexanes) to provide the desired compound as a white solid (108 mg, 77%). **R**_f = 0.55 (50% EtOAc/50% hexanes).

¹**H** NMR (400 MHz, CDCl₃): δ 7.48 (dd, J = 1.8, 0.8 Hz, 1H), 7.03 (dd, J = 3.4, 0.8 Hz, 1H), 6.49 (dd, J = 3.5, 1.8 Hz, 1H), 3.77 (s, 4H), 3.54 – 3.47 (m, 4H), 1.48 (s, 9H).

¹³C NMR (126 MHz, CDCl₃): δ 159.25, 154.59, 147.77, 143.85, 116.85, 111.42, 80.32, 43.41, 28.39. Spectral data matched those previously reported.¹⁰

N-(3-Bromo-4-fluorophenyl)benzo[d][1,3]dioxole-5-carboxamide (21): Compound 21 was obtained using General Procedure C on a 0.25 mmol scale. The crude product was purified via General Purification Method 2, followed by flash chromatography (eluent: gradient 20% EtOAc/80% hexanes to 50% EtOAc/50% hexanes, and 100% EtOAc until all product eluted) to provide the desired compound as a white solid (59 mg, 70%). $\mathbf{R}_{f} = 0.39$ (30% EtOAc/70% hexanes)

¹**H** NMR (400 MHz, DMSO-*d*₆): δ 10.34 (s, 1H), 7.94 – 7.86 (m, 1H), 7.62 (td, *J* = 8.4, 2.5 Hz, 1H), 7.60 – 7.46 (m, 3H), 7.04 (dd, *J* = 8.2, 2.6 Hz, 1H), 6.12 (d, *J* = 2.8 Hz, 2H).

¹³**C NMR (101 MHz, DMSO-***d*₆): δ 165.29, 159.60, 157.20, 150.84, 147.91, 141.01 (d, J = 10.3 Hz), 133.56, 128.53, 123.57, 117.94 (d, J = 3.1 Hz), 108.53 (d, J = 27.27 Hz), 108.36 (d, J = 23.23 Hz), 102.39, 101.42 (d, J = 21.1 Hz), 40.61, 40.40, 40.19, 39.98, 39.78, 39.57, 39.36.

¹⁹**F NMR (376 MHz, DMSO-***d*₆): δ -107.17 (t, J = 9.8 Hz).

HRMS: *m*/*z* calcd for C₁₄H₉BrFNO₃Na; 359.9647 [M+23]: found 359.9639

N-(2-(1H-Indol-3-yl)ethyl)-2-(4-isobutylphenyl)propanamide (22): Compound 22 was obtained using General Procedure C on a 0.25 mmol scale. The crude product was purified via General Purification Method 3, followed by flash chromatography (eluent: 30% EtOAc/70% hexanes) to provide the desired compound as a white solid (85.4 mg, 98%). $\mathbf{R}_{f} = 0.66$ (50% EtOAc/ 50% hexanes).

¹**H** NMR (500 MHz, CDCl₃): δ 8.38 (s, 1H), 7.57 (d, J = 7.9 Hz, 1H), 7.46 – 7.33 (m, 1H), 7.25 – 7.01 (m, 6H), 6.77 (s, 1H), 5.57 (s, 1H), 3.66 – 3.52 (m, 2H), 3.49 (q, J = 8.4 Hz, 1H), 2.92 (hept, J = 7.7 Hz, 2H), 2.59 – 2.43 (m, 2H), 1.90 (p, J = 7.0 Hz, 1H), 1.54 (s, 3H), 1.04 – 0.87 (m, 6H).

¹³C NMR (126 MHz, CDCl₃): δ 174.57, 140.63, 138.61, 136.42, 129.57, 127.40, 127.30, 122.18, 122.04, 119.36, 118.67, 112.69, 111.32, 77.38, 77.13, 76.87, 46.83, 45.06, 39.91, 30.25, 25.19, 22.46, 18.52.

HRMS: *m*/*z* calcd for C₂₃H₂₈N₂Ona; 371.2099 [M+23]: found 371.2088.

5-(4-Fluoro-5-isopropyl-2-methoxyphenyl)-*N*-((tetrahydrofuran-2-yl)methyl)thiophene-2carboxamide (23): Compound 23 was obtained using General Procedure C on a 0.25 mmol scale. The crude product was purified via General Purification Method 3, followed by flash chromatography (eluent: 30 % EtOAc/70 % hexanes) to provide the desired compound as a white solid (89.6 mg, 95%). $\mathbf{R}_{f} = 0.33$ (50% EtOAc/50% hexanes).

¹**H NMR (500 MHz, CDCl₃):** δ 7.54 – 7.45 (m, 2H), 7.38 (d, *J* = 3.8 Hz, 1H), 6.69 (dd, *J* = 11.9, 2.6 Hz, 1H), 6.50 – 6.35 (m, 1H), 4.10 (qd, *J* = 7.2, 3.3 Hz, 1H), 3.92 (dd, *J* = 5.7, 3.0 Hz, 3H), 3.85 – 3.75 (m, 2H), 3.38 (ddd, *J* = 13.3, 7.2, 5.0 Hz, 1H), 3.20 (hept, *J* = 7.0 Hz, 1H), 2.05 (dtd, *J* = 12.3, 8.3, 4.3 Hz, 1H), 1.94 (p, *J* = 6.5 Hz, 2H), 1.65 (dq, *J* = 11.7, 7.7 Hz, 1H), 1.29 (dd, *J* = 7.2, 2.4 Hz, 6H).

¹³**C** NMR (126 MHz, CDCl₃): δ 162.37, 161.86, 159.89, δ 154.92 (d, J = 10.0 Hz), 143.67, 137.03, 127.94, 127.46 (d, J = 15.7 Hz), 127.09 (d, J = 7.3 Hz), 125.09, 118.36 (d, J = 3.6 Hz), 99.97, 99.76, 77.91, 77.31, 77.06, 76.80, 68.22, 55.93, 43.49, 28.67, 26.90 (d, J = 1.4 Hz), 25.95, 22.75.

¹⁹**F NMR (376 MHz, CDCl₃):** δ -115.59 (dd, *J* = 11.8, 8.4 Hz).

HRMS: *m*/*z* calcd for C₂₀H₂₄FNO₃SNa; 400.1358 [M+23]: found 400.1348.

(4-((4-Chlorophenyl) (phenyl) methyl) piperazin-1-yl) (1-methyl-1H-pyrrol-2-yl) methanone (24): Compound 24 was obtained using General Procedure C on a 0.25 mmol scale. The crude

product was purified via General Purification Method 2, followed by flash chromatography (eluent: gradient 0% EtOAc/100% hexanes to 30% EtOAc/70% hexanes) to provide the desired compound as a white solid (71 mg, 72%). $\mathbf{R}_{\mathbf{f}} = 0.57$ (50% EtOAc/50% hexanes).

¹**H** NMR (500 MHz, CDCl₃): δ 7.40 (dt, J = 8.6, 4.6 Hz, 4H), 7.35 – 7.23 (m, 5H), 6.69 (s, 1H), 6.30 (qd, J = 3.5, 1.6 Hz, 1H), 6.07 (dq, J = 6.4, 2.7 Hz, 1H), 4.27 (d, J = 4.5 Hz, 1H), 3.79 (t, J = 4.0 Hz, 7H), 2.44 (q, J = 4.4 Hz, 4H).

¹³C NMR (126 MHz, CDCl₃): δ 162.81, 141.65, 140.85, 132.82, 129.17, 128.83, 128.76, 127.83, 127.42, 126.21, 125.01, 112.87, 106.81, 75.33, 52.10, 45.37, 35.71.

HRMS: *m*/*z* calcd for C₂₃H₂₅ClN₃O; 394.168615 [M+1]: found 394.1685.

N-(Cyclopropylmethyl)feroocenamide (25): Compound 25 was obtained using General Procedure C on a 0.25 mmol scale. The crude product was purified via General Purification Method 2, followed by flash chromatography (eluent: gradient 10% EtOAc/90% hexanes to 30% EtOAc/70% hexanes) to provide the desired compound as an orange solid (65 mg, 97%). $\mathbf{R_f}$ =0.45 (50% EtOAc/50% hexanes).

¹**H NMR (500 MHz, CDCl₃):** δ 5.83 (s, 1H), 4.70 (s, 2H), 4.41 – 4.17 (m, 5H), 3.26 (s, 2H), 1.39 – 0.88 (m, 2H), 0.73 – 0.08 (m, 4H).

¹³C NMR (126 MHz, CDCl₃): δ 170.11, 77.29, 77.04, 76.79, 76.37, 70.34, 69.76, 68.10, 44.33, 11.14, 3.46.

HRMS: *m*/*z* calcd for C₁₅H₁₇FeNOH⁺: 284.0738 [M+1]; found 284.0748.

t-Butyl 3-(quinolin-8-ylcarbamoyl)azetidine-1-carboxylate (26): Compound 26 was obtained using General Procedure C on a 0.25 mmol scale. The crude product was purified via General Purification Method 2, followed by flash chromatography (30% EtOAc/70% hexanes) to provide the desired compound as a yellow oil (44.8 mg, 55%). $\mathbf{R}_{f} = 0.54$ (50% EtOAc/50% hexanes).
¹**H** NMR (500 MHz, CDCl₃): δ 9.87 (s, 1H), 8.86 – 8.76 (m, 2H), 8.18 (d, *J* = 8.3 Hz, 1H), 7.55 (d, *J* = 7.2 Hz, 2H), 7.47 (dd, *J* = 8.3, 4.2 Hz, 1H), 4.36 – 4.29 (m, 2H), 4.21 (t, *J* = 8.6 Hz, 2H), 3.60 (td, *J* = 8.8, 4.4 Hz, 1H), 1.47 (s, 9H).

¹³C NMR (126 MHz, CDCl₃): δ 170.15, 156.23, 148.29, 138.30, 136.47, 134.02, 127.93, 127.37, 122.00, 121.76, 116.75, 79.79, 77.33, 77.07, 76.82, 34.85, 28.40.

HRMS: *m*/*z* calcd for C₁₈H₂₁N₃O₃; 328.1661 [M+1]: found 328.1673.

N-(6-((2S,6R)-2,6-Dimethylmorpholino)pyridin-3-yl)-2-methyl-4'-(trifluoromethoxy)-[1,1'biphenyl]-3-carboxamide (27): Compound 27 was prepared according to Method A as described above with modification of reaction time: thioester formation (4 h) and amide formation (4 h). The crude product was purified by flash column chromatography (10-30% EtOAc/hexanes) afforded 27 (114.0 mg, 94% yield) as light pink solid; $\mathbf{R}_{f} = 0.34$ (30% EtOAc/70% hexanes).

¹**H NMR (400 MHz, DMSO-***d*₆): δ 10.23 (s, 1H), 8.42 (d, J = 2.6 Hz, 1H), 7.92 (dd, J = 9.1, 2.7 Hz, 1H), 7.49 – 7.42 (m, 5H), 7.42 – 7.20 (m, 2H), 6.85 (d, J = 9.1 Hz, 1H), 4.12 – 3.95 (m, 2H), 3.60 (dqd, J = 12.4, 6.2, 2.3 Hz, 2H), 2.32 (dd, J = 12.7, 10.5 Hz, 2H), 2.20 (s, 3H), 1.14 (d, J = 6.2 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 168.68, 156.80, 148.47, 148.45, 148.43, 142.15, 140.25, 139.88, 137.64, 133.38, 131.55, 131.26, 130.90, 130.62, 126.08, 125.80, 125.77, 121.79, 120.71, 119.24, 116.68, 106.87, 71.55, 51.17, 18.98, 17.62.

¹⁹F NMR (376 MHz, CDCl₃): δ -57.77. Spectral data matched those previously reported.¹¹

N-(4-Methyl-3-((4- (pyridin-3-yl) pyrimidin-2-yl) amino)phenyl)-4-((4-methylpiperazin-1-yl) methyl) benzamide (28): Compound 28 was prepared according to Method A as described

above with modification of 2 M EtOAc and 10 mol % DMAP used for step 1. The thioester formation (4 h) and amide formation (3 h). The crude product was purified by washing with 1 M NaOH and centrifugation to remove supernatant to afford **27** (109.8 mg, 89% yield) as an off white solid; $\mathbf{R}_{f} = 0.36$ (10% MeOH/90% DCM).

¹H NMR (400 MHz, DMSO-*d*₆): δ 10.14 (s, 1H), 9.26 (d, *J* = 2.3 Hz, 1H), 8.95 (s, 1H), 8.67 (d, *J* = 4.8 Hz, 1H), 8.57 - 8.39 (m, 2H), 8.06 (d, *J* = 2.2 Hz, 1H), 7.88 (d, *J* = 7.8 Hz, 2H), 7.57 - 7.33 (m, 5H), 7.18 (d, *J* = 8.3 Hz, 1H), 3.50 (s, 2H), 2.33 (br. S, 8H), 2.20 (s, 3H), 2.13 (s, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆): δ 165.73, 162.08, 161.66, 159.94, 151.85, 148.68, 142.59, 138.27, 137.69, 134.89, 134.24, 132.69, 130.50, 129.09, 128.05, 124.25, 117.68, 117.20, 107.98, 62.10, 55.18, 53.06, 46.22, 18.13. Spectral data matched those previously reported.¹²

Indolin-1-yl(3,4,5-trimethoxyphenyl)methanone (29): Compound 29 was prepared according to Method A as described above with modification of reaction time: thioester formation (4 h) and amide formation (6 h). The crude product was purified by flash column chromatography (20% EtOAc/hexanes) afforded 29 (72.1 mg, 92% yield) as white solid; $\mathbf{R}_{f} = 0.54$ (50% EtOAc/50% hexanes).

¹**H** NMR (400 MHz, CDCl₃): δ 7.93 (brs, 1H), 7.21 (d, J = 7.4 Hz, 1H), 7.13 (d, J = 13.4 Hz, 1H), 7.01 (t, J = 7.4 Hz, 1H), 6.77 (s, 2H), 4.20 - 4.05 (m, 2H), 3.87 (d, J = 18.7 Hz, 9H), 3.12 (t, J = 8.2 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃): δ 168.69, 153.48, 142.62, 139.86, 132.55, 132.30, 127.34, 125.07, 124.05, 117.06, 104.63, 61.08, 56.39, 50.63, 28.13. Spectral data matched those previously reported.¹³

N-(4-Methyl-3-((4- (pyridin-3-yl) pyrimidin-2-yl) amino)phenyl)-4-((4-methylpiperazin-1-yl) methyl) benzamide (30): Compound 30 was prepared according to Method B as described above with modification of 2 M EtOAc and 10 mol % DMAP used for step 1 and reaction time.

The thioester formation (6 h) and amide formation (6 h). The crude product was purified by flash column chromatography (1-5% MeOH in CH₂Cl₂) afforded **30** (93.4 mg, 86% yield) as light pink solid. **R**_f = 0.30 (5% MeOH/95 % DCM).

¹H NMR (400 MHz, CDCl₃): δ 10.25 (s, 1H), 8.52 – 8.35 (m, 1H), 7.86 – 7.61 (m, 3H), 7.43 – 7.28 (m, 2H), 7.05 (t, *J* = 8.9 Hz, 1H), 4.28 (s, 2H), 3.69 (d, *J* = 65.8 Hz, 6H), 3.32 (d, *J* = 19.7 Hz, 2H), 1.75 (s, 1H), 1.07 – 0.97 (m, 2H), 0.80 (s, 2H).

¹³**C NMR (126 MHz, CDCl₃):** δ 172.37, 165.26, 161.05, 157.0 (d, *J* = 248.0 Hz), 145.52, 134.59 (d, *J* = 3 Hz),133.63, 131.70 (d, *J* = 8.8 Hz), 131.56, 129.55,129.17, 128.25, 127.12, 125.01, 123.68, (d, *J* = 17.4 Hz), 116.17 (d, *J* = 21.4 Hz), 47.14-46.81 (m), 45.66-45.15, 42.27, 42.02, 37.69, 11.04, 7.71.

¹⁹F NMR (376 MHz, CDCl₃): δ -117.61. Spectral data matched those previously reported.¹⁴

Dimethoxy-4-methyl-5-(3-(trifluoromethyl)phenoxy)quinolin-8-yl)carbamoyl)azetidine-1carboxylate (31): Compound **31** was prepared according to Method B as described above with modification of reaction time. The thioester formation (4 h) and amide formation (6 h). The crude product was purified by flash column chromatography (10-15% EtOAc in hexanes) afforded **31**

(133.8 mg, 95% yield) as light pink solid; $\mathbf{R}_{f} = 0.45$ (30% EtOAc/70% hexanes).

¹**H NMR (400 MHz, CDCl₃):** δ 9.84 (s, 1H), 8.77 (s, 1H), 7.36 (t, *J* = 8.0 Hz, 1H), 7.04 (t, *J* = 2.1 Hz, 1H), 6.93 (dd, *J* = 8.2, 2.6 Hz, 1H), 6.72 (d, *J* = 1.2 Hz, 1H), 4.37 – 4.16 (m, 4H), 4.03 (s, 3H), 3.84 (s, 3H), 3.50 (tt, *J* = 8.4, 5.9 Hz, 1H), 2.61 (d, *J* = 1.1 Hz, 3H), 1.46 (s, 9H).

¹³**C NMR (126 MHz, CDCl₃):** δ 170.22, 160.20, 158.81, 156.32, 147.91, 146.92, 132.51, 132.43, 132.17, 131.91, 131.66, 131.31, 130.13, 123.75 (q, *J* = 272.1 Hz) 120.23, 118.49, 118.46, 118.43, 118.40, 118.16, 115.95, 111.99, 111.96, 111.92, 111.89, 105.62, 79.99, 56.61, 53.11, 52.12, 35.35, 28.35, 23.07.

¹⁹F NMR (**376** MHz, CDCl₃): δ -62.60.

HRMS: *m*/*z* calcd for C₂₈H₃₁F₃N₃O₆; 562.2165 [M+1]: found 562.2177.

3-(Difluoromethyl)-1-methyl-N-(3',4',5'-trifluoro-[1,1'-biphenyl]-2-yl)-1H-pyrazole-4-

carboxamide (32): Compound **32** was prepared according to Method B as described above with modification of 2 M EtOAc and 10 mol % DMAP used for step 1 and reaction time. The thioester formation (4 h) and amide formation (14 h). The crude product was purified by flash column chromatography (10-20% ethyl acetate in hexanes) afforded **32** (85.7 mg, 90% yield) as white solid; **R**_f = 0.55 (50% EtOAc/50% hexanes).

¹**H** NMR (400 MHz, CDCl₃- d_6): δ 8.20 (d, J = 8.2 Hz, 1H), 7.96 (s, 1H), 7.80 (s, 1H), 7.43 (ddd, J = 8.5, 6.0, 3.1 Hz, 1H), 7.25 – 7.19 (m, 2H), 7.09 – 6.90 (m, 2H), 6.64 (t, J = 54.2 Hz, 1H), 3.92 (d, J = 1.0 Hz, 3H).

¹³**C NMR** (**126 MHz**, **DMSO**-*d*₆): δ 160.91, 156.41, 151.51, 151.48, 151.44, 151.40, 150.56, 149.55, 149.52, 149.48, 149.44, 145.47, 145.28, 145.10, 139.58, 139.46, 139.34, 138.09, 137.60, 137.48, 137.36, 136.60, 136.56, 136.53, 136.49, 136.46, 136.43, 135.47, 134.72, 133.22, 130.69, 129.37, 128.50, 127.32, 126.10, 122.65, 116.23, 116.21, 116.18, 113.77, (dd, J = 4.7 Hz, 16.6 Hz), 111.64 (t, *J* = 232.9 Hz), 39.83.

¹⁹**F NMR (376 MHz, CDCl₃):** δ -109.45, -131.04 (d, $J_{F,F}$ = 21.3 Hz), -159.13 (t, $J_{F,F}$ = 21.4 Hz) ppm. Spectral data matched those previously reported.¹⁵

tert-butyl ((S)-1-((S)-2-(((S)-1-cyano-2-((S)-2-oxopyrrolidin-3-yl) ethyl) carbamoyl) pyrrolidin-1-yl)-3,3-dimethyl-1-oxobutan-2-yl) carbamate (33): Compound 33 was prepared with the following modifications to Method B: 10 mol % DMAP, 2 M EtOAc at rt for 12 h was used for step 1, and for step 2, reaction was stirred at rt for 16 h. The crude product was purified by flash column chromatography (2% MeOH in CH₂Cl₂) afforded 33 (104.3 mg, 90% yield) as white solid; $\mathbf{R}_{\mathbf{f}} = 0.26$ (5% MeOH /95% DCM).

¹**H** NMR (400 MHz, DMSO-*d*₆): δ 8.85 (d, *J* = 8.7 Hz, 1H), 7.63 (s, 1H), 6.59 (d, *J* = 9.0 Hz, 1H), 4.93 (ddd, *J* = 11.1, 8.6, 4.9 Hz, 1H), 4.24 – 4.07 (m, 2H), 3.70 (d, *J* = 9.8 Hz, 1H), 3.57 (dt, *J* = 9.8, 7.0 Hz, 1H), 3.17 – 2.89 (m, 2H), 2.25 – 2.01 (m, 3H), 1.96 (q, *J* = 6.4, 5.9 Hz, 1H), 1.90 – 1.59 (m, 4H), 1.35 (s, 9H), 0.91 (s, 9H).

¹³C NMR (101 MHz, DMSO-d₆): δ 177.60, 171.79, 169.69, 155.59, 119.76, 78.03, 59.38, 58.39, 47.86, 37.58, 36.63, 34.72, 34.25, 29.15, 28.17, 26.94, 26.27, 24.97.

HRMS: *m*/*z* calcd for C₂₃H₃₇N₅O₅Na; 486.2692 [M+23]: found 486.2677.

N-(2-Diethylaminoethyl)-2-methoxy-5-methylsulfonylbenzamide (34): Compound 34 was prepared according to Method A as described above with modification of reaction time: thioester formation (5 h) and amide formation (4 h). The crude product was purified by flash column chromatography [(MeOH:NH₄OH:DCM) (3:1:96)] afforded 34 (71 mg, 86% yield) as yellow solid; $\mathbf{R}_{f} = 0.35$ (10% MeOH/90% DCM).

¹**H** NMR (500 MHz, MeOD): $\delta 8.48 - 8.40$ (m, 1H), 8.06 (dt, J = 8.9, 2.2 Hz, 1H), 7.38 (dt, J = 8.8, 1.7 Hz, 1H), 4.07 (d, J = 1.1 Hz, 3H), 3.52 (td, J = 6.8, 1.4 Hz, 2H), 3.11 (s, 3H), 2.71 (td, J = 6.8, 1.7 Hz, 2H), 2.64 (qd, J = 7.1, 1.7 Hz, 4H), 1.10 (td, J = 7.2, 1.4 Hz, 7H).

¹³C NMR (126 MHz, MeOD): δ 166.10, 162.72, 134.24, 133.26, 131.84, 124.10, 113.92, 57.35, 52.32, 48.09, 44.59, 38.53, 11.89. Spectral data matched those previously reported.¹⁶

2-[1-(4-Chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl]-1-(4-morpholinyl)ethanone

(35): Compound (34) was prepared according to Method A as described above with modification of reaction time. The thioester formation (4 h) and amide formation (4 h.) The crude product was purified by flash column chromatography (10% EtOAc / hexanes) afforded 34 (86.5 mg, 81% yield) as white solid; $\mathbf{R}_{f} = 0.48$ (30% EtOAc/70 % hexanes).

¹**H** NMR (400 MHz, CDCl₃) δ 7.73 - 7.59 (m, 2H), 7.55 - 7.39 (m, 2H), 6.98 (d, *J* = 2.6 Hz, 1H), 6.81 (d, *J* = 9.0 Hz, 1H), 6.65 (dd, *J* = 9.0, 2.5 Hz, 1H), 3.82 (s, 3H), 3.69 (d, *J* = 21.3 Hz, 6H), 3.61 - 3.45 (m, 4H), 2.38 (s, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 168.96, 168.36, 156.14, 139.42, 135.34, 133.96, 131.30, 130.99, 130.95, 130.71, 129.25, 115.01, 113.14, 111.62, 101.64, 67.03, 66.61, 55.83, 46.47, 42.48, 30.23, 13.54. Spectral data matched those previously reported.¹⁷

N-Methyl-*N*-(3-phenyl-3-(4-(trifluoromethyl) phenoxy) propyl) cyclopropane carboxamide (36): Compound 35 was prepared according to Method B as described above with modification of reaction time and the addition of NMM as a base for step 2. Thioester formation (3 h) and amide formation (4 h). The crude product was purified by flash column chromatography (30% EtOAc/70% hexanes) afforded 36 (87.0 mg, 92% yield) as white solid; $\mathbf{R}_{\mathbf{f}} = 0.27$ (30% EtOAc/70% hexanes).

¹**H NMR (500 MHz, CDCl₃):** δ 7.45 (dd, J = 8.8, 4.4 Hz, 4H), 7.41 - 7.30 (m, 8H), 6.90 (dd, J = 8.6, 6.6 Hz, 4H), 5.23 (dt, J = 8.4, 4.0 Hz, 2H), 3.87 (dt, J = 15.4, 7.8 Hz, 1H), 3.74 - 3.47 (m, 3H), 3.16 (s, 3H), 2.98 (s, 3H), 2.35 - 2.18 (m, 3H), 2.18 - 2.08 (m, 1H), 1.77 - 1.62 (m, 3H), 1.02 - 0.84 (m, 4H), 0.83 - 0.61 (m, 3H), 0.52 - 0.28 (m, 1H).

¹³C NMR (126 MHz, CDCl₃): δ 173.60, 173.49, 160.46, 160.17, 140.82, 140.28, 129.08, 128.87, 128.24, 127.97, 126.96, 126.93, 126.90, 126.87, 126.84, 126.81, 126.78, 125.81, 125.64, 125.54, 125.43, 123.61, 123.38, 123.35, 123.27, 123.25, 123.09, 122.99, 122.83, 122.73, 122.47, 115.81, 115.75, 78.54, 46.29, 45.63, 37.85, 36.48, 35.86, 34.22, 11.31, 10.81, 7.90, 7.72, 7.58, 7.55.

HRMS: *m*/*z* calcd for C₂₁H₂₂F₃NO₂Na; 400.150033 [M+23]: found 400.1512.

1-Methyl-*N*-((1*R*, 3*R*, 5*S*)-9-methyl-9-azabicyclo[3.3.1]nonan-3-yl)-1H-indazole-3-carboxamide (37): Compound 38 was prepared according to Method B as described above with modification of reaction time: thioester formation (4 h) and amide formation (6 h). The crude product was purified by flash column chromatography (0-10% MeOH in DCM) and afforded 37 (63 mg, 81% yield) as a white solid; $\mathbf{R}_{f} = 0.31$ (10% MeOH/DCM).

¹**H** NMR (400 MHz, CDCl₃): δ 8.39 (dt, J = 8.1, 1.1 Hz, 1H), 7.45 – 7.36 (m, 2H), 7.30 – 7.26 (m, 1H), 6.79 (d, J = 8.4 Hz, 1H), 4.63 – 4.51 (m, 1H), 4.09 (s, 3H), 3.11 (d, J = 10.7 Hz, 2H), 2.59 – 2.50 (m, 2H), 2.53 (s, 3H), 2.06-1.98 (m, 3H), 1.45 – 1.35 (m, 2H), 1.08 (d, J = 10.7 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃): δ 161.89, 141.26, 137.59, 126.77, 123.03, 122.89, 122.42, 108.98, 77.41, 77.09, 76.77, 51.27, 40.76, 40.63, 35.90, 33.12, 24.79, 14.36. Spectral data matched those previously reported.¹⁸

8-Bromo-*N*-(4-methoxyphenethyl)-5-methyl-6-oxo-5,6-dihydro-4H-benzo[f]imidazo [1,5-a][1,4] diazepine-3-carboxamide (38): Compound 36 was prepared according to Method A as described above with modification of reaction time: thioester formation (4 h) and amide formation (3 h). The crude product was purified by flash column chromatography (1-3% MeOH in DCM) afforded 38 (105.3 mg, 90% yield) as white solid; $\mathbf{R}_{f} = 0.3$ (5% MeOH/95% DCM).

¹**H** NMR (400 MHz, DMSO-*d*₆): δ 8.34 (s, 1H), 8.20 (t, *J* = 6.0 Hz, 1H), 7.99 (d, *J* = 2.4 Hz, 1H), 7.94 (dd, *J* = 8.6, 2.4 Hz, 1H), 7.70 (d, *J* = 8.6 Hz, 1H), 7.20 – 7.08 (m, 2H), 6.91 – 6.75 (m, 2H), 5.16 (s, 1H), 4.47 (s, 1H), 3.71 (s, 3H), 3.46 (q, *J* = 6.9 Hz, 2H), 3.06 (s, 3H), 2.77 (t, *J* = 7.4 Hz, 2H).

¹³C NMR (101 MHz, DMSO-*d*₆): δ 164.56, 162.01, 157.65, 135.22, 135.12, 134.08, 131.84, 131.28, 131.26, 130.67, 130.33, 129.56, 124.94, 120.44, 113.77, 54.95, 41.38, 40.01, 35.32, 34.39.

HRMS: *m*/*z* calcd for C₂₂H₂₂BrN₄O₃; 469.0875 [M+1]: found 469.0851.

N-(3,5-*bis*(Trifluoromethyl)benzyl)-3-(3-(*t*-butylthio)-1-(4-chlorobenzyl)-5-(quinolin-2-ylmethoxy)-1H-indol-2-yl)-2,2-dimethylpropanamide (39): Compound 39 was prepared according to Method B as described above with modification of 2 M EtOAc used for step 1 and reaction time: thioester formation (6 h) and amide formation (4 h). The crude product was purified by flash column chromatography (10% EtOAc/hexanes) afforded **39** (178.3 mg, 88% yield) as white solid; $\mathbf{R}_{\mathbf{f}} = 0.70$ (30% EtOAc/70% hexanes).

¹**H** NMR (400 MHz, DMSO-*d*₆): δ 8.42 – 8.31 (m, 2H), 8.08 – 8.00 (m, 1H), 7.96 (dd, *J* = 8.1, 1.5 Hz, 2H), 7.90 (d, *J* = 1.7 Hz, 2H), 7.78 (ddd, *J* = 8.4, 6.8, 1.5 Hz, 1H), 7.68 – 7.57 (m, 2H), 7.29 (d, *J* = 6.5 Hz, 2H), 7.21 (d, *J* = 8.8 Hz, 1H), 7.13 (d, *J* = 2.5 Hz, 1H), 6.87 (dd, *J* = 8.8, 2.5 Hz, 1H), 6.82 – 6.73 (m, 2H), 5.36 (d, *J* = 15.2 Hz, 4H), 4.42 (d, *J* = 5.8 Hz, 2H), 3.15 (s, 2H), 1.10 (s, 6H), 0.96 (s, 9H).

¹³**C** NMR (126 MHz, CDCl₃): δ 177.90, 158.69, 153.88, 147.72, 147.65, 143.70, 141.06, 137.20, 137.00, 136.31, 133.20, 132.63, 132.50, 132.25, 132.08 (q, J_{C-F} = 31.0 Hz), 129.83, 129.05, 129.00, 127.98, 127.95, 127.92, 127.79, 127.72, 127.14, 126.52, 124.37, 122.20, 121.64, 121.61, 121.58, 121.55, 121.52, 120.03, 119.35, 113.18, 112.62, 111.09, 105.52, 105.26, 103.93, 77.41, 77.16, 76.91, 71.89, 48.65, 48.34, 48.27, 47.37, 47.19, 44.47, 44.33, 43.05, 34.66, 31.25, 26.07.

¹⁹F NMR (**376** MHz, DMSO-d₆): δ -61.37.

HRMS: *m*/*z* calcd for C₄₃H₄₁ClF₆N₃O₂S; [M+1]: 812.2512 found 812.2501.

5-(2,5-Dimethylphenoxy)-2,2-dimethylpentanamide (40): Compound **40** was obtained using General Procedure A on a 0.25 mmol scale. The crude product was purified via General Purification Method 1-C, as described in Section 2.2.1, to provide the desired compound as a white solid (50.5 mg, 81%). $\mathbf{R}_{\mathbf{f}} = 0.50$ (50% EtOAc/50% hexanes).

¹**H** NMR (500 MHz, DMSO-*d*₆): δ 7.04 (s, 1H), 6.98 (d, *J* = 7.4 Hz, 1H), 6.79 (s, 1H), 6.70 (s, 1H), 6.62 (d, *J* = 7.4 Hz, 1H), 3.89 (t, *J* = 6.1 Hz, 2H), 2.25 (s, 3H), 2.09 (s, 3H), 1.63 (qd, *J* = 6.7, 3.2 Hz, 2H), 1.58 (dt, *J* = 11.9, 3.4 Hz, 2H), 1.09 (s, 6H).

¹³C NMR (126 MHz, DMSO-*d*₆): δ 179.41, 157.00, 136.50, 130.50, 122.95, 120.94, 112.52, 68.25, 41.50, 37.34, 25.85, 25.19, 21.52, 16.04. Spectral data matched those previously reported.¹⁹

(R)-2-(5-Bromo-4-(4-chlorobenzyl)-7-fluoro-1,2,3,4-tetrahydrocyclopenta[b]indol-3-

yl)acetamide (41): Compound 41 was prepared according to Method A as described above with modification of reaction time: thioester formation (4 h) and amide formation (0.5 h). The crude product was purified by 1 M NaOH wash and centrifugation to afford 41 (104.5 mg, 96% yield) as white solid; $\mathbf{R}_{f} = 0.49$ (5% MeOH/95% DCM).

¹**H NMR (400 MHz, DMSO-***d*₆): δ 7.36 (dd, J = 8.6, 6.6 Hz, 3H), 7.25 (dd, J = 9.0, 2.5 Hz, 1H), 7.14 (dd, J = 9.1, 2.5 Hz, 1H), 6.84 (dd, J = 11.0, 9.0 Hz, 3H), 5.81 (d, J = 17.8 Hz, 1H), 5.60 (d, J = 17.7 Hz, 1H), 3.49 (s, 1H), 2.90 - 2.54 (m, 4H), 2.33 (dd, J = 14.1, 4.3 Hz, 1H), 2.22 - 1.96 (m, 2H).

¹³C NMR (101 MHz, DMSO-*d*₆): δ 172.48, 157.42, 155.06, 152.75, 138.57, 133.45, 131.56, 128.62, 127.07, 127.01, 126.91, 118.77, 118.72, 113.44, 113.15, 103.61, 103.39, 102.84, 102.72, 48.05, 40.20, 40.15, 39.99, 39.94, 39.78, 39.73, 39.57, 39.52, 39.31, 39.10, 38.89, 35.36, 34.76, 22.51.

¹⁹F NMR (**376** MHz, DMSO-*d*₆): δ -123.16.

HRMS: *m/z* calcd for C₂₀H₁₇BrClFN₂ONa; 457.0095 [M+23]: found 457.0109

N-(4-((1-Amino-2-methyl-1-oxopropan-2-yl) oxy)phenethyl)-4-chlorobenzamide (42): Compound 42 was obtained using General Procedure A on a 0.25 mmol scale. The crude product was purified via General Purification Method 1-C, as described in Section 2.2.1, to provide the desired compound as a white solid (72 mg, 80%). $\mathbf{R}_{\mathbf{f}} = 0.33$ (50% EtOAc/50% hexanes).

¹**H** NMR (500 MHz, DMSO-*d*₆): δ 8.72 (t, *J* = 5.5 Hz, 1H), 7.85 (d, *J* = 8.3 Hz, 2H), 7.53 (d, *J* = 8.2 Hz, 2H), 7.49 (s, 1H), 7.25 (s, 1H), 7.14 (d, *J* = 8.1 Hz, 2H), 6.83 (d, *J* = 8.1 Hz, 2H), 2.78 (t, *J* = 7.5 Hz, 2H), 1.64 (s, 2H), 1.39 (s, 6H).

¹³C NMR (126 MHz, DMSO-*d*₆): δ 176.42, 165.54, 153.73, 136.33, 133.80, 133.43, 129.71, 129.54, 128.81, 120.19, 80.26, 41.49, 40.57, 40.48, 40.40, 40.31, 40.23, 40.14, 40.06, 39.97, 39.89, 39.81, 39.64, 39.47, 34.67, 25.38. Spectral data matched those previously reported.¹⁸

4-(*N*,*N*-**Dipropylsulfamoyl**)**benzamide** (**43**): Compound **43** was obtained using General Procedure A on a 0.25 mmol scale. The crude product was purified via General Purification Method 1-C, as described in Section 2.2.1, to provide the desired compound as a white solid (70.3 mg, 99%). $\mathbf{R}_{\mathbf{f}} = 0.17$ (50% EtOAc/50% hexanes).

¹**H** NMR (500 MHz, DMSO-*d*₆): δ 8.20 (s, 1H), 8.06 (d, *J* = 8.1 Hz, 2H), 7.87 (d, *J* = 7.9 Hz, 2H), 7.62 (s, 1H), 3.03 (d, *J* = 7.8 Hz, 4H), 1.47 (h, *J* = 7.4 Hz, 4H), 0.80 (t, *J* = 7.4 Hz, 6H).

¹³C NMR (126 MHz, DMSO-*d*₆): δ 167.18, 142.22, 138.30, 128.90, 127.21, 50.09, 22.08, 11.42. Spectral data matched those previously reported.¹⁹

4-Cyano-*N*,*N***-dipropylbenzenesulfonamide** (**44**): Compound **44** was obtained as described in section 7.1 on a 0.25 mmol scale. The crude product was purified via flash chromatography (30% EtOAc/70% hexanes) to provide the desired compound as a white solid (59.9 mg, 90%). $\mathbf{R}_{\mathbf{f}} = 0.38$ (20% EtOAc/80% hexanes).

¹**H** NMR (500 MHz, CDCl₃): δ 7.93 (d, J = 8.0 Hz, 2H), 7.81 (d, J = 8.0 Hz, 2H), 3.16 – 3.07 (m, 4H), 1.64 – 1.49 (m, 4H), 0.88 (t, J = 7.5 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃): δ 144.63, 132.88, 127.61, 117.43, 115.95, 49.93, 21.94, 11.12. Spectral data matched those previously reported.²⁰

4-Chloro-*N***-(4-((2-cyanopropan-2-yl)oxy)phenethyl)benzamide** (45): Compound 45 was prepared as described in section 4.2. $\mathbf{R}_{\mathbf{f}} = 0.44$ (20% EtOAc/80% hexanes).

¹**H NMR (500 MHz, CDCl₃):** δ 7.65 – 7.59 (m, 2H), 7.41 – 7.35 (m, 2H), 7.20 (d, *J* = 8.6 Hz, 2H), 7.17 – 7.10 (m, 2H), 6.10 (s, 1H), 3.69 (q, *J* = 6.7 Hz, 2H), 2.91 (t, *J* = 6.9 Hz, 2H), 1.71 (s, 6H).

¹³C NMR (126 MHz, CDCl₃): δ 166.57, 137.85, 135.39, 133.06, 130.01, 129.01, 128.38, 122.33, 120.98, 77.41, 77.16, 76.91, 72.36, 41.32, 35.07, 27.66.

HRMS: m/z calcd for C₁₉H₂₀ClN₂O₂; [M+1]: 343.1213 found 343.1214, calc'd for C₁₉H₂₁ClN₂O₂Na [M+23]: 365.1033, found 365.1032.

1-(4-(3-Bromo-5-(trifluoromethyl) benzamido) phenyl) ethyl 2-((S)-5-bromo-4-(4-chlorobenzyl)-7-fluoro-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl) acetate (48): Compound **48** was prepared as described in section 4.3.

¹**H NMR (400 MHz, CDCl₃):** δ 8.17 (s, 1H), 8.05 (d, J = 10.8 Hz, 2H), 7.92 (s, 1H), 7.55 (dd, J = 14.0, 8.2 Hz, 2H), 7.27 (s, 1H), 7.20 (dd, J = 10.9, 8.2 Hz, 2H), 7.04 (td, J = 8.1, 2.8 Hz, 2H), 6.78 (dd, J = 11.8, 8.1 Hz, 2H), 5.82 (tt, J = 7.1, 3.5 Hz, 1H), 5.72 (dd, J = 17.4, 13.8 Hz, 1H), 5.59 – 5.44 (m, 1H), 3.51 (dt, J = 10.3, 6.0 Hz, 1H), 2.91 – 2.63 (m, 3H), 2.51 (ddd, J = 15.4, 7.7, 4.2 Hz, 1H), 2.41 (ddd, J = 15.4, 9.2, 2.6 Hz, 1H), 2.21 (qd, J = 10.0, 3.8 Hz, 1H), 1.48 (dd, J = 12.8, 6.6 Hz, 3H), 1.26 (q, J = 6.8 Hz, 1H).

¹³**C** NMR (126 MHz, CDCl₃): δ 171.36, 171.17 (d, J = 1.7 Hz), 162.98, 157.92, 156.02, 150.66 (d, J = 1.7 Hz), 138.15 (d, J = 8.3 Hz), 137.70 (d, J = 6.9 Hz), 137.46 (d, J = 2.4 Hz), 136.96 (d, J = 4.7 Hz), 134.15, 133.72, 133.01, 132.88 (q, J = 31.5 Hz), 131.67 – 131.40 (m), 128.91, 127.18 (d, J = 2.6 Hz), 127.04 (d, J = 8.0 Hz), 126.88, 123.37, 122.82 (q, J = 3.7 Hz), 122.72 (q, J = 273.4 Hz), 121.63, 120.59 (d, J = 8.2 Hz), 119.99 (d, J = 4.8 Hz), 114.45 (dd, J = 28.5, 5.1 Hz), 103.65 (d, J = 22.5 Hz), 103.21 (dd, J = 11.9, 2.1 Hz), 72.37 (d, J = 4.5 Hz), 60.49, 53.46, 48.58 (d, J = 3.1 Hz), 39.35, 35.49 (dd, J = 16.2, 2.6 Hz), 29.72, 22.90 (d, J = 2.9 Hz), 21.91 (d, J = 5.2 Hz), 21.09, 14.20.

¹⁹F NMR (471 MHz, CDCl₃): δ -62.79, -123.29 (dt, J = 28.8, 8.7 Hz).

HRMS: *m*/*z* calcd for C₃₆H₂₈Br₂ClF₄N₂O₃; 805.0091 [M+1]: found 805.0168.

5-(4-Fluoro-5-isopropyl-2-methoxyphenyl)thiophene-2-carboxylic acid: This compound was prepared as described in section 3.1. $\mathbf{R}_{\mathbf{f}} = 0.05$ (1:1 EtOAc/hexanes).

¹**H NMR (500 MHz, DMSO-***d*₆**):** δ 7.70 (d, *J* = 8.5 Hz, 1H), 7.65 (dd, *J* = 17.5, 3.9 Hz, 2H), 7.05 (d, *J* = 12.5 Hz, 1H), 3.93 (s, 3H), 3.14 (p, *J* = 7.0 Hz, 1H), 1.25 (d, *J* = 6.9 Hz, 6H).

¹³C NMR (126 MHz, DMSO-*d*₆): δ 163.35, 161.34, 159.38, 154.68 (d, *J* = 10.5 Hz), 144.07, 132.34, 126.91 (d, *J* = 15.6 Hz), 126.67 (d, *J* = 7.3 Hz), 125.55, 117.85, 117.83, 100.61 (d, *J* = 27.5 Hz), 56.35, 40.11, 40.02, 39.94, 39.85, 39.78, 39.69, 39.61, 39.52, 39.35, 39.19, 39.02, 26.53, 22.54.

¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -115.55.

HRMS: *m/z* calcd for C₁₅H₁₅FO₃SNa; 317.0623 [M+23]: found 317.060.

S-(Pyridin-2-yl) 5-(4-fluoro-5-isopropyl-2-methoxyphenyl)thiophene-2-carbothioate : This compound was obtained using the General Procedure, Method A, on a 0.25 mmol scale. The crude product was purified via silica gel column chromatography (eluent: 30% EtOAc/70% hexanes) to provide the desired compound as a pale-yellow solid (101 mg, 89% yield). $R_f = 0.46$ (1:1 EtOAc/hexanes). $R_f = 0.55$ (50% EtOAc/50% hexanes).

¹**H** NMR (400 MHz, CDCl₃): $\delta 8.65$ (d, J = 4.8 Hz, 1H), 7.88 (d, J = 4.1 Hz, 1H), 7.85 – 7.74 (m, 2H), 7.52 (d, J = 8.4 Hz, 1H), 7.46 (d, J = 4.2 Hz, 1H), 7.32 (h, J = 3.8 Hz, 1H), 6.69 (d, J = 11.9 Hz, 1H), 3.92 (s, 3H), 3.19 (hept, J = 6.9 Hz, 1H), 1.28 (d, J = 7.0 Hz, 6H).

¹³**C NMR (126 MHz, CDCl₃):** δ 180.84, 162.42, 160.43, 155.23 (d, *J* = 10.1 Hz), 151.50, 150.38, 147.99, 139.19, 137.13, 131.96, 130.60, 127.74 (d, *J* = 15.6 Hz), 127.19 (d, *J* = 7.4 Hz), 125.36, 123.54, 117.87, 99.99 (d, *J* = 27.6 Hz), 77.29, 77.04, 76.79, 56.00, 26.99, 22.73.

¹⁹**F NMR (376 MHz, CDCl₃):** δ -114.06 (t, *J* = 10.2 Hz).

HRMS: *m*/*z* calcd for C₂₀H₁₈FNO₂S₂; 388.084125 [M+1]: found 388.0818.

8-Bromo-5-methyl-6-oxo-5,6-dihydro-4H-benzo[f] imidazo [1,5-a] [1,4] diazepine-3-carboxylic acid:

¹**H NMR (500 MHz, DMSO-***d*₆): δ 12.84 (s, 1H), 8.36 (s, 1H), 8.00 (d, *J* = 2.4 Hz, 1H), 7.95 (dd, *J* = 8.6, 2.4 Hz, 1H), 7.72 (d, *J* = 8.6 Hz, 1H), 5.01 (s, 1H), 4.52 (s, 1H).

¹³C NMR (126 MHz, DMSO-*d*₆): δ 164.91, 164.28, 136.64, 135.74, 135.53, 134.47, 131.77, 130.81, 128.99, 125.57, 121.10, 42.29, 40.59, 40.49, 40.42, 40.33, 40.25, 40.16, 40.08, 39.99, 39.92, 39.83, 39.66, 39.49, 35.64.

HRMS: *m/z* calcd for C₁₃H₁₁BrN₃O₃; [M+1]: 335.9984 found 335.9946.

3-(3-(t-Butylthio)-1-(4-chlorobenzyl)-5-(quinolin-2-ylmethoxy)-1H-indol-2-yl)-2,2dimethylpropanoic acid:

¹**H NMR (500 MHz, DMSO-***d*₆**):** δ 8.45 (d, *J* = 8.5 Hz, 1H), 8.10 (d, *J* = 8.5 Hz, 1H), 8.02 (s, 1H), 7.83 (t, *J* = 7.7 Hz, 1H), 7.72 (d, *J* = 8.5 Hz, 1H), 7.64 (t, *J* = 7.5 Hz, 1H), 7.32 (dd, *J* = 8.5, 5.7 Hz, 3H), 7.16 (d, *J* = 2.6 Hz, 1H), 6.91 (dd, *J* = 8.8, 2.5 Hz, 1H), 6.83 (d, *J* = 8.2 Hz, 2H), 5.46 (d, *J* = 15.9 Hz, 4H), 3.18 (s, 2H), 2.08 (s, 1H), 1.09 (s, 6H), 0.99 (s, 9H).

¹³C NMR (101 MHz, DMSO-*d*₆): δ 178.95, 158.64, 153.56, 146.51, 144.34, 138.48, 137.57, 132.31, 132.24, 130.79, 129.05, 128.52, 128.08, 127.75, 127.28, 120.00, 112.84, 112.28, 104.37, 103.63, 71.30, 49.08, 48.20, 47.08, 43.60, 40.63, 40.42, 40.21, 40.00, 39.79, 39.59, 39.38, 33.73, 31.20, 25.56, 1.64.

HRMS: *m*/*z* calcd for C₃₄H₃₅ClN₂O₃S; 587.21352 [M+1]: found 587.2141.

12. References

- 1. A. Wood, J. Kincaid, B. H. Lipshutz, Green Chem. 2022, 24, 2853-2858.
- C. Lescot, D. U. Nielsen, I. S. Makarov, A. T. Lindhardt, K. Daasbjerg, T. Skrydstrup, J. Am. Chem. Soc. 2014, 136, 6142–6147.
- Choi, M.; Jo, H.; Park, H.-J.; Kumar, A. S.; Lee, J.; Yun, J.; Kim, Y.; Han, S.; Jung, J.-K.; Cho, J.; Lee. K.; Kwak, J.-H. Lee, H. Bioorg. Med. Chem. Lett. 2015, 25, 2545-2549.4.
- 4. C. Pan, L. Wang, J. Han, Adv. Synth. Catal. 2021, 364, 268-273.
- 5. P. V. Ramachandran, H. J. Hamann, Org. Lett. 2021, 23, 8, 2938-2942.
- 6. C. Chen, L. Ling, M. Luo, X. Zeng, Bull. Chem. Soc. Jpn. 2021, 94, 762-766.
- 7. R. Zhu, Z. Xu, W. Ding, S. Liu, X. Shi, X. Lu, Chin. J. Chem. 2014, 32, 1039-1048.

- L. Wang, X. Zhou, M. Xiao, N. Jiang, F. Liu, W. Zhou, X. Wanga, Z. Zheng, S. Li, *Bioorg. Med. Chem.* Lett. 2014, 24, 3739-3743.
- 9. Z. Zhou, X. Zheng, J. Liu, J. Li, P. Wen, H. Wang, Synlett, 2017, 28, 999-1003.
- 10. H. Long, X. Hu, B. Wang, Q. Wang, R. Wang, S. Liu, F. Xiong, Z. Jiang, X-Qi. Zhang, W-C. Ye, H. Wang, J. Med. Chem. 2021, 64, 12089-12108.
- 11. B. S. Takale, R. R. Thakore, F. Y. Kongab, B. H. Lipshutz. Green Chem. 2019, 21, 6258-6262.
- 12. J. C. Vantourout, H. N. Miras, A. Isidro-Llobet, S. Sproules, A. J. B. Watson, J. Am. Chem. Soc. 2017, 139, 4769-4779.
- 13. C. W. Cheung, J. Ma, X. Hu, J. Am. Chem. Soc. 2018, 140, 6789-6792.
- 14. H. P. Collin, W. J. Reis, D. U. Nielsen, A. T. Lindhardt, M. S. Valle, R. P. Freitas, T. Skrydstrup, *Org. Lett.* **2019**, *21*, 5775–5778.
- 15. P. Orecchia, D. S. Petkova, R. Goetz, Green Chem., 2021, 23, 8169-8180.
- 16. X. Xu, H. Feng, L. Huang, X. Liu, J. Org. Chem. 2018, 83, 7962-7969.
- 17. T. Liu, X. Zhang, Z. Peng, J. Zhao, Green Chem., 2021, 23, 9916-9921.
- 18. Opie, C. R.; Noda, H.; Shibasaki, M.; Kumagai, N. Chem. Eur. J. 2019, 25, 4648-4653.
- 19. Miao, Y.-Q.; Kang, J.-X.; Ma, Y.-N.; Chen, X. Green Chem. 2021, 23, 3595-3599.
- 20. Wang, Z.; Wang, X.; Ura Y.; Nishihara, Y. Org. Lett. 2019, 21, 6779-6784.

13. NMR Spectra

S53

¹⁹F NMR (500 MHz, CDCI₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

S63

S64

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -20(f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

S70

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

0 J 0 N H Br

21 ¹⁹FNMR (376 MHz, DMSO-*d*₆)

--107.14 --107.17 --107.20 --107.58

0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	
								f1 (ppm)								

 $^{19}\mathrm{F}$ NMR (376 MHz, $\mathrm{CDCI}_3)$

-10 -100 -110 -120 -130 -140 f1 (ppm) -20 -30 -40 -50 -80 -90 -60 -70 -150 -180 -190 -200 -160 -170

¹H NMR (400 MHz, CDCl₃)

7.74

0 -10 -20 -50 -70 -80 -90 f1 (ppm) -100 -110 -120 -140 -150 -160 -170 -30 -40 -60 -130

S110

¹⁹F NMR (376 MHz, DMSO-*d*₆)

ii (ppiii)

— 12.84

¹H NMR (500 MHz, DMSO-d₆)

