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Quantitative analysis of dangling bond in materials. 

The amount of dangling bond (-NH2) was calculated based on the test of the 

chemical adsorption of CO2 by the material under room temperature. The CO2 

adsorption was conducted by a thermal gravimetric analyzer (TGA) on a MEMS 

cantilever. The initial mass (M0) of the material was obtained based on the D-value of 

baseline frequency (F1) and bare cantilever (F0) on air conditions with a flaw rate of 

200 mL min-1. After the material adsorbs high-purity CO2 for 1 h, the air is introduced 

to restore it to horizontal frequency (F2) for 1 h. The mass (M1) of chemically 

adsorbed CO2 was calculated based on the reduction (ΔF) from F1 to F2 (ΔF = F1 – F2), 

which cannot be desorbed under room temperature based on the chemical action. 

The influence of the change in gas density is deducted from all the test data. 

The conversion formula from frequency (F) to mass (M): 

M (g) = 10-12 × F (HZ) 

The amount of dangling bond (D) in this work is defined: 

D = 106 × M1/(44 × M0) μmol g-1 

 

Gas sensor characterization 

The sensor characterization was conducted by a home-made system reported in 

our previous work1. It takes ~0.65 min to fulfill the quartz chamber when the gas 

flow was 600 mL min-1. The target gas was introduced into the quartz tube by mixing 

the certified gas ‘‘mixtures’’ (Beijing Hua Yuan Gas Chemical Industry Co., Ltd., China) 

and dry air in a proper ratio controlled by the mass flow controllers (CS-200C, Beijing 

Sevenstar Qualiflow Electronic Equipment Manufacturing Co., Ltd., China) under 

visible-light irradiation (λ = 420 - 760 nm) and room temperature. The constant flow 

was 600 mL min-1, the bias on the sensor was 1 V and the current was recorded using 

Keithley 4200 Sourcemeter. 

The sensor response with a positive response in this work is defined as the ratio of 

sensor resistance in the air (Rair) and analytic gas (Ranalyte): 

Response = Rair/Ranalyte - 1 

The response time (tres.) of the sensor with a positive response is the time required 

for the increasing current to 90% of the saturation value and the recovery time (trec.) 

is the time required to decrease the saturated current to its 10%. 

The coefficient of variation (CV) is used to represent the change of different cycles 
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on responses, which is defined as: 

CV = RSD/Raverage × 100% 

RSD and Raverage are the standard deviation (SD) and an average value of responses 

with different cycles (100 ppm NO2), respectively. 
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Computational details. 

All calculations were performed using the DFT approach implemented in 

Dmol3 package.2-3 The generalized gradient approximation (GGA) was adopted to 

describe the density function using the Perdew-Burke-Ernzerhof (PBE) functional 

for the exchange-correlation term. The double-numeric quality basis set with 

polarization functions (DNP)2, 4-5 was adopted, which was comparable to 6-

31G**.6-7 The numerical basis sets can minimize the basis-set superposition 

error.8 A Fermi smearing of 0.005 hartree was utilized for structural relaxation 

and TSs location. The tolerances of the energy, gradient and displacement 

convergence were 1 × 10-5 hartree, 2 × 10-3 hartree/Å, and 5 × 10-3 Å, respectively. 

The transition states (TS) were located using the complete linear synchronous 

transit/quadratic synchronous transit (LST/QST) methods. The structure of TDCOF 

was extracted from the crystal structure. 

 

The adsorption energy with zero-point-corrected Eads. is defined as 

Eads. = [Etotal – (Eslab. + Eadsorbate)] + ΔZPEads (E1) 

∆𝑍𝑃𝐸𝑎𝑑𝑠.  =  (∑
ℎ𝑣𝑖

2

𝑉𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛𝑠
𝑖=1 )

𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑑
 −  (∑

ℎ𝑣𝑖

2

𝑉𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛𝑠
𝑖=1 )

𝑔𝑎𝑠
 (E2) 

Where Etotal, Eslab and Eadsorbate represented the total energy of the slabs with 

adsorbate, the bare slab of the surface, and the free adsorbate molecules, 

respectively. ΔZPEads referred to the zero-point vibrational energy (ZPE) 

correction for the adsorption. E2 was used to calculate the ZPE correction via the 

vibrational frequencies for the species, including the gas phase and the adsorbed 

state, where h was Planck’s constant and vi represented the vibrational frequency. 

With the definition of adsorption energy, more negative values reflected the 

strong interactions between the adsorbed species and the slab surface. 

For a reaction such as R(reactant) → P(product), the activation barrier with the 

zero point-corrected (Ea) was calculated according to equations (E3) and (E4):  

Ea = (ETS - ER) + ΔZPEbarrier (E3) 

∆𝑍𝑃𝐸𝑏𝑎𝑟𝑟𝑖𝑒𝑟  =  (∑
ℎ𝑣𝑖

2

𝑉𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛𝑠
𝑖=1 )

𝑇𝑆
 −  (∑

ℎ𝑣𝑖

2

𝑉𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛𝑠
𝑖=1 )

𝑅
 (E4) 

Where ER and ETS were the total energies of the reaction and transition state, 

respectively. ΔZPEbarrier referred to the ZPE correction for the reaction barrier. In E4, 

the front term included the vibrational frequencies of the species in the TS, in which 

the imaginary frequency was not considered, and the rear term included the 

vibrational frequencies of the adsorbed reactions. 

The reaction energy with the zero point-corrected (E) was calculated according 
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to E5 and E6:   

E = (EP - ER) + ΔZPEenergy (E5) 

∆𝑍𝑃𝐸𝑒𝑛𝑒𝑟𝑔𝑦  =  (∑
ℎ𝑣𝑖

2

𝑉𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛𝑠
𝑖=1 )

𝑃
 −  (∑

ℎ𝑣𝑖

2

𝑉𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛𝑠
𝑖=1 )

𝑅
   (E6) 

Where ER and EP were the total energies of the reaction and product, 

respectively. ΔZPEenergy referred to the ZPE correction for the reaction energy, 

determined by the vibrational frequencies of the reactions and products. 

 

In order to eliminate the interactions from molecules in the neighboring 

periodic box, the length, width and height of the periodic rectangle boxes were set to 

be 25, 25 and 14 Å, respectively. All the atoms were unfixed during the structural 

optimization. Before structural optimization, all the initial structures of adsorbates-

substrate were made by connecting the most reactive parts of them. The associated 

reactivities were calculated by the spatial Fermi softness.9 The adsorption energy Ead. 

was calculated via: 

Ead. = EA* - EA(g) - E* 

where EA*, EA(g) and E* represent the DFT energies of adsorbates with substrates, 

gaseous adsorbates and the substrates, respectively. 
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Fig. S1 PXRD patterns of TDCOF and Zn-TDCOF-x (x = 6, 9, 12 and 15). 
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Fig. S2 FT-IR spectra of TDCOF and Zn-TDCOF-x (x = 6, 9, 12 and 15). 
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Fig. S3 Zn 2p XPS spectra of Zn(OAc)2 and Zn-TDCOF-12. 
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Fig. S4 N 1s XPS spectra of TDCOF and Zn-TDCOF-12. 
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Table S1. Zn element content of Zn-TDCOF-x (x = 6, 9, 12 and 15). 

Sample Found (wt%) 

Zn-TDCOF-6 0.51% 

Zn-TDCOF-9 0.95% 

Zn-TDCOF-12 1.37% 

Zn-TDCOF-15 1.82% 
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Table S2 Element content (excluding hydrogen) of Zn-TDCOF-12 by Energy dispersive 

X-ray (EDS) analysis. 

 

Element C N Zn 

Content (wt%) 85.56 12.72 1.73 
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Fig. S5 SEM image of TDCOF. 
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Fig. S6 Morphology of TDCOF. a TEM image. b Elemental mapping analysis (C, N and 

O). 
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Fig. S7 Morphology of Zn-TDCOF-6. a SEM image. b TEM image. 
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Fig. S8 Morphology of Zn-TDCOF-9. a SEM image. b TEM image. 
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Fig. S9 Morphology of Zn-TDCOF-15. a SEM image. b TEM image. 
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Fig. S10 AFM image of Zn-TDCOF-12. 
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Fig. S11 N2 sorption tests of TDCOF and Zn-TDCOF. a N2 sorption curves. b Pore size 

distribution curves. 
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Fig. S12 N2 sorption and pore size distribution curve of Zn-TDCOF-6. 
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Fig. S13 N2 sorption and pore size distribution curve of Zn-TDCOF-9. 
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Fig. S14 N2 sorption and pore size distribution curve of Zn-TDCOF-15. 
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Table S3 SBET and pore distribution of TDCOF and Zn-TDCOF-x (x = 6, 9, 12 and 15). 

 SBET (m2 g-1) Vmicro (cm3 g-1) Vmeso/macro (cm3 g-1) 

TDCOF 813 0.326 0.049 

Zn-TDCOF-6 524 0.224 0.112 

Zn-TDCOF-9 493 0.194 0.134 

Zn-TDCOF-12 432 0.115 0.197 

Zn-TDCOF-15 387 0.082 0.201 
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Fig. S15 N 1s XPS spectrum of Zn-TDCOF-6 with semi-quantitative analysis for C-NH2 

and C=N. 
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Fig. S16 N 1s XPS spectrum of Zn-TDCOF-9 with semi-quantitative analysis for C-NH2 

and C=N. 
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Fig. S17 N 1s XPS spectrum of Zn-TDCOF-15 with semi-quantitative analysis for C-NH2 

and C=N. 
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Fig. S18 FT-IR spectra of TDCOF and Zn-TDCOF-x (KBr pellet: 2 mg samples dispersed 

in 200 mg KBr). 
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Fig. S19 CO2 adsorption of TDCOF based on the TGA on a MEMs cantilever to 

calculate the amount of chemical base sites. 
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Fig. S20 CO2 adsorption of Zn-TDCOF-x based on the TGA on a MEMs cantilever to 

calculate the amount of chemical base sites. a Zn-TDCOF-6. b Zn-TDCOF-9. c Zn-

TDCOF-12. d Zn-TDCOF-15. 
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Table S4. Scherrer analysis table of TDCOF and Zn-TDCOF. 

Sample 2θ (degrees) β (FWHM, radians) τ (nm) 

TDCOF 4.24 0.0068 22.7 

Zn-TDCOF-6 4.25 0.0077 20.2 

Zn-TDCOF-9 4.26 0.0081 19.0 

Zn-TDCOF-12 4.28 0.0084 18.4 

Zn-TDCOF-15 4.29 0.0094 16.4 

The domain sizes were estimated by using the Scherrer equation: 

τ =
𝑘λ

βcos (θ)
 

where: 

τ is the crystalline domain size (unit: nm); 

k is shape factor with the value of 1.0; 

λ = 0.154056 nm (Cu Kα X-ray wavelength); 

β is the line broadening at half the maximum intensity (FWHM) of the (200) peak 

from PXRD in radians; 

θ is the location of the observed peak from PXRD in degrees. 
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Fig. S21 PXRD patterns of TDCOF based on different treatment at 40 oC. a TDCOF with 

treatment for 24 h on the bare EtOH solution (TDCOF-24). b TDCOF with different 

treatment time (18 and 21 h) on EtOH solution of zinc acetate (Zn-TDCOF-18 and Zn-

TDCOF-21). 
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Fig. S22 FT-IR spectra of TDCOF was treated with similar method as Zn-TDCOF except 

that zinc salt is not added (TDCOF-12, bare EtOH solution). 
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Fig. S23 PXRD patterns of TDCOF with different treatment time (6 and 24 h) on THF 

solution of zinc acetate. 
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Fig. S24 Characterization of TDCOF after 12 h treatment in THF solution of anhydrous 

zinc acetate with similar method to Zn-TDCOF-12. a PXRD pattern. b XPS spectrum. 
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Fig. S25 Change of imine bond length after post-metallization is based on the DFT 

calculation. 
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Fig. S26 Mechanism of Zn2+-promoted imine linkage hydrolysis for TDCOF. 
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Fig. S27 N 1s XPS spectrum of Co-COF with semi-quantitative analysis for C-NH2 and 

C=N. 
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Fig. S28 Response-recovery curve toward 100 ppm NO2 of Zn-TDCOF-12 under dark 

conditions. 
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Fig. S29 Solid-state UV/Vis absorption spectra of Zn-TDCOF-12. 
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Fig. S30 Response-recovery curve toward 100 ppm NO2 of Co-COF under dark visible 

light and room temperature. 
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Fig. S31 NO2 sensing of Zn-TDCOF-12 with the different concentrations of 40 - 360 

ppb. a Response-recovery curve toward NO2. b Sensitivity. 
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Fig. S32 Response-recovery curve toward NO2 with the different concentrations (20 – 

90 ppm) of Zn-TDCOF-12. 
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Fig. S33. Sensing current response to 100 ppm NO of Zn-TDCOF-12. 
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Fig. S34 Stability test of Zn-TDCOF-12 before and after the gas sensing test. 
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Table S5 Compared with reported materials for the NO2 sensing under visible-light 

and room temperature. 

 Concentration Response tres./trec. Ref. 

Au−MoS2 50 ppm 32.5 -/27 s 10 

Cu/Cu2O 10 ppm 5.27 30 s/- 11 

ZnO-Ag 1 ppm 1.1 3.3 min/4.2 min 12 

Dye activated a-ZnO 10 ppm 5.9 2 h/14 h 13 

H7 300 ppb 1.4 62 min/70 min 14 

3D TiO2 5 ppm 3.7 7.1 min/- 15 

2D SnS2 nanoflowers 5 ppm 14.3 12.2 min/62 min 16 

S1 372 ppb 0.89 20.8 min/> 60 min 17 

WO3@GO 0.9 ppm 62.73 28.7 min/> 60 min 18 

CdS–ZnO 1 ppm 30.9 > 50 min/- 19 

SnO1-@ZnO1-β@SnO2-γ 1 ppm 2.36 20.3 min/28.8 min 20 

SnS2 nanosheets 8 ppm 10.8 3.3 min/13.1 min 21 

SnS2/rGO 1 ppm 0.65 1.3 min/4.0 min 22 

Fe2O3−Cu3(HHTP)2-NFs 5 ppm 0.89 - 23 

reacted MoS2 5 ppm 0.5 - 24 

CdS nanoflake array 20 ppm 0.57 0.22 min/2.1 min 25 

Au-SnO2 (red light) 5 ppm 175 
38.3 min/no 

recovery 
26 

SnO2@SnS2 0.2 ppm 5.2 15.8 min/19.3 min 27 

MoS2/GaSe 500 ppb 0.62 0.38 min/2.97 min 28 

Co–ZnO 50 ppm 1.3 - 29 

SnS2/TiO2 1 ppm 0.4 0.72 min/1.7 min 30 

IGZO thin-film 5 ppm 12.5 -/10 min 31 

2D/2D ZnO/g-C3N4 (460 nm) 7 ppm 44.8 2.8 min/6.1 min 32 

ZnO nanorod/Au hybrids 10 ppm 17.5 25 s/29 s 33 
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ZnO/Pd hybrids 100 ppb 0.16 -/3.1 min 34 

3D In2O3-ZnO 5 ppm 9 - 35 

In2O3 nanowire array 500 ppb 4.5 9 min/20 min 36 

MXene/WS2 10 ppm 0.6 56 s/53 s 37 

SV-MoS2 200 ppb 0.45 2.9 min/5.4 min 38 

3D CNC 50 ppm 9 1.5 min/1.7 min 39 

CdS/ZnO 100 ppb 0.35 0.7 min/5.7 min 40 

HOF-1 100 ppm 1700 2.5 min/0.6 min 41 

TDCOF 100 ppm 228 6.0 min/1.8 min This work 

Zn-TDCOF-12 100 ppm 554 8.1 min/10.6 min This work 

Zn-TDCOF-12 1 ppm 7.1 - This work 

Zn-TDCOF-15 100 ppm 252 8.6 min/8.9 min This work 
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Fig. S35 Photo-induced gas sensor of TDCOF. a Response-recovery curve toward NO2 

with different concentrations. b Response-concentration log-log plots for the NO2 

sensor with different concentrations. c Response-recovery time curves to 100 ppm 

NO2 with the response and recovery time were calculated. d Sensing current 

response to 9 types of interfering gases (100 ppm). 
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Fig. S36 Response-recovery curve toward 100 ppm NO2 of Zn-TDCOF-6. 
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Fig. S37 Photo-induced gas sensor of Zn-TDCOF-9. a Response-recovery curve toward 

NO2 with different concentrations. b Response-concentration log-log plots for the 

NO2 sensor with different concentrations. c Response-recovery time curves to 100 

ppm NO2 with the response and recovery time were calculated. d Sensing current 

response to 9 types of interfering gases (100 ppm). 
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Fig. S38 Response-recovery curve toward NO2 with different concentrations of Zn-

TDCOF-15. 
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Fig. S39 Response‐recovery curve toward 100 ppm NO2 of Zn‐TDCOF‐21 (amorphous). 
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Fig. S40 Structure of COF-366. 
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Fig. S41 N 1s XPS spectra of COF-366 and Zn-COF-366 with a ratio of C-NH2 and C=N 

(dangling bond). a COF-366. b Zn-COF-366. 
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Fig. S42 Response-recovery curve toward 100 ppm NO2 of COF-366 and Zn-COF-366 

under visible light. 
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Fig. S43 Response-recovery curve toward 100 ppm NO2 based on the contrast sample 

of TAPP with different functional groups under visible light. a TPP. b CH3-TPP. c TAPP. 

d TNPP. 
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Fig. S44 Response-recovery time curves to 100 ppm NO2 of Zn-COF-366 under dark 

conditions (π-backbonding to NO2). 
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Fig. S45 Response-recovery time curves to 10 ppm NO2 of Zn-TDCOF-12 under dark 

conditions (chemical adsorption to NO2). 
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Fig. S46 FT-IR spectrum of Zn-TDCOF-12 after NO2 (100 ppm NO2, 2 h) treatment.  
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Fig. S47 Most favorable NO2 adsorption configurations for the various sites of Zn-

TDCOF. a Porphyrin zinc. b Pyridine zinc. c Dangling bond (-NH2). The red, sky-blue, 

gray, white and navy-blue spheres represent O, N, C, H and Zn atoms, respectively. 
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Fig. S48 Sensing current response to 100 ppm NO2 of NH2-UiO-66. 
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