Supporting Information

Facile Asymmetric Hydrogenation of γ -Butenolides and γ -

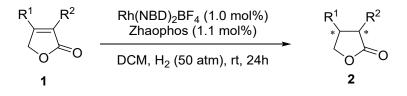
Hydroxybutenolides to Prepare Chiral γ-Butyrolactones

Yuxuan Zhou, § Siyuan Guo, § Qiwei Lang*, Geng-Qiang Chen*, Xumu

Zhang*

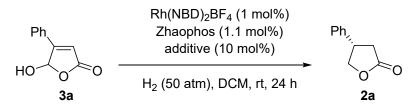
[§]Y.Z. and S.G. contributed equally

Content


1. General Information
2. General Procedure A of Hydrogenation of γ -Butenolides 1
3. Additive Screening for Hydrogenation of γ -Hydroxybutenolides 3a 6
4. General Procedure B of Hydrogenation of γ -Hydroxybutenolides 3 7
5. Synthetic Applications19
6. NMR Spectra24
7. HPLC Spectra
8. GC Spectra
9. References

1. General Information

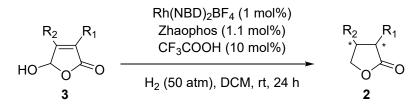
All anhydrous reactions were performed in oven-dried roundbottomed flasks under a positive pressure of dry argon. Air- and moisturesensitive compounds were introduced via syringes or cannula using standard inert atmosphere techniques. Unless otherwise noted, all reagents and solvents were purchased from commercial suppliers without further purification. Anhydrous solvents were purchased from J&K. γ-Butenolides **1a-n**, **1n'** and γ -hydroxybutenolides **3** were purchased from Bide pharm or prepared according to literature reports.¹⁻⁵ γ -Butenolide **10** was purchased from Energy Chemical, and 1p was purchased from Chemsky Shanghai. For heating, an oil bath was used. Reactions were monitored by thin-layer chromatography (TLC) using Yantai Huayang silica gel plates, T-HSGF5025025, with a 0.23 mm thickness. Components were visualized by illumination with short-wavelength ultraviolet light and/or staining. Nylon-66 membrane syringe filters were purchase from Tianjin Jinteng. Flash column chromatography was performed using Tsingdao silica gel (60, particle size 300-400 mesh). The NMR spectra were recorded in CDCl₃ (calibrated at $\delta = 7.26$ ppm for ¹H and $\delta = 77.16$ ppm for ¹³C) with tetramethylsilane (TMS) as an internal standard, at an ambient temperature on a Bruker Avance 600 operating at 600 MHz for ¹H NMR, and at 150 MHz for ¹³C NMR. ¹H NMR was designated as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, sep =


septet, dd = doublet of doublets, m = multiplet, br = broad), coupling constants (Hz), and integration. ¹³C NMR was designated as ppm. Optical rotations were measured using a 1 mL cell with a 1 dm path length on a Rudolph Autopol I polarimeter at 589 nm. HPLC analyses were performed using Daicel chiral columns on an Agilent 1260 Series HPLC instrument. GC analyses were carried out on Angilent 1200 Series instrument using assigned chiral capillary columns. Melting points were accessed on a SGWX-4A melting point apparatus, and only the data of suitable crystal products were given. High resolution mass spectra (HRMS) were obtained on Thermo Scientific Q Exactive hybrid quadrupole-Orbitrap mass spectrometer. PE refers to petroleum ether; EA refers to ethyl acetate; DCM refers to dichloromethane.

2. General Procedure A of Hydrogenation of γ-Butenolides 1

In the argon-filled glovebox, a solution of ZhaoPhos (9.7 mg, 11 μ mol) and Rh(NBD)₂BF₄ (3.7 mg, 10 μ mol) in 1.0 mL anhydrous DCM was stirred at room temperature for 40 min. A specified volume of the resulting solution (0.1 mL, 1.0 mol% Rh-Zhaophos catalyst) was transferred by syringe to a score-break ampule charged with substrate (0.1 mmol in 0.9 mL dichloromethane). The ampule was placed into an autoclave, which was then purged with H₂ and charged with desired H₂ pressure (50 atm). The reaction mixture was stirred at room temperature for 24 h. After release of H₂ carefully, the reaction mixture was passed through a short column of silica gel (about 1.0 cm in height) in 1.0 ml syringe (equipped with Nylon-66 membrane syringe filter, pore size 0.22 μ m, diam. 13 mm) to remove the metal residue, and then rinsed with PE/EA (3:1, 1 mL). The combined filtrates were concentrated, and the obtained products were pure enough for NMR and HPLC analysis.

3. Additive Screening for Hydrogenation of γ -Hydroxybutenolides 3a

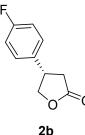


In the argon-filled glovebox, a solution of ZhaoPhos (9.7 mg, 11 μ mol) and Rh(NBD)₂BF₄ (3.7 mg, 10 μ mol) in 1.0 mL anhydrous DCM was stirred at room temperature for 40 min. A specified volume of the resulting solution (0.1 mL, 1.0 mol% Rh-Zhaophos catalyst) was transferred by syringe to a score-break ampule charged with substrate **3a** (18 mg, 0.1 mmol in 0.9 mL dichloromethane), and then additive (0.01 mmol, 10 mol%) was added. The ampule was placed into an autoclave, which was then purged with H₂ and charged with desired H₂ pressure (50 atm). The reaction mixture was stirred at room temperature for 24 h. After release of H₂ carefully, the reaction mixture was directly analyzed by ¹H NMR and HPLC analysis.

entry	additive	conv. (%) ^a	ee (%) ^b
1	-	91	94
2	AcOH	67	94
3	H ₃ PO4	100	94
4	CF ₃ COOH	100	96
5	HCl	85	94
6	BF ₃ ·Et ₂ O	93	92
7	TMSOTf	100	90
8	AgOTf	100	92

^aDetermined by ¹H NMR. ^bDetermined by HPLC analysis.

4. General Procedure B of Hydrogenation of γ-Hydroxybutenolides 3

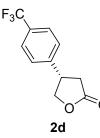


In the argon-filled glovebox, a solution of ZhaoPhos (9.7 mg, 11 μmol) and Rh(NBD)₂BF₄ (3.7 mg, 10 μmol) in 1.0 mL anhydrous DCM was stirred at room temperature for 40 min. A specified volume of the resulting solution (0.1 mL, 1.0 mol% Rh-Zhaophos catalyst) was transferred by syringe to a score-break ampule charged with substrate 3 (0.1 mmol in 0.9 mL dichloromethane), and then CF_3COOH (1.2 mg, 10 µmol, 10 mol%) was added. The ampule was placed into an autoclave, which was then purged with H_2 and charged with desired H_2 pressure (50) atm). The autoclave was stirred at room temperature for 24 h. After release of H₂ carefully, the reaction mixture was passed through a short column of silica gel (about 1.0 cm in height) in 1.0 ml syringe (equipped with Nylon-66 membrane syringe filter, pore size 0.22 μ m, diam. 13 mm) to remove the metal residue, and then rinsed with PE/EA (3:1, 1 mL). The combined filtrates were concentrated, and the obtained products were pure enough for NMR and HPLC analysis.

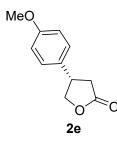
2a

(S)-4-phenyldihydrofuran-2(3H)-one (2a): Compound 2a was

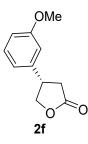
obtained as a white solid (15.7 mg, 97% yield, 98% ee) according to general procedure A using **1a**; Compound **2a** was also obtained as a white solid (15.9 mg, 98% yield, 96% ee) according to general procedure B using **3a**. $[\alpha]_D^{23} = +42.5$ (*c* 0.84, CHCl₃) for isomer with 98% ee; The spectral data were consistent with literature;⁶ ¹H NMR (600 MHz, CDCl₃) δ [ppm] = 7.39 – 7.35 (m, 2H), 7.30 (dd, *J* = 7.2, 7.2 Hz, 1H), 7.25 – 7.21 (m, 2H), 4.69 – 4.64 (m, 1H), 4.29 – 4.25 (m, 1H), 3.79 (p, *J* = 8.4 Hz, 1H), 2.92 (dd, *J* = 17.5, 8.8 Hz, 1H), 2.68 (dd, *J* = 17.5, 9.1 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ [ppm] = 176.5, 139.5, 129.2, 127.8, 126.8, 74.1, 41.2, 35.8; The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak AS-3 column (0.46 x 25 cm), *n*-hexane / *i*-propanol = 85:15, flow rate = 1.0 mL/min, λ = 210 nm, t_R: 17.730 min (*S*) (major), 19.896 min (*R*) (minor).

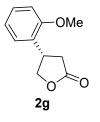

(*S*)-4-(4-fluorophenyl)dihydrofuran-2(3H)-one (**2b**): Compound **2b** was obtained as a white solid (17.8 mg, 99% yield, 98% ee) according to general procedure A using **1b**; Compound **2b** was also obtained as a white solid (17.7 mg, 98% yield, 96% ee) according to general procedure B using **3b**. $[\alpha]_D^{23} = +46.6$ (*c* 0.57, CHCl₃) for isomer with 98% ee; The spectral data were consistent with literature;⁶ ¹H NMR (600 MHz, CDCl₃) δ [ppm]

= 7.23 – 7.17 (m, 2H), 7.06 – 7.00 (m, 2H), 4.66 – 4.61 (m, 1H), 4.24 – 4.18 (m, 1H), 3.77 (p, J = 8.7 Hz, 1H), 2.90 (dd, J = 17.7, 8.7 Hz, 1H), 2.61 (dd, J = 17.8, 9.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ [ppm] = 176.27, 162.1 (d, J_{C-F} = 244.8 Hz), 135.3 (d, J_{C-F} = 3.2 Hz), 128.4 (d, J_{C-F} = 7.7 Hz), 116.0 (d, J_{C-F} = 21.5 Hz), 74.0, 40.4, 35.8; The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak AS-3 column (0.46 x 25 cm), *n*-hexane / *i*-propanol = 80:20, flow rate = 1.0 mL/min, λ = 210 nm, t_R: 16.737 min (*S*) (major), 17.838 min (*R*) (minor).

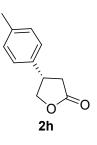


(*S*)-4-(4-chlorophenyl)dihydrofuran-2(3H)-one (**2c**): Compound **2c** was obtained as a white solid (19.1 mg, 97% yield, 98% ee) according to general procedure A using **1c**; Compound **2c** was also obtained as a white solid (19.1 mg, 97% yield, 94% ee) according to general procedure B using **3c**. $[\alpha]_D^{23} = +57.6$ (*c* 0.75, CHCl₃) for isomer with 98% ee; The spectral data were consistent with literature;⁶ ¹H NMR (600 MHz, CDCl₃) δ [ppm] = 7.33 (d, J = 9.0 Hz, 2H), 7.17 (d, J = 8.4 Hz, 2H), 4.67 - 4.63 (m, 1H), 4.25 - 4.20 (m, 1H), 3.76 (p, J = 8.3 Hz, 1H), 2.92 (dd, J = 17.5, 8.8 Hz, 1H), 2.62 (dd, J = 17.5, 8.9 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ [ppm] = 176.1, 138.1, 133.7, 129.4, 128.2, 73.9, 40.6, 35.7; The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB N-3

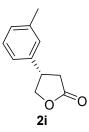

column (0.46 x 25 cm), *n*-hexane / *i*-propanol = 85:15, flow rate = 1.0 mL/min, $\lambda = 220$ nm, t_R: 16.840 min (*S*) (major), 17.754 min (*R*) (minor).


Compound 2d was obtained as a white solid (21.9 mg, 95% yield, 97% ee) according to general procedure A using 1d; Compound 2d was also obtained as a white solid (22.6 mg, 98% yield, 98% ee) according to general procedure B using **3d**. $[\alpha]_D^{23} = +62.0$ (*c* 0.58, CHCl₃) for isomer with 97% ee; The spectral data were consistent with literature;⁷ ¹H NMR $(600 \text{ MHz}, \text{CDCl}_3) \delta \text{[ppm]} = 7.63 \text{ (d, J} = 8.0 \text{ Hz}, 2\text{H}), 7.37 \text{ (d, J} = 8.0 \text{ Hz},$ 2H), 4.72 – 4.66 (m, 1H), 4.31 – 4.25 (m, 1H), 3.86 (p, J = 8.2 Hz, 1H), 2.97 (dd, J = 17.5, 8.8 Hz, 1H), 2.67 (dd, J = 17.5, 8.5 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ [ppm] = 175.9, 143.8, 130.2 (q, J_{C-CF3} = 32.6 Hz), 127.3, 124.0 (q, $J_{C-CF3} = 270.8$ Hz), 126.2 (q, $J_{C-CF3} = 3.5$ Hz), 73.6, 41.0, 35.6; The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IF-3 column (0.46 x 25 cm), *n*-hexane / *i*-propanol = 90:10, flow rate = 1.0 mL/min, $\lambda = 210$ nm, t_R: 12.683 min (*R*) (minor), 13.506 min (S) (major).

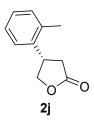
(*S*)-4-(4-methoxyphenyl)dihydrofuran-2(3H)-one (**2e**): a white solid, 18.3 mg, 95% yield, 98% ee, $[α]_D^{23} = +42.9$ (*c* 0.57, CHCl₃); The spectral data were consistent with literature;⁷ ¹H NMR (400 MHz, CDCl₃) δ [ppm] = 7.17 – 7.11 (m, 2H), 6.91 – 6.86 (m, 2H), 4.65 – 4.58 (m, 1H), 4.24 – 4.16 (m, 1H), 3.79 (s, 3H), 3.72 (p, J = 8.1 Hz, 1H), 2.92 – 2.83 (m, 1H), 2.66 – 2.56 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ [ppm] = 176.6, 159.0, 131.3, 127.8, 114.4, 74.2, 55.3, 40.4, 35.8; The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB N-3 column (0.46 x 25 cm), *n*-hexane / *i*-propanol = 85:15, flow rate = 1.0 mL/min, λ = 230nm, t_R: 16.449 min (*S*) (major), 17.499 min (*R*) (minor).

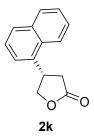


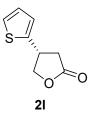
(S)-4-(3-methoxyphenyl)dihydrofuran-2(3H)-one (2f): Compound 2f was obtained as a white solid (18.5 mg, 96% yield, 98% ee) according to general procedure A using 1f; Compound 2f was also obtained as a white solid (18.6 mg, 97% yield, 95% ee) according to general procedure B using 3f. $[\alpha]_D^{23} = +45.0$ (c 1.0, CHCl₃) for isomer with 98% ee; The spectral data were consistent with literature;⁸ ¹H NMR (600 MHz, CDCl₃) δ [ppm] = 7.30 – 7.26 (m, 1H), 6.85 – 6.80 (m, 2H), 6.76 – 6.74 (m, 1H), 4.67 – 4.62 (m, 1H), 4.28 – 4.23 (m, 1H), 3.80 (s, 3H), 3.75 (p, J = 8.4 Hz, 1H), 2.90 (dd, J = 17.5, 8.7 Hz, 1H), 2.66 (dd, J = 17.5, 9.1 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ [ppm] = 176.5, 160.2, 141.1, 130.3, 118.9, 113.0, 112.7, 74.0, 55.4, 41.2, 35.7; The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak AS-3 column (0.46 x 25 cm), the gradient elution was *n*-hexane / *i*-propanol as 95:5~50:50 for 0-20min, 50:50 for 20-25min, 95:5 for 25-30min, flow rate = 1.0 mL/min, λ = 220 nm, t_R: 18.456 min (*S*) (major), 19.425 min (*R*) (minor).



(*S*)-4-(2-methoxyphenyl)dihydrofiuran-2(3H)-one (**2g**): Compound **2g** was obtained as a white solid (18.6 mg, 97% yield, 97% ee) according to general procedure A using **1g**; Compound **2g** was also obtained as a white solid (18.8 mg, 98% yield, 96% ee) according to general procedure B using **3g**. $[\alpha]_D^{23} = +42.7$ (*c* 0.93, CHCl₃) for isomer with 97% ee; The spectral data were consistent with literature;⁹ ¹H NMR (600 MHz, CDCl₃) δ [ppm] = 7.31 - 7.25 (m, 1H), 7.14 (d, J = 7.5 Hz, 1H), 6.97 - 6.88 (m, 2H), 4.68 - 4.63 (m, 1H), 4.30 - 4.26 (m, 1H), 3.96 (p, J = 8.3 Hz, 1H), 3.84 (s, 3H), 2.83 (dd, J = 17.5, 9.2 Hz, 1H), 2.77 (dd, J = 17.5, 8.4 Hz, 1H); ¹³C NMR


(150 MHz, CDCl₃) δ [ppm] = 177.2, 157.2, 128.7, 127.6, 120.7, 110.7, 72. 9, 55.2, 36.6, 33.8; The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak AS-3 column (0.46 x 25 cm), the gradient elution was *n*-hexane / *i*-propanol as 95:5~50:50 for 0-20min, 50:50 for 20-25min, 95:5 for 25-30min, flow rate = 1.0 mL/min, λ = 220 nm, t_R: 14.748 min (*S*) (major), 17.428 min (*R*) (minor).


(*S*)-4-(*p*-tolyl)dihydrofuran-2(3H)-one (**2h**): Compound **2h** was obtained as a white solid (16.9 mg, 96% yield, 98% ee) according to general procedure A using **1h**; Compound **2h** was also obtained as a white solid (16.7 mg, 95% yield, 91% ee) according to general procedure B using **3h**. $[\alpha]_D^{23} = + 39.4$ (*c* 0.58, CHCl₃) for isomer with 98% ee; The spectral data were consistent with literature;⁶ ¹H NMR (600 MHz, CDCl₃) δ [ppm] = 7.18 (d, J = 8.0 Hz, 2H), 7.12 (d, J = 7.7 Hz, 2H), 4.67 – 4.62 (m, 1H), 4.26 – 4.21 (m, 1H), 3.75 (p, J = 8.7 Hz, 1H), 2.93 – 2.87 (m, 1H), 2.69 – 2.62 (m, 1H), 2.34 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ [ppm] = 176.7, 137.6, 136.4, 129.9, 126.7, 74.3, 40.9, 35.9, 21.1; The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB N-3 column (0.46 x 25 cm), *n*-hexane / *i*-propanol = 90:10, flow rate = 1.0 mL/min, λ = 220 nm, t_R: 15.021 min (*S*) (major), 15.915 min (*R*) (minor).


(*S*)-*4*-(*m*-tolyl)dihydrofuran-2(3H)-one (**2i**): Compound **2i** was obtained as a white solid (16.9 mg, 96% yield, 98% ee) according to general procedure A using **1i**; Compound **2i** was also obtained as a white solid (17.1 mg, 97% yield, 94% ee) according to general procedure B using **3i**. $[\alpha]_D^{23} = + 38.2$ (*c* 0.60, CHCl₃) for isomer with 98% ee; The spectral data were consistent with literature;¹⁰ ¹H NMR (600 MHz, CDCl₃) δ [ppm] = 7.27 - 7.24 (m, 1H), 7.11 (d, J = 7.5 Hz, 1H), 7.06 - 7.00 (m, 2H), 4.67 - 4.63 (m, 1H), 4.28 - 4.24 (m, 1H), 3.75 (p, J = 8.4 Hz, 1H), 2.90 (dd, J = 17.5, 8.7 Hz, 1H), 2.67 (dd, J = 17.5, 9.1 Hz, 1H), 2.36 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ [ppm] = 176.6, 139.5, 139.0, 129.1, 128.5, 127.5, 123.8, 74.2, 41.1, 35.8, 21.5; The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak AS-3 column (0.46 x 25 cm), *n*-hexane / *i*-propanol = 90:10, flow rate = 1.0 mL/min, λ = 210 nm, t_R: 16.363 min (*S*) (major), 19.173 min (*R*) (minor).

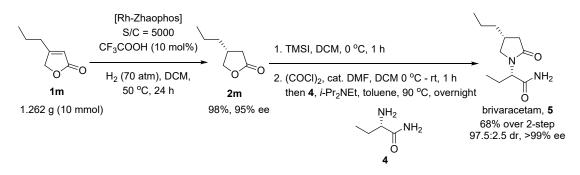
(S)-4-(o-tolyl)dihydrofuran-2(3H)-one (2j): Compound 2j was obtained as a white solid (16.9 mg, 96% yield, 98% ee) according to general procedure A using **1j**; Compound **2j** was also obtained as a white solid (17.4 mg, 99% yield, 99% ee) according to general procedure B using **3j**. $[\alpha]_D^{23} = +40.8$ (*c* 0.45, CHCl₃) for isomer with 98% ee; The spectral data were consistent with literature;⁷ ¹H NMR (600 MHz, CDCl₃) δ [ppm] = 7.25 - 7.22 (m, 2H), 7.21 - 7.18 (m, 2H), 4.67 - 4.63 (m, 1H), 4.32 -4.28 (m, 1H), 3.99 (p, J = 7.8 Hz, 1H), 2.91 (dd, J = 17.5, 8.7 Hz, 1H), 2.65 (dd, J = 17.5, 8.1 Hz, 1H), 2.35 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ [ppm] = 176.6, 137.7, 135.9, 131.1, 127.6, 127.0, 125.0, 73.5, 37.2, 35.4, 19.8; The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column (0.46 x 25 cm), *n*-hexane / *i*-propanol = 80:20, flow rate = 1.0 mL/min, λ = 210 nm, t_R: 17.024 min (*R*) (minor), 19.168 min (*S*) (major).

(S)-4-(naphthalen-1-yl)dihydrofuran-2(3H)-one (2k): Compound 2k was obtained as a white solid (20.2 mg, 95% yield, 98% ee) according to general procedure A using 1k; Compound 2k was also obtained as a white solid (21.0 mg, 99% yield, 99% ee) according to general procedure B using 3k. $[\alpha]_D^{23} = +56.1$ (*c* 0.89, CHCl₃) for isomer with 98% ee; The spectral data were consistent with literature;⁶ ¹H NMR (600 MHz, CDCl₃) δ [ppm] = 7.96 (d, J = 8.4 Hz, 1H), 7.91 (d, J = 7.8 Hz, 1H), 7.82 (d, J = 8.1 Hz, 1H), 7.60 – 7.56 (m, 1H), 7.56 – 7.53 (m, 1H), 7.50 – 7.46 (m, 1H), 7.43 (d, J = 7.1 Hz, 1H), 4.83 (dd, J = 9.2, 7.3 Hz, 1H), 4.57 (p, J = 7.3 Hz, 1H), 4.46 (dd, J = 9.2, 6.3 Hz, 1H), 3.08 (dd, J = 17.4, 8.5 Hz, 1H), 2.86 (dd, J = 17.4, 7.3 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ [ppm] = 176.5, 135.2, 134.2, 131.3, 129.5, 128.5, 126.9, 126.2, 125.7, 122.6, 122.5, 73.5, 36.9, 35.3; The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB N-3 column (0.46 x 25 cm), *n*-hexane / *i*-propanol = 70:30, flow rate = 1.0 mL/min, λ = 220 nm, t_R: 17.423 min (*S*) (major), 19.427 min (*R*) (minor).

(*R*)-4-(thiophen-2-yl)dihydrofuran-2(3H)-one (**21**): a white solid, 16.7 mg, 99% yield, 98% ee, $[\alpha]_D^{23} = +43.2$ (*c* 0.73, CHCl₃); The spectral data were consistent with literature;¹¹ ¹H NMR (600 MHz, CDCl₃) δ [ppm] = 7.24 (dd, J = 5.1, 1.2 Hz, 1H), 6.98 (dd, J = 5.1, 3.5 Hz, 1H), 6.92 (dt, J = 3.5, 1.0 Hz, 1H), 4.65 (dd, J = 9.0, 7.6 Hz, 1H), 4.27 (dd, J = 9.1, 7.8 Hz, 1H), 4.05 (p, J = 8.3 Hz, 1H), 2.96 (dd, J = 17.4, 8.5 Hz, 1H), 2.70 (dd, J = 17.3, 9.1 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ [ppm] = 175.7, 142.3, 127.4, 124.64, 124.60, 74.2, 37.0, 36.8; The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak AD-3 column (0.46 x

25 cm), *n*-hexane / *i*-propanol = 95:5, flow rate = 1.0 mL/min, λ = 230 nm, t_R: 13.919 min (*S*) (minor), 15.073 min (*R*) (major).

(*R*)-4-propyldihydrofuran-2(3H)-one (**2m**): Compound **2m** was obtained as a colorless liquid (12.4 mg, 97% yield, 95% ee) according to general procedure A using **1m**; Compound **2m** was also obtained as a colorless liquid (12.4 mg, 97% yield, 96% ee) according to general procedure B using **3m**. $[\alpha]_D^{23} = +7.9$ (*c* 1.5, CHCl₃) for isomer with 95% ee; The spectral data were consistent with literature;¹² ¹H NMR (600 MHz, CDCl₃) δ [ppm] = 4.40 (dd, J = 8.9, 7.3 Hz, 1H), 3.91 (dd, J = 9.0, 7.2 Hz, 1H), 2.64 – 2.51 (m, 2H), 2.16 (dd, J = 16.8, 7.8 Hz, 1H), 1.47 – 1.42 (m, 2H), 1.38 – 1.30 (m, 2H), 0.93 (t, J = 7.3 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ [ppm] = 177.4, 73.5, 35.6, 35.4, 34.6, 20.7, 14.0; The enantiomeric excess was determined by GC analysis on γ -DEXTM 225 L × I.D. 30 m × 0.25 mm, d_f 0.25 µm, oven program (120 °C for 2 min, then 1 °C/min to 127 °C for 22 min, then 20 °C/min to 200 °C for 3 min), detector FID 250 °C, t_R: 20.282 min (*S*) (minor), 20.501 min (*R*) (major).

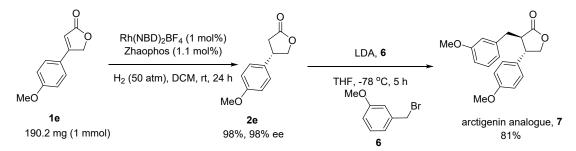

2n

(S)-3-methyldihydrofuran-2(3H)-one (2n): Compound 2n was obtained as a colorless liquid (9.8 mg, 98% yield, 84% ee) according to

general procedure A using **1n**; Compound **2n** was also obtained as a colorless liquid (9.8 mg, 98% yield, 82% ee) according to general procedure A using **1n'**; $[\alpha]_D^{23} = -16.4$ (*c* 0.58, CHCl₃) for isomer with 84% ee; The spectral data were consistent with literature;¹³ ¹H NMR (600 MHz, CDCl₃) δ [ppm] = 4.29 (td, J = 8.7, 2.7 Hz, 1H), 4.14 (td, J = 9.4, 6.6 Hz, 1H), 2.60 – 2.52 (m, 1H), 2.44 – 2.36 (m, 1H), 1.92 – 1.84 (m, 1H), 1.23 (d, J = 7.3 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ [ppm] = 180.2, 66.3, 34.2, 30.7, 15.2; The enantiomeric excess was determined by GC analysis on β -DEXTM 225 L × I.D. 30 m × 0.25 mm, df 0.25 µm, oven program (105 °C for 0 min, then 1 °C/min to 113 °C for 18 min, then 20 °C/min to 200 °C for 4 min), detector FID 250 °C, t_R: 13.663 min (*R*) (minor), 13.845 min (*S*) (major).

5. Synthetic Applications

Gram-scale hydrogenation of 3m (S/C = 5000) and application in

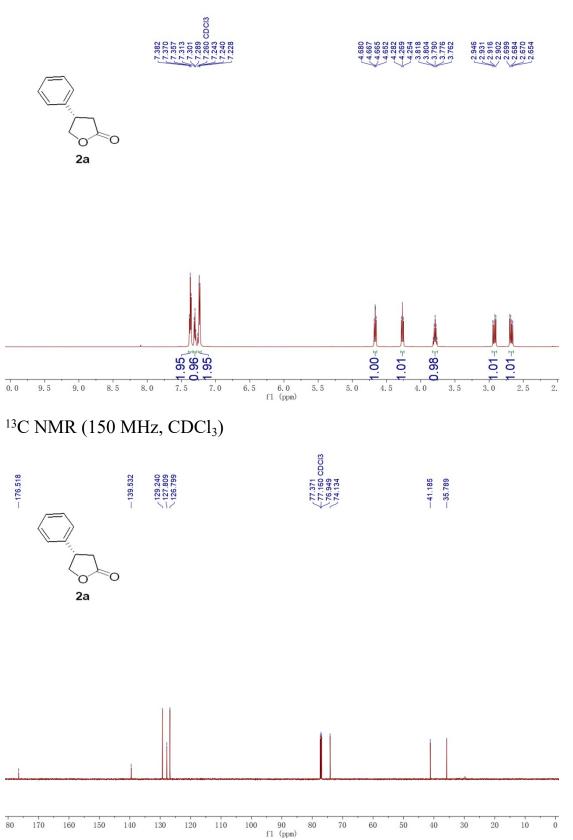

brivaracetam synthesis

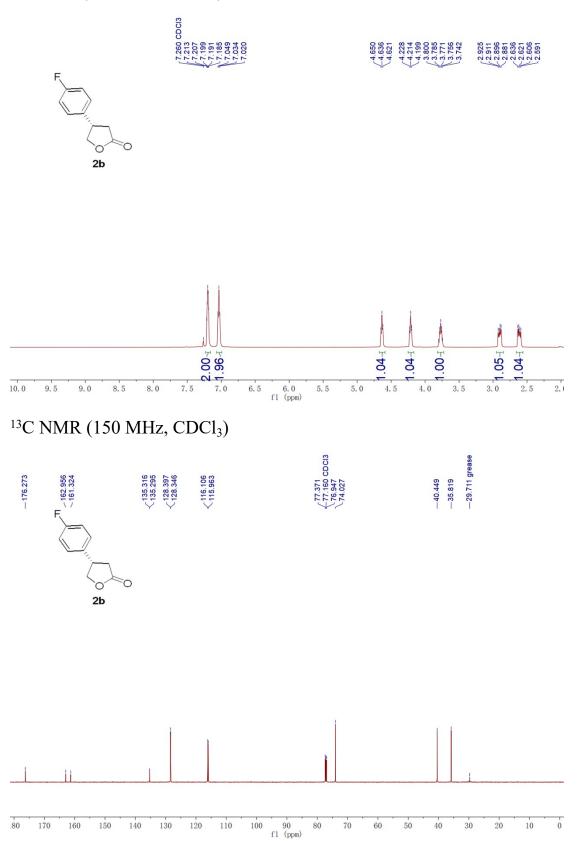
In the argon-filled glovebox, a solution of ZhaoPhos (9.7 mg, 11 μmol) and Rh(NBD)₂BF₄ (3.7 mg, 10 μmol) in 1.0 mL anhydrous DCM was stirred at room temperature for 40 min. A specified volume of the resulting solution (0.2 mL, 0.02 mol% Rh-Zhaophos catalyst) was transferred by syringe to a score-break ampule charged with substrate 1m (10 mmol in 10 mL dichloromethane), and then CF_3COOH (0.11 g, 1.0 mmol, 10 mol%) was added. The ampule was placed into an autoclave, which was then purged with H_2 and charged with desired H_2 pressure (50) atm). The autoclave was stirred at room temperature for 24 h. After release of H₂ carefully, the reaction mixture was passed through a short column of silica gel (about 1.0 cm in height) in 10 ml syringe (equipped with Nylon-66 membrane syringe filter, pore size 0.22 μm, diam. 13 mm) to remove the metal residue, and then rinsed with PE/EA (3:1, 1 mL). The combined filtrates were concentrated, and the obtained products 2m (1.3 g) were pure enough for the next step.

To a 50 mL round-bottomed flask containing α , β -unsaturated lactone **2m** (0.77 g, 6.0 mmol, 1.0 equiv.) under ambient atmosphere was added dry DCM (20 mL) at room temperature. The mixture was cooled down to 0 °C, and TMSI (1.3 mL, 9.0 mmol, 1.5 equiv.) was added. After the reaction was stirred at 0 °C for 1 h, 1 M HCl (30 mL) was added at 0 °C, and then the layers were separated. The aqueous layer was extracted with DCM (3×20 mL). The combined organic layers were washed with water (30 mL) and brine (30 mL), dried over anhydrous MgSO₄, and concentrated. The crude product (1.7 g) was directly used in the next step without further purification. The crude acid was then dissolved in dry DCM (30 mL) with two drops of DMF and cooled to 0 °C. Oxalyl chloride (0.78 mL, 9.0 mmol, 1.5 equiv.) was added slowly via syringe over 5 min. The reaction was allowed to warm to room temperature, and then stirred for 5 hours. The reaction mixture was concentrated to afford the crude acid chloride (1.6 g) which was used in the next step without further purification. The crude acid chloride was dissolved in dry toluene (20 mL), and (S)-2-aminobutyramide (0.67 g, 6.6 mmol, 1.1 equiv.) and *i*- Pr_2NEt (1.6 g, 12 mmol, 2.0 equiv.) were added at room temperature. The reaction mixture was heated to 90 °C, and stirred for overnight at the same temperature. After cooling to 0 °C, water was added, and then the layers were separated. The aqueous layer was extracted with DCM (3×20 mL). The combined organic layers were washed with water (30 mL) and brine

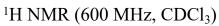
(30 mL), dried over anhydrous MgSO₄, and concentrated. The residue was purified by flash chromatography on silica gel eluting with DCM/MeOH (10:1) to give brivaracetam 5 as a white solid (0.87 g, 68% yield over 3 steps, 96.9:3.1 dr. >99% ee). The spectroscopic data were identical to previous literature reports.¹⁴ $[\alpha]_D^{23} = -57.8$ (*c* 1.0, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ [ppm] = 6.31 (s, 1H), 5.56 (s, 1H), 4.44 (dd, J = 8.8, 6.8 Hz, 1H), 3.48 (dd, J = 9.8, 7.9 Hz, 1H), 3.02 (dd, J = 9.8, 7.1 Hz, 1H), 2.57 (dd, J = 16.8, 8.7 Hz, 1H), 2.32 (hept, J = 7.7 Hz, 1H), 2.07 (dd, J = 16.8, 3.7 Hz, 1H)) 8.0 Hz, 1H), 1.93 (dp, J = 14.4, 7.3 Hz, 1H), 1.68 (dp, J = 14.9, 7.5 Hz, 1H), 1.40 (q, J = 7.4 Hz, 2H), 1.36 – 1.27 (m, 2H), 0.90 (q, J = 7.1 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 175.8, 172.2, 56.1, 49.7, 38.0, 36.7, 32.0, 21.0, 20.7, 14.1, 10.6; The enantiomeric excess and diastereomeric excess was determined by HPLC on Chiracel IC-3 column (0.46 x 25 cm), nhexane / *i*-propanol = 45:55, flow rate = 1.0 mL/min, λ = 210 nm, t_R: 10.619 $\min(2S, 4R)$ (major), 15.755 $\min(2S, 4S)$ (minor).

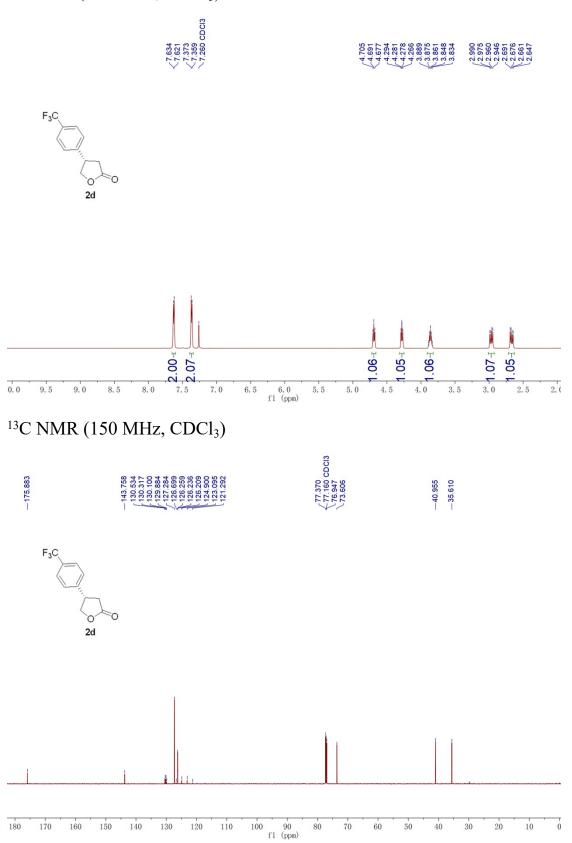
Synthesis of arctigenin analogue

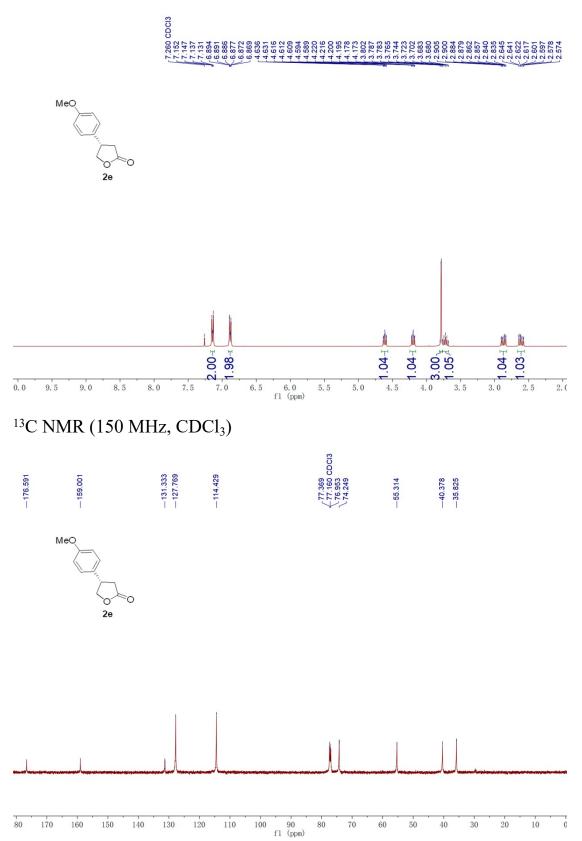

In the argon-filled glovebox, a solution of ZhaoPhos (9.7 mg, 0.011 mmol) and $Rh(NBD)_2BF_4$ (3.7 mg, 0.010 mmol) in 1.0 mL anhydrous

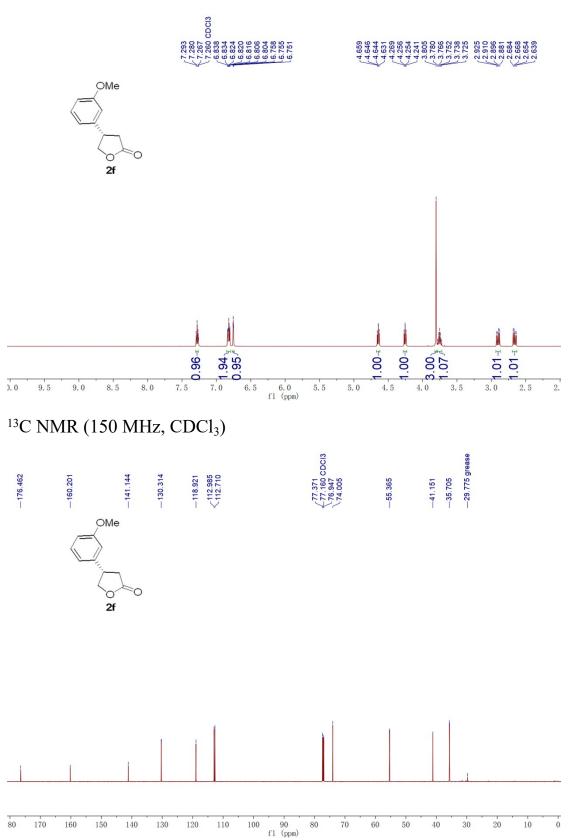

DCM was stirred at room temperature for 40 min, and the resulting solution was then transferred by syringe to a score-break ampule charged with substrate (1.0 mmol in 4.0 mL dichloromethane). The ampule was placed into an autoclave, which was then purged with H₂ and charged with desired H₂ pressure (50 atm). The autoclave was stirred at room temperature for 24 h. After release of H₂ carefully, the reaction mixture was passed through a short column of silica gel (about 1.0 cm in height) in 10 ml syringe (equipped with Nylon-66 membrane syringe filter, pore size 0.22 μ m, diam. 13 mm) to remove the metal residue, and then rinsed with PE/EA (3:1, 1 mL). The combined filtrates were concentrated, and the obtained products **2e** (189 mg, 98% ee) were pure enough for the next step.

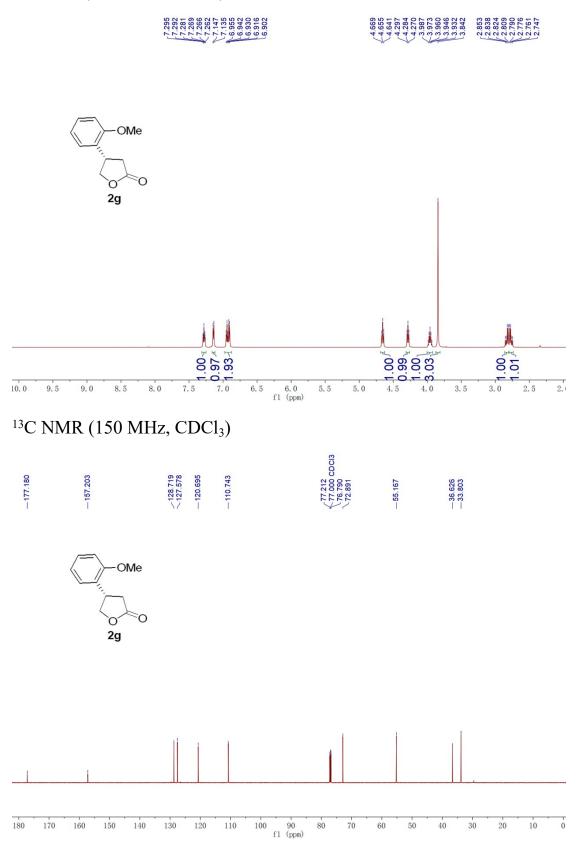
To a 10 mL round-bottomed flask containing lactone **2e** (96 mg, 0.5 mmol, 1.0 equiv.) under argon atmosphere was added dry THF (2 mL) at room temperature. The mixture was cooled down to -78 °C, and LDA (0.3 mL, 0.6 mmol, 2.0 mol/L in THF, 1.2 equiv.) was added dropwise. After the reaction was stirred at same temperature for 30 min, 1-(bromomethyl)-3-methoxybenzene **6** (0.12 g, 0.6 mmol, 1.2 equiv.) in THF (1 mL) was added dropwise, and the resulting solution was further stirred for 5 h at -78 °C. Water (4 mL) was added, and the mixture was allowed to warm up to room temperature. DCM (4 mL) was added, and then the layers were separated. The aqueous layer was extracted with DCM (3 × 4 mL). The combined organic layers were washed with water (10 mL) and brine (10

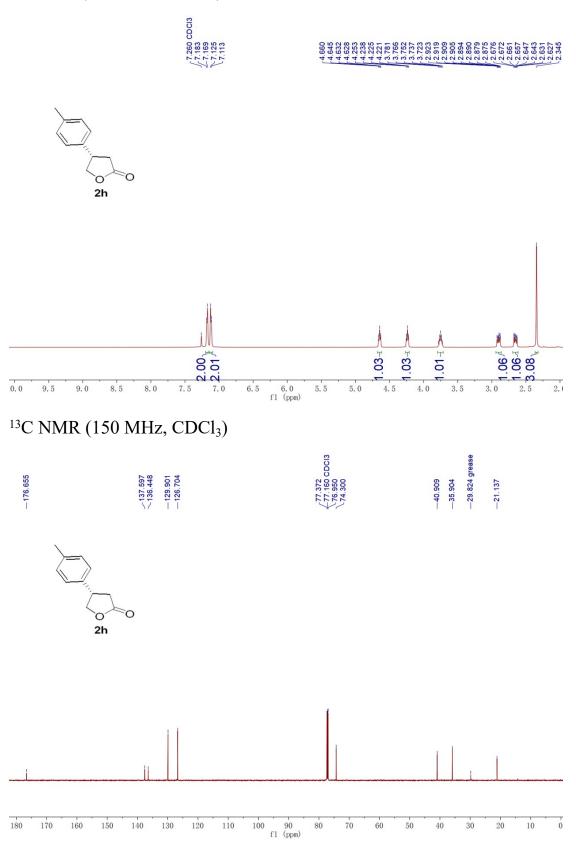

mL), dried over anhydrous MgSO₄, and concentrated. The residue was purified by flash chromatography on silica gel eluting with PE/EA (4:1) to obtain 7 as a colorless oil (0.12 g, 81% yield). The spectroscopic data were identical to previous literature reports.⁸ [α]_D²³ = + 4.7 (*c* 0.5, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ [ppm] = 7.15 (t, *J* = 7.8 Hz, 1H), 7.08 (d, *J* = 8.6 Hz, 2H), 6.86 (d, *J* = 8.6 Hz, 2H), 6.75 – 6.71 (m, 2H), 6.69 (s, 1H), 4.38 (t, *J* = 8.6 Hz, 1H), 4.04 (t, *J* = 9.5 Hz, 1H), 3.80 (s, 3H), 3.74 (s, 3H), 3.31 (q, *J* = 10.1 Hz, 1H), 3.12 (dd, *J* = 14.0, 5.1 Hz, 1H), 3.02 (dt, *J* = 10.9, 5.4 Hz, 1H), 2.93 (dd, *J* = 14.0, 5.6 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ [ppm] = 177.8, 159.8, 159.2, 138.9, 129., 128.5, 127.9, 122.2, 115.2, 114.6, 112.6, 72.6, 55.4, 55.2, 48.0, 45.0, 33.7.

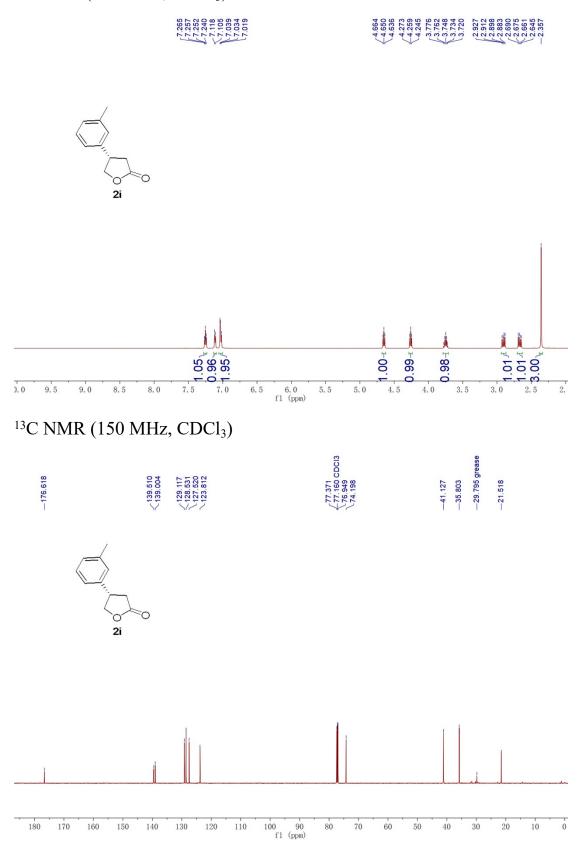

6. NMR Spectra

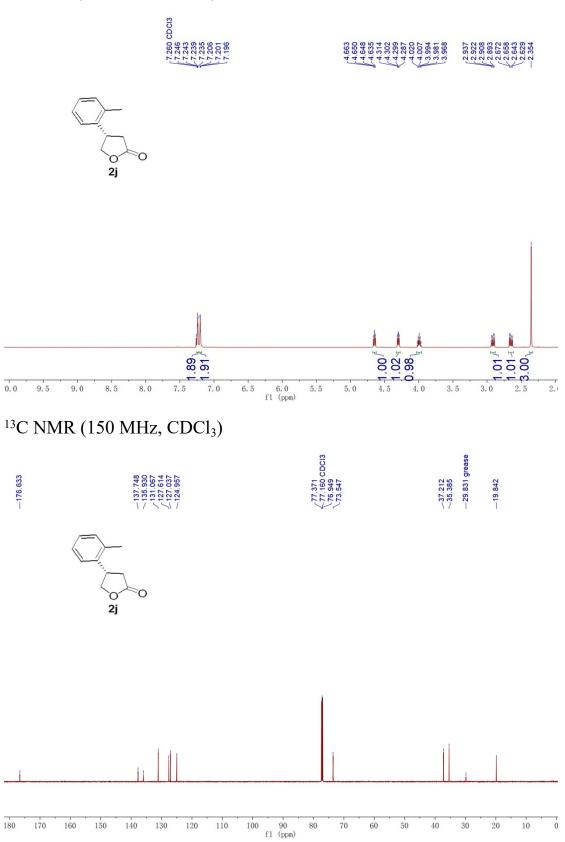


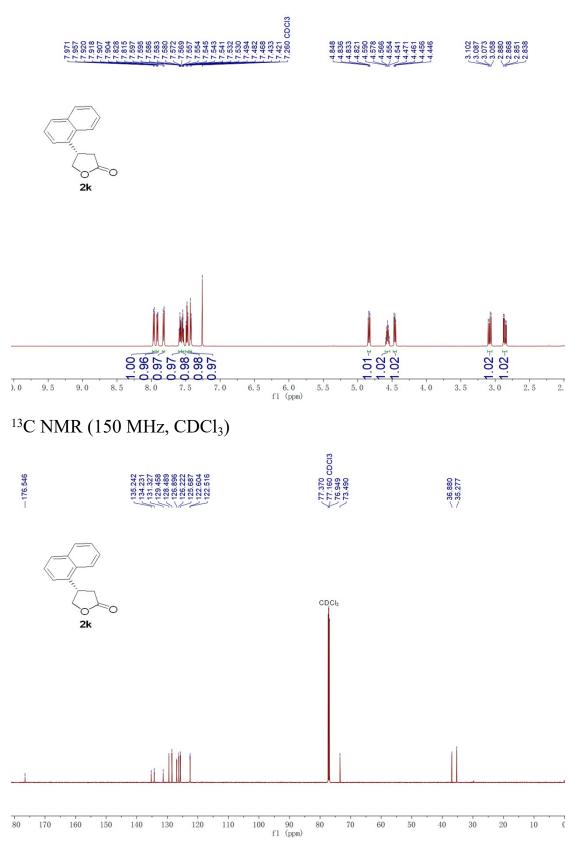


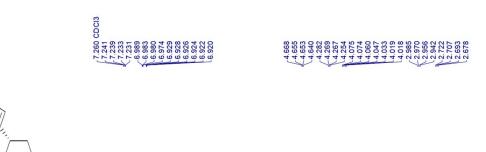


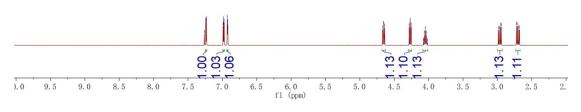


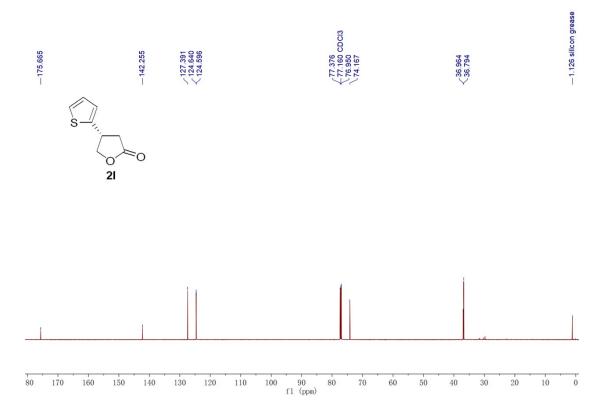


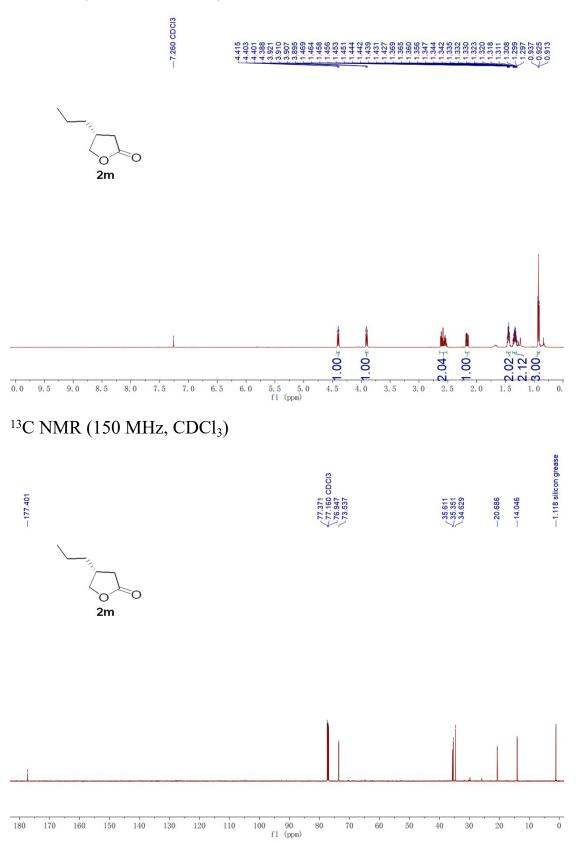




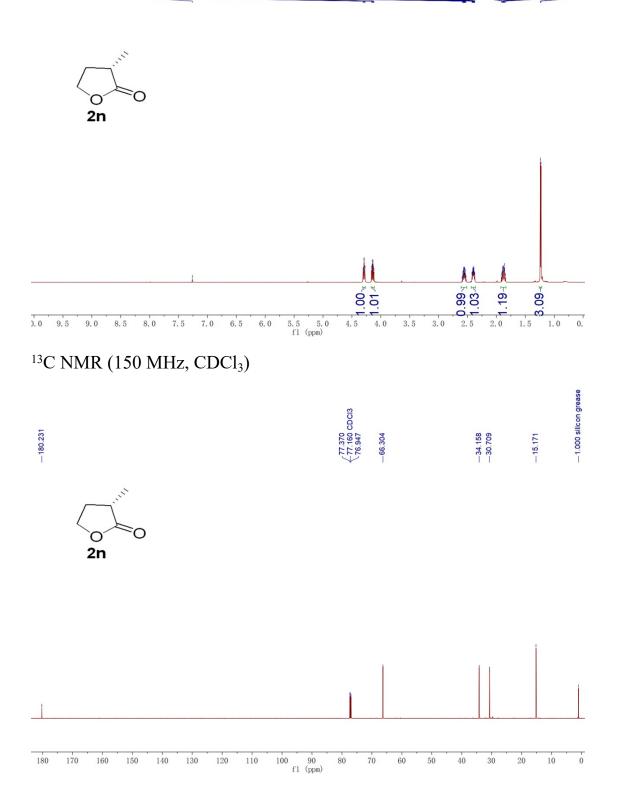


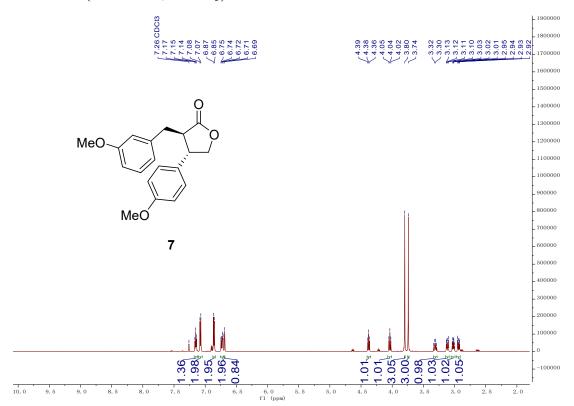




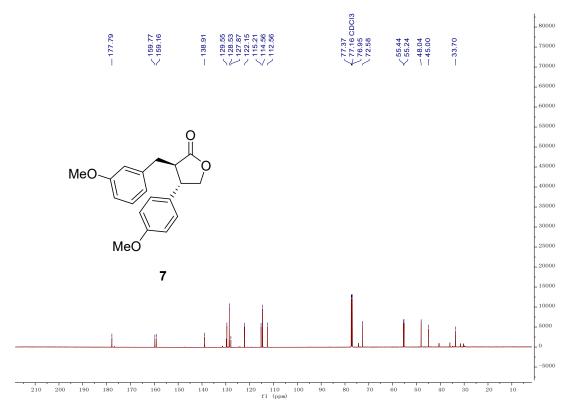

Ο

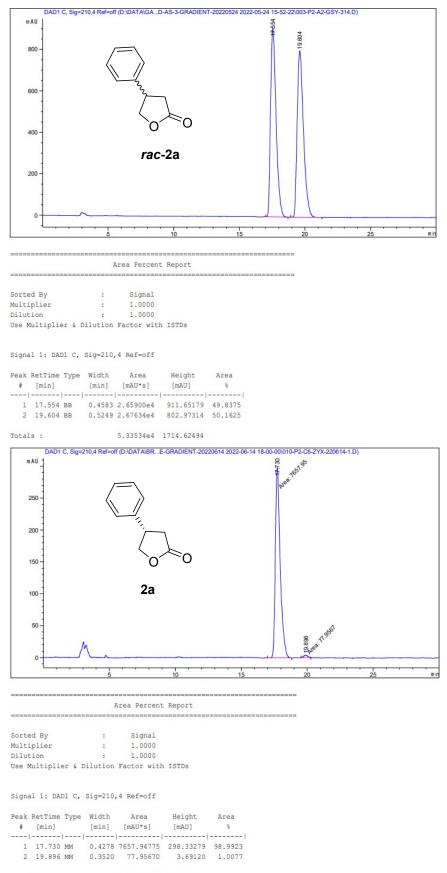
`О́ 2І

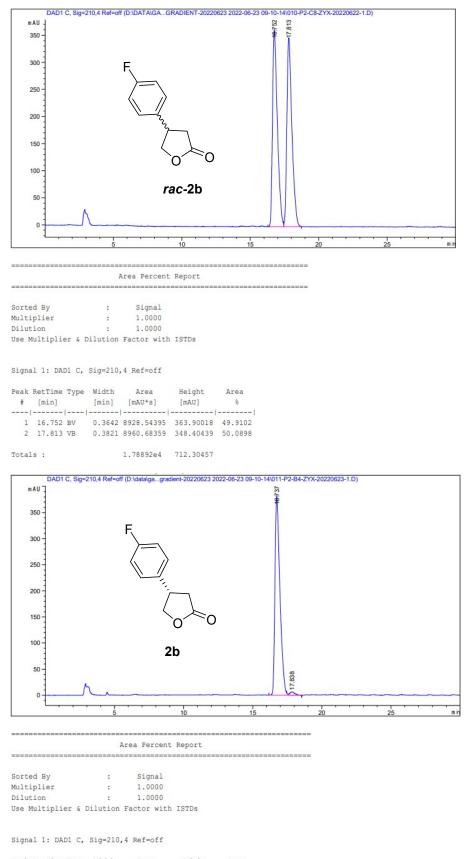




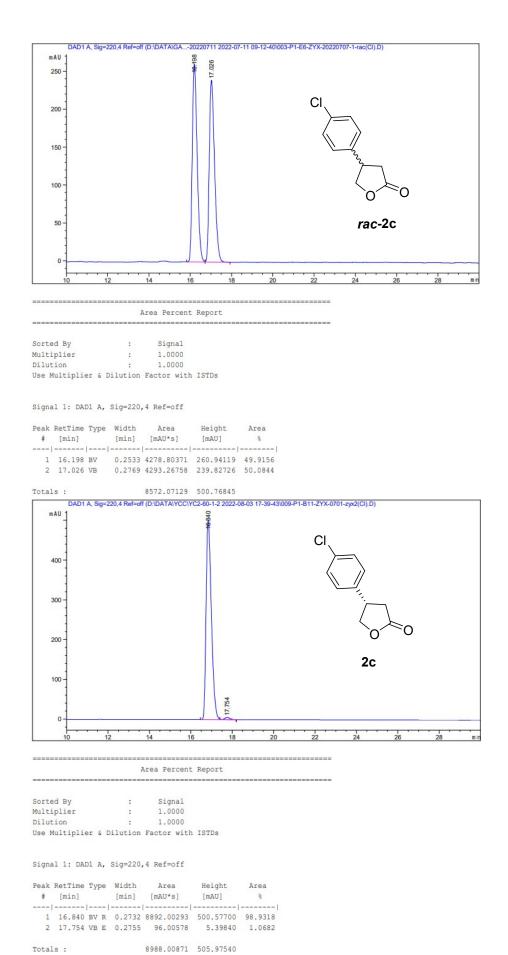
¹H NMR (600 MHz, CDCl₃)


7,280 CDCI3 4,307 280 CDCI3 4,272 84 283 284 288 84288 84288 84288 84288 84288 84288 84288 84288 84288 84288 84288 84288 8428484 84284 84284 842844 8428484 8428484 8428484 84284 84284 84284 84

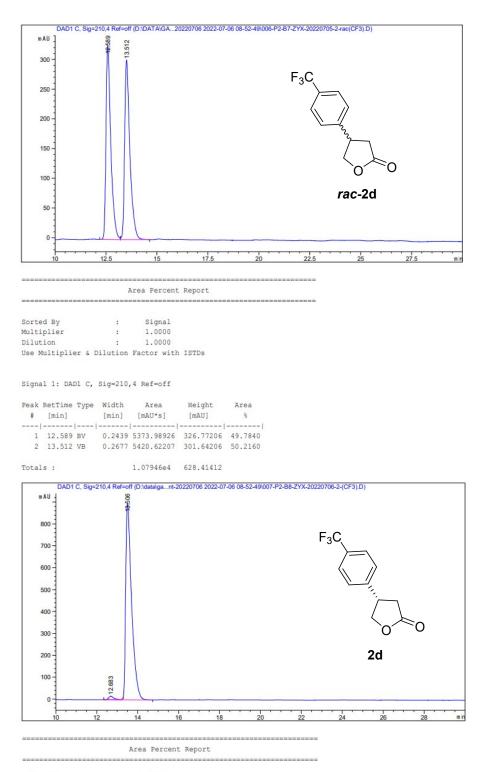

¹H NMR (600 MHz, CDCl₃)


¹³C NMR (150 MHz, CDCl₃)

7. HPLC Spectra



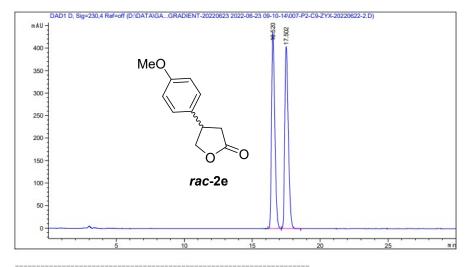
Totals : 7735.90446 302.02400



Peak	RetTime	Typ	e Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
			-			
1	16.737	BV I	R 0.3715	9537.99414	381.70267	98.3777
2	17.838	VB I	E 0.3653	157.28676	6.25718	1.6223

Totals : 9695.28090 387.95985

S41

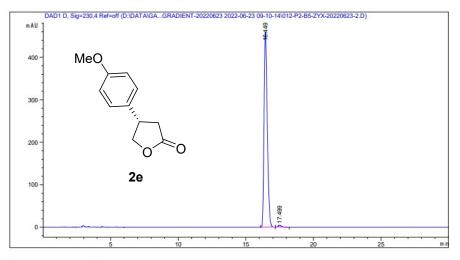


Sorted By	:	Signal
Multiplier	:	1.0000
Dilution	:	1.0000

Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 C, Sig=210,4 Ref=off

Peak #	RetTime [min]	Тур	e	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	12.683	BV	Е	0.2486	280.90237	16.33854	1.5400
2	13.506	VB	R	0.2956	1.79598e4	896.89978	98.4600
Total	ls :				1.82407e4	913.23833	

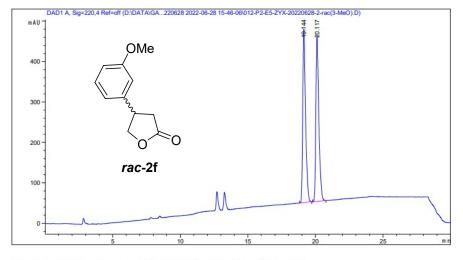

Area Percent Report

Sorted By	:	Signal
Multiplier	:	1.0000
Dilution	:	1.0000
Use Multiplier &	Dilution	Factor with ISTDs

Signal 1: DAD1 D, Sig=230,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	16.520	BB	0.2617	7315.36670	436.05536	49.9025
2	17.502	BB	0.2822	7343.96191	403.75708	50.0975

Totals : 1.46593e4 839.81244

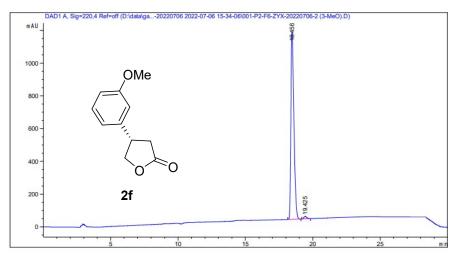


Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs

Signal 1: DAD1 D, Sig=230,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	16.449	BB	0.2607	7658.74561	458.85324	99.0379
2	17.499	BB	0.2533	74.40300	4.49002	0.9621
Tota	ls :			7733.14861	463.34326	

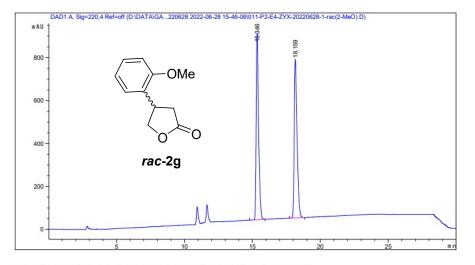

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs

Signal 1: DAD1 A, Sig=220,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	19.144	BB	0.2151	6219.23535	428.97073	49.8616
2	20.117	BB	0.2263	6253.76221	409.12857	50.1384

Totals :	1.24730e4	838.09930

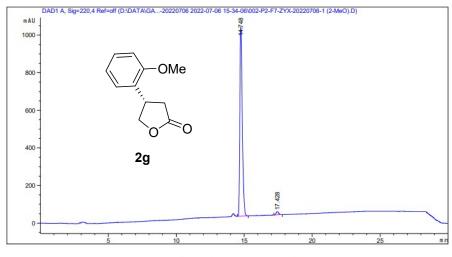


Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDS

Signal 1: DAD1 A, Sig=220,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	18.456	BB	0.2384	1.78153e4	1139.32507	98.7563
2	19.425	BB	0.2143	224.36044	15.73641	1.2437
Total	ls :			1.80396e4	1155.06148	

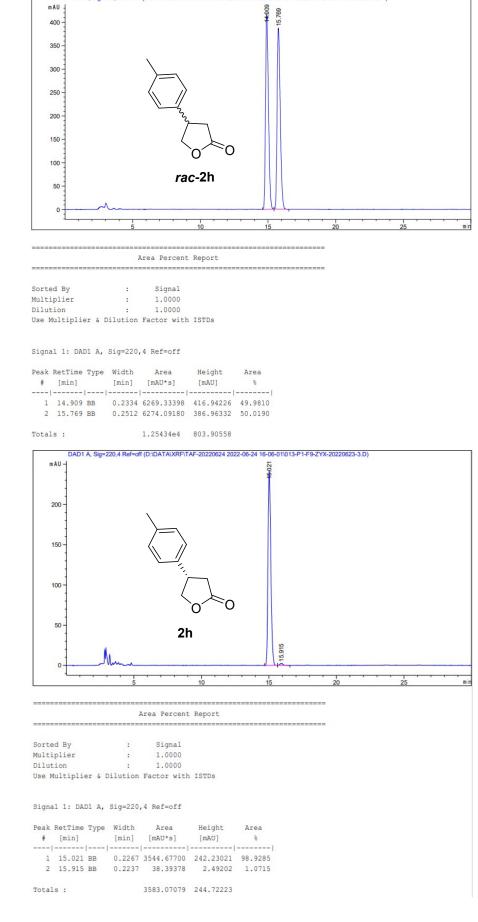


Area Percent Report

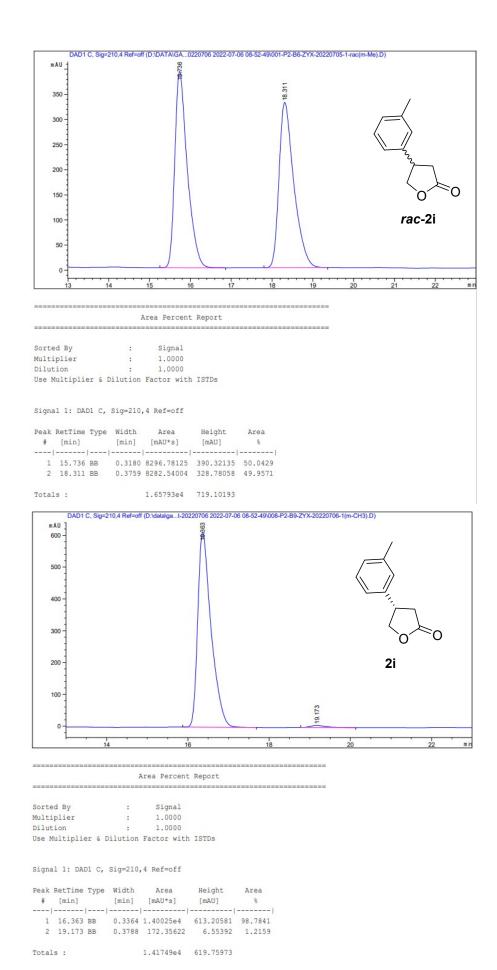
Sorted By	:	Signal
Multiplier	:	1.0000
Dilution	:	1.0000
Use Multiplier &	Dilution	Factor with ISTDs

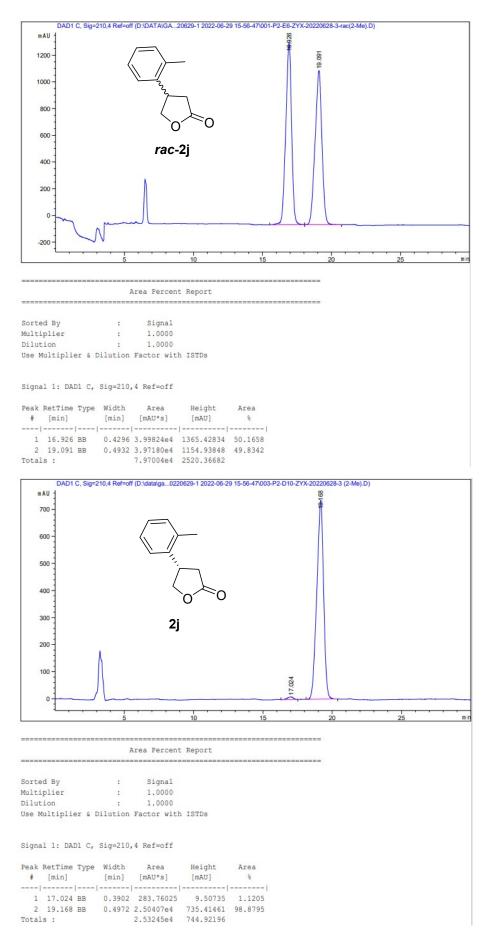
Signal 1: DAD1 A, Sig=220,4 Ref=off

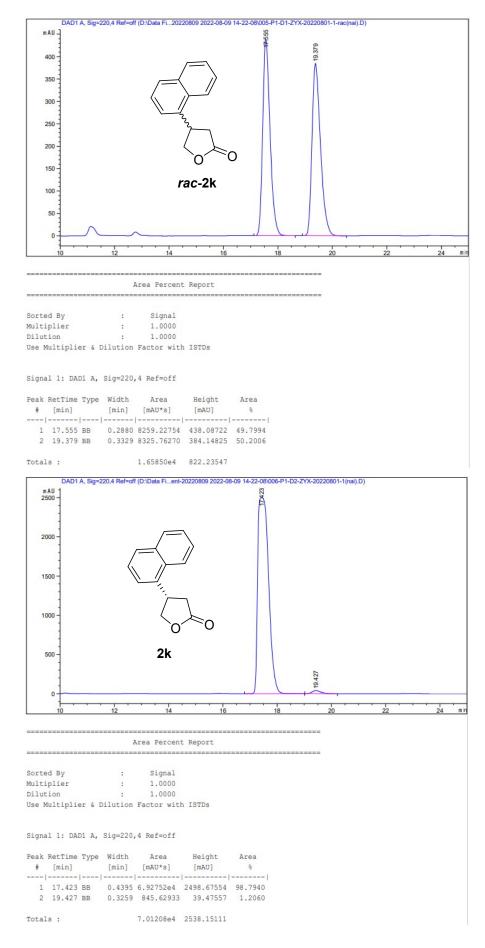
Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	15.346	BB	0.1813	1.06753e4	869.00891	49.9941
2	18.159	BB	0.2168	1.06778e4	738.21930	50.0059
Total	ls :			2.13531e4	1607.22821	

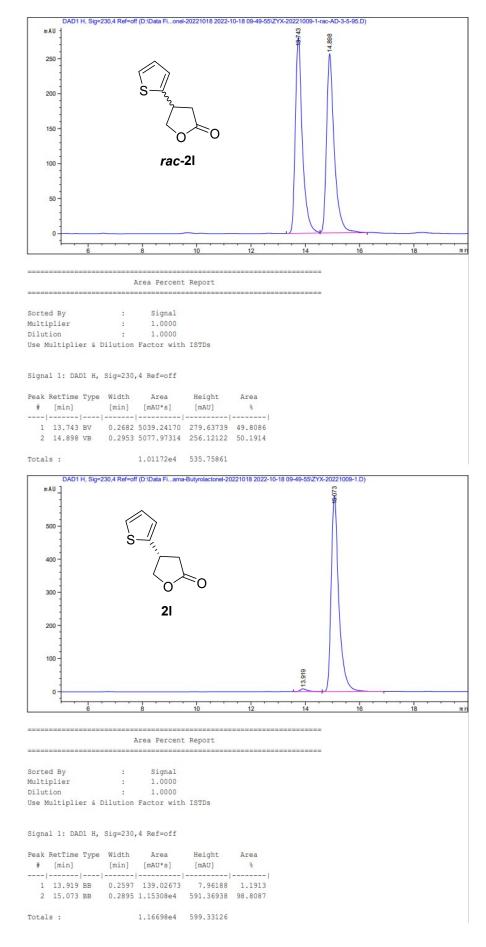


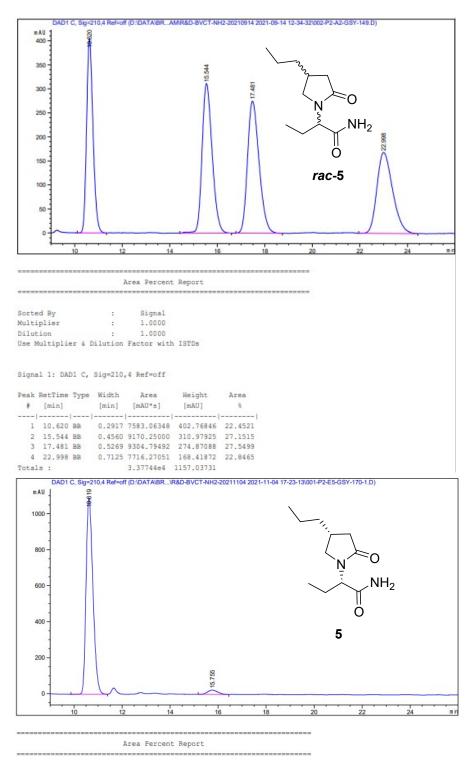
Area Percent Report

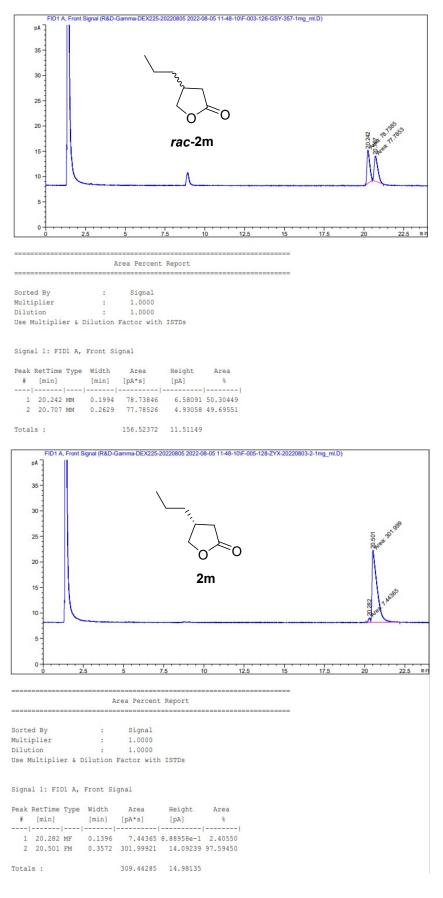

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs

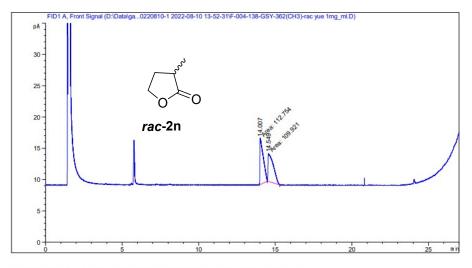

Signal 1: DAD1 A, Sig=220,4 Ref=off


Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	14.748	BB	0.1877	1.23867e4	1005.42017	98.2339
2	17.428	BB	0.1947	222.69682	17.23898	1.7661
Total	ls :			1.26094e4	1022.65915	




DAD1 A, Sig=220,4 Ref=off (D:\DATA\GA...RADIENT-20220623 2022-06-23 09-10-14\008-P2-C10-ZYX-20220622-3.D)



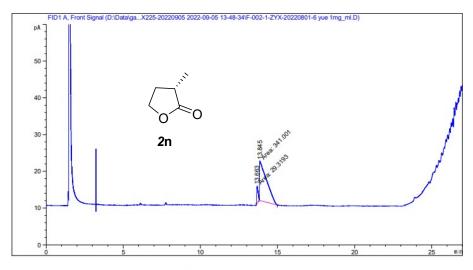

Sorted By	:	Sigr	nal	
Multiplier	:	1.00	000	
Dilution	:	1.00	000	
Use Multiplier	Dilution	Factor	with	ISTDS

Signal 1: DAD1 C, Sig=210,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area
1	10.619				1086.85876	
2	15.755	BB	0.4509	701.19250	23.85451	3.1391
Tota	ls :			2.23373e4	1110.71328	

8. GC Spectra

Area Percent Report


Sorted By	:	Signal
Multiplier	:	1.0000
Dilution	:	1.0000

Use Multiplier & Dilution Factor with ISTDs

Signal 1: FID1 A, Front Signal

Peak	RetTime	Туре	Width	Area	Height	Area	
ŧ	[min]		[min]	[pA*s]	[pA]	8	
1	14.007	MM	0.2517	112.75397	7.46495	50.63622	
2	14.549	MM	0.4096	109.92059	4.47262	49.36378	

Totals: 222.67456 11.93757

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs

Signal 1: FID1 A, Front Signal

Peak #	RetTime [min]	Туре	Width [min]	Area [pA*s]	Height [pA]	Area %
1	13.663	MM	0.0996	29.31932	4.90778	7.91728
2	13.845	MM	0.5261	341.00116	10.80254	92.08272
2	13.045	Tellel	0.5201	541.00110	10.00234	92.0027
Total	s:			370.32048	15.71032	

9. References

 Bolchi, C.; Roda, G.; Pallavicini, M., Synth. Commun. 2018, 48 (1), 85-90.

 Hughes, G.; Kimura, M.; Buchwald, S. L., J. Am. Chem. Soc. 2003, 125 (37), 11253-11258.

3. Tao, M.; Aimone, L. D.; Huang, Z.; Mathiasen, J.; Raddatz, R.; Lyons, J.; Hudkins, R. L., *J. Med. Chem.* **2012**, *55* (1), 414-423.

Wermuth, C. G.; Bourguignon, J. J.; Schlewer, G.; Gies, J. P.;
Schoenfelder, A.; Melikian, A.; Bouchet, M. J.; Chantreux, D.;
Molimard, J. C., *J. Med. Chem.* 1987, *30* (2), 239-249.

Wu, J.; Zhu, Q.; Wang, L.; Fathi, R.; Yang, Z., J. Org. Chem.
2003, 68 (2), 670-673.

Malkov, A. V.; Friscourt, F.; Bell, M.; Swarbrick, M. E.;
Kočovský, P., J. Org. Chem. 2008, 73 (11), 3996-4003.

You, C.; Li, S.; Li, X.; Lv, H.; Zhang, X., ACS Catalysis 2019, 9
(9), 8529-8533.

Rečnik, L.-M.; Thatcher, R. J.; Mallah, S.; Butts, C. P.;
Collingridge, G. L.; Molnár, E.; Jane, D. E.; Willis, C. L., Org. Biomol.
Chem. 2021, 19 (42), 9154-9162.

 Oliveira, C. C.; Angnes, R. A.; Correia, C. R. D., *J. Org. Chem.* 2013, 78 (9), 4373-4385.

10. Zhou, L.; Liu, X.; Ji, J.; Zhang, Y.; Hu, X.; Lin, L.; Feng, X.,

J. Am. Chem. Soc. 2012, 134 (41), 17023-17026.

11. Kim, S.-G., Tetrahedron Lett. 2008, 49 (42), 6148-6151.

12. Douglas, J. J.; Sevrin, M. J.; Stephenson, C. R. J., Organic Process Research & Development 2016, 20 (7), 1134-1147.

13. Qabaja, G.; Wilent, J. E.; Benavides, A. R.; Bullard, G. E.; Petersen, K. S., Org. Lett. 2013, 15 (6), 1266-1269.

14. Schülé, A.; Merschaert, A.; Szczepaniak, C.; Maréchal, C.;

Carly, N.; O'Rourke, J.; Ates, C., Organic Process Research & Development 2016, 20 (9), 1566-1575.