## **Supplementary Information**

# Dangling Bond Formation on COF Nanosheets for Enhancing Sensing Performances

Yong-Jun Chen,<sup>ac</sup> Ming Liu,<sup>b</sup> Jie Chen,<sup>a</sup> Xin Huang,<sup>d</sup> Qiao-Hong Li,\*<sup>a</sup> Xiao-Liang Ye,<sup>a</sup> Guan-E Wang,<sup>a</sup> and Gang Xu\*<sup>ace</sup>

<sup>a</sup>State Key Laboratory of Structural Chemistry, Fujian Provincial key Laboratory of Materials and Techniques toward Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou, Fujian, 350002, P. R. China.

<sup>b</sup>Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.

<sup>c</sup>University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China.

<sup>d</sup>Jiangsu Key Laboratory of Biofunctional Material, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.

<sup>e</sup>Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China.

\*Corresponding author: (Q.-H. Li, E-mail: <u>lqh2382@fjirsm.ac.cn</u>; and G. Xu, E-mail:

<u>qxu@fjirsm.ac.cn</u>).

#### Quantitative analysis of dangling bond in materials.

The amount of dangling bond (-NH<sub>2</sub>) was calculated based on the test of the chemical adsorption of CO<sub>2</sub> by the material under room temperature. The CO<sub>2</sub> adsorption was conducted by a thermal gravimetric analyzer (TGA) on a MEMS cantilever. The initial mass ( $M_0$ ) of the material was obtained based on the D-value of baseline frequency ( $F_1$ ) and bare cantilever ( $F_0$ ) on air conditions with a flaw rate of 200 mL min<sup>-1</sup>. After the material adsorbs high-purity CO<sub>2</sub> for 1 h, the air is introduced to restore it to horizontal frequency ( $F_2$ ) for 1 h. The mass ( $M_1$ ) of chemically adsorbed CO<sub>2</sub> was calculated based on the reduction ( $\Delta F$ ) from  $F_1$  to  $F_2$  ( $\Delta F = F_1 - F_2$ ), which cannot be desorbed under room temperature based on the chemical action. The influence of the change in gas density is deducted from all the test data.

The conversion formula from frequency (F) to mass (M):

$$M(g) = 10^{-12} \times F(HZ)$$

The amount of dangling bond (D) in this work is defined:

$$D = 10^6 \times M_1 / (44 \times M_0) \,\mu\text{mol g}^{-1}$$

#### Gas sensor characterization

The sensor characterization was conducted by a home-made system reported in our previous work<sup>1</sup>. It takes ~0.65 min to fulfill the quartz chamber when the gas flow was 600 mL min<sup>-1</sup>. The target gas was introduced into the quartz tube by mixing the certified gas "mixtures" (Beijing Hua Yuan Gas Chemical Industry Co., Ltd., China) and dry air in a proper ratio controlled by the mass flow controllers (CS-200C, Beijing Sevenstar Qualiflow Electronic Equipment Manufacturing Co., Ltd., China) under visible-light irradiation ( $\lambda$  = 420 - 760 nm) and room temperature. The constant flow was 600 mL min<sup>-1</sup>, the bias on the sensor was 1 V and the current was recorded using Keithley 4200 Sourcemeter.

The sensor response with a positive response in this work is defined as the ratio of sensor resistance in the air ( $R_{air}$ ) and analytic gas ( $R_{analyte}$ ):

Response = 
$$R_{air}/R_{analyte}$$
 - 1

The response time ( $t_{res.}$ ) of the sensor with a positive response is the time required for the increasing current to 90% of the saturation value and the recovery time ( $t_{rec.}$ ) is the time required to decrease the saturated current to its 10%.

The coefficient of variation (CV) is used to represent the change of different cycles

on responses, which is defined as:

$$CV = R_{SD}/R_{average} \times 100\%$$

 $R_{SD}$  and  $R_{average}$  are the standard deviation (SD) and an average value of responses with different cycles (100 ppm NO<sub>2</sub>), respectively.

### Computational details.

All calculations were performed using the DFT approach implemented in Dmol3 package.<sup>2-3</sup> The generalized gradient approximation (GGA) was adopted to describe the density function using the Perdew-Burke-Ernzerhof (PBE) functional for the exchange-correlation term. The double-numeric quality basis set with polarization functions  $(DNP)^{2, 4-5}$  was adopted, which was comparable to 6-31G\*\*.<sup>6-7</sup> The numerical basis sets can minimize the basis-set superposition error.<sup>8</sup> A Fermi smearing of 0.005 hartree was utilized for structural relaxation and TSs location. The tolerances of the energy, gradient and displacement convergence were  $1 \times 10^{-5}$  hartree,  $2 \times 10^{-3}$  hartree/Å, and  $5 \times 10^{-3}$  Å, respectively. The transition states (TS) were located using the complete linear synchronous transit/quadratic synchronous transit (LST/QST) methods. The structure of TDCOF was extracted from the crystal structure.

The adsorption energy with zero-point-corrected  $\Delta E_{ads.}$  is defined as

$$\Delta E_{ads.} = [E_{total} - (E_{slab.} + E_{adsorbate})] + \Delta ZPE_{ads}$$
(E1)

$$\Delta ZPE_{ads.} = \left(\sum_{i=1}^{Vibrations} \frac{hv_i}{2}\right)_{adsorbed} - \left(\sum_{i=1}^{Vibrations} \frac{hv_i}{2}\right)_{gas}$$
(E2)

Where  $E_{total}$ ,  $E_{slab}$  and  $E_{adsorbate}$  represented the total energy of the slabs with adsorbate, the bare slab of the surface, and the free adsorbate molecules, respectively.  $\Delta ZPE_{ads}$  referred to the zero-point vibrational energy (*ZPE*) correction for the adsorption. E2 was used to calculate the ZPE correction via the vibrational frequencies for the species, including the gas phase and the adsorbed state, where *h* was Planck's constant and *v<sub>i</sub>* represented the vibrational frequency. With the definition of adsorption energy, more negative values reflected the strong interactions between the adsorbed species and the slab surface.

For a reaction such as R(reactant)  $\rightarrow$  P(product), the activation barrier with the zero point-corrected ( $\Delta E_a$ ) was calculated according to equations (E3) and (E4):

$$\Delta E_{a} = (E_{TS} - E_{R}) + \Delta ZPE_{barrier}$$
(E3)

$$\Delta ZPE_{barrier} = \left(\sum_{i=1}^{Vibrations} \frac{hv_i}{2}\right)_{TS} - \left(\sum_{i=1}^{Vibrations} \frac{hv_i}{2}\right)_R$$
(E4)

Where  $E_R$  and  $E_{TS}$  were the total energies of the reaction and transition state, respectively.  $\Delta ZPE_{barrier}$  referred to the ZPE correction for the reaction barrier. In E4, the front term included the vibrational frequencies of the species in the TS, in which the imaginary frequency was not considered, and the rear term included the vibrational frequencies of the adsorbed reactions.

The reaction energy with the zero point-corrected ( $\Delta E$ ) was calculated according

to E5 and E6:

$$\Delta E = (E_{\rm P} - E_{\rm R}) + \Delta Z P E_{energy} \tag{E5}$$

$$\Delta ZPE_{energy} = \left(\sum_{i=1}^{Vibrations} \frac{hv_i}{2}\right)_P - \left(\sum_{i=1}^{Vibrations} \frac{hv_i}{2}\right)_R$$
(E6)

Where  $E_R$  and  $E_P$  were the total energies of the reaction and product, respectively.  $\Delta ZPE_{energy}$  referred to the ZPE correction for the reaction energy, determined by the vibrational frequencies of the reactions and products.

In order to eliminate the interactions from molecules in the neighboring periodic box, the length, width and height of the periodic rectangle boxes were set to be 25, 25 and 14 Å, respectively. All the atoms were unfixed during the structural optimization. Before structural optimization, all the initial structures of adsorbates-substrate were made by connecting the most reactive parts of them. The associated reactivities were calculated by the spatial Fermi softness.<sup>9</sup> The adsorption energy  $E_{ad}$ . was calculated via:

$$E_{ad.} = E_{A^*} - E_A(g) - E^*$$

where  $E_{A^*}$ ,  $E_A(g)$  and  $E^*$  represent the DFT energies of adsorbates with substrates, gaseous adsorbates and the substrates, respectively.



Fig. S1 PXRD patterns of TDCOF and Zn-TDCOF-x (x = 6, 9, 12 and 15).



**Fig. S2** FT-IR spectra of TDCOF and Zn-TDCOF-x (x = 6, 9, 12 and 15).



Fig. S3 Zn 2p XPS spectra of Zn(OAc)<sub>2</sub> and Zn-TDCOF-12.



Fig. S4 N 1s XPS spectra of TDCOF and Zn-TDCOF-12.

| Sample      | Found (wt%) |
|-------------|-------------|
| Zn-TDCOF-6  | 0.51%       |
| Zn-TDCOF-9  | 0.95%       |
| Zn-TDCOF-12 | 1.37%       |
| Zn-TDCOF-15 | 1.82%       |

**Table S1.** Zn element content of Zn-TDCOF-x (x = 6, 9, 12 and 15).

**Table S2** Element content (excluding hydrogen) of Zn-TDCOF-12 by Energy dispersive X-ray (EDS) analysis.

| Element       | С     | Ν     | Zn   |
|---------------|-------|-------|------|
| Content (wt%) | 85.56 | 12.72 | 1.73 |



Fig. S5 SEM image of TDCOF.



**Fig. S6** Morphology of TDCOF. **a** TEM image. **b** Elemental mapping analysis (C, N and O).



Fig. S7 Morphology of Zn-TDCOF-6. a SEM image. b TEM image.



Fig. S8 Morphology of Zn-TDCOF-9. a SEM image. b TEM image.



Fig. S9 Morphology of Zn-TDCOF-15. a SEM image. b TEM image.



Fig. S10 AFM image of Zn-TDCOF-12.



**Fig. S11**  $N_2$  sorption tests of TDCOF and Zn-TDCOF. **a**  $N_2$  sorption curves. **b** Pore size distribution curves.



Fig. S12 N<sub>2</sub> sorption and pore size distribution curve of Zn-TDCOF-6.



Fig. S13  $N_2$  sorption and pore size distribution curve of Zn-TDCOF-9.



Fig. S14 N<sub>2</sub> sorption and pore size distribution curve of Zn-TDCOF-15.

|             | S <sub>BET</sub> (m <sup>2</sup> g <sup>-1</sup> ) | V <sub>micro</sub> (cm <sup>3</sup> g <sup>-1</sup> ) | V <sub>meso/macro</sub> (cm <sup>3</sup> g <sup>-1</sup> ) |
|-------------|----------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------|
| TDCOF       | 813                                                | 0.326                                                 | 0.049                                                      |
| Zn-TDCOF-6  | 524                                                | 0.224                                                 | 0.112                                                      |
| Zn-TDCOF-9  | 493                                                | 0.194                                                 | 0.134                                                      |
| Zn-TDCOF-12 | 432                                                | 0.115                                                 | 0.197                                                      |
| Zn-TDCOF-15 | 387                                                | 0.082                                                 | 0.201                                                      |

**Table S3**  $S_{BET}$  and pore distribution of TDCOF and Zn-TDCOF-x (x = 6, 9, 12 and 15).



**Fig. S15** N 1s XPS spectrum of Zn-TDCOF-6 with semi-quantitative analysis for C-NH<sub>2</sub> and C=N.



**Fig. S16** N 1s XPS spectrum of Zn-TDCOF-9 with semi-quantitative analysis for C-NH<sub>2</sub> and C=N.



**Fig. S17** N 1s XPS spectrum of Zn-TDCOF-15 with semi-quantitative analysis for C-NH<sub>2</sub> and C=N.



**Fig. S18** FT-IR spectra of TDCOF and Zn-TDCOF-x (KBr pellet: 2 mg samples dispersed in 200 mg KBr).



Fig. S19  $CO_2$  adsorption of TDCOF based on the TGA on a MEMs cantilever to calculate the amount of chemical base sites.



Fig. S20  $CO_2$  adsorption of Zn-TDCOF-x based on the TGA on a MEMs cantilever to calculate the amount of chemical base sites. **a** Zn-TDCOF-6. **b** Zn-TDCOF-9. **c** Zn-TDCOF-12. **d** Zn-TDCOF-15.

|             | ,            |                   |        |
|-------------|--------------|-------------------|--------|
| Sample      | 2θ (degrees) | β (FWHM, radians) | τ (nm) |
| TDCOF       | 4.24         | 0.0068            | 22.7   |
| Zn-TDCOF-6  | 4.25         | 0.0077            | 20.2   |
| Zn-TDCOF-9  | 4.26         | 0.0081            | 19.0   |
| Zn-TDCOF-12 | 4.28         | 0.0084            | 18.4   |
| Zn-TDCOF-15 | 4.29         | 0.0094            | 16.4   |

Table S4. Scherrer analysis table of TDCOF and Zn-TDCOF.

The domain sizes were estimated by using the Scherrer equation:

$$\tau = \frac{k\lambda}{\beta\cos\left(\theta\right)}$$

where:

 $\tau$  is the crystalline domain size (unit: nm);

*k* is shape factor with the value of 1.0;

 $\lambda$  = 0.154056 nm (Cu K $\alpha$  X-ray wavelength);

 $\beta$  is the line broadening at half the maximum intensity (FWHM) of the (200) peak from PXRD in radians;

 $\boldsymbol{\theta}$  is the location of the observed peak from PXRD in degrees.



**Fig. S21** PXRD patterns of TDCOF based on different treatment at 40 °C. **a** TDCOF with treatment for 24 h on the bare EtOH solution (TDCOF-24). **b** TDCOF with different treatment time (18 and 21 h) on EtOH solution of zinc acetate (Zn-TDCOF-18 and Zn-TDCOF-21).



**Fig. S22** FT-IR spectra of TDCOF was treated with similar method as Zn-TDCOF except that zinc salt is not added (TDCOF-12, bare EtOH solution).



**Fig. S23** PXRD patterns of TDCOF with different treatment time (6 and 24 h) on THF solution of zinc acetate.



**Fig. S24** Characterization of TDCOF after 12 h treatment in THF solution of anhydrous zinc acetate with similar method to Zn-TDCOF-12. **a** PXRD pattern. **b** XPS spectrum.



**Fig. S25** Change of imine bond length after post-metallization is based on the DFT calculation.



Fig. S26 Mechanism of Zn<sup>2+</sup>-promoted imine linkage hydrolysis for TDCOF.



Fig. S27 N 1s XPS spectrum of Co-COF with semi-quantitative analysis for C-NH $_2$  and C=N.



Fig. S28 Response-recovery curve toward 100 ppm  $NO_2$  of Zn-TDCOF-12 under dark conditions.



Fig. S29 Solid-state UV/Vis absorption spectra of Zn-TDCOF-12.



Fig. S30 Response-recovery curve toward 100 ppm  $NO_2$  of Co-COF under dark visible light and room temperature.



**Fig. S31** NO<sub>2</sub> sensing of Zn-TDCOF-12 with the different concentrations of 40 - 360 ppb. **a** Response-recovery curve toward NO<sub>2</sub>. **b** Sensitivity.



**Fig. S32** Response-recovery curve toward  $NO_2$  with the different concentrations (20 – 90 ppm) of Zn-TDCOF-12.



Fig. S33. Sensing current response to 100 ppm NO of Zn-TDCOF-12.



Fig. S34 Stability test of Zn-TDCOF-12 before and after the gas sensing test.

|                                                                          | Concentration | Response | t <sub>res.</sub> /t <sub>rec.</sub> | Ref. |
|--------------------------------------------------------------------------|---------------|----------|--------------------------------------|------|
| Au-MoS <sub>2</sub>                                                      | 50 ppm        | 32.5     | -/27 s                               | 10   |
| Cu/Cu₂O                                                                  | 10 ppm        | 5.27     | 30 s/-                               | 11   |
| ZnO-Ag                                                                   | 1 ppm         | 1.1      | 3.3 min/4.2 min                      | 12   |
| Dye activated a-ZnO                                                      | 10 ppm        | 5.9      | 2 h/14 h                             | 13   |
| H7                                                                       | 300 ppb       | 1.4      | 62 min/70 min                        | 14   |
| 3D TiO <sub>2</sub>                                                      | 5 ppm         | 3.7      | 7.1 min/-                            | 15   |
| 2D SnS <sub>2</sub> nanoflowers                                          | 5 ppm         | 14.3     | 12.2 min/62 min                      | 16   |
| S1                                                                       | 372 ppb       | 0.89     | 20.8 min/> 60 min                    | 17   |
| WO₃@GO                                                                   | 0.9 ppm       | 62.73    | 28.7 min/> 60 min                    | 18   |
| CdS–ZnO                                                                  | 1 ppm         | 30.9     | > 50 min/-                           | 19   |
| SnO <sub>1-@</sub> ZnO <sub>1-β</sub> @SnO <sub>2-γ</sub>                | 1 ppm         | 2.36     | 20.3 min/28.8 min                    | 20   |
| SnS <sub>2</sub> nanosheets                                              | 8 ppm         | 10.8     | 3.3 min/13.1 min                     | 21   |
| SnS₂/rGO                                                                 | 1 ppm         | 0.65     | 1.3 min/4.0 min                      | 22   |
| Fe <sub>2</sub> O <sub>3</sub> -Cu <sub>3</sub> (HHTP) <sub>2</sub> -NFs | 5 ppm         | 0.89     | -                                    | 23   |
| reacted MoS <sub>2</sub>                                                 | 5 ppm         | 0.5      | -                                    | 24   |
| CdS nanoflake array                                                      | 20 ppm        | 0.57     | 0.22 min/2.1 min                     | 25   |
| Au-SnO <sub>2</sub> (red light)                                          | 5 ppm         | 175      | 38.3 min/no<br>recovery              | 26   |
| SnO <sub>2</sub> @SnS <sub>2</sub>                                       | 0.2 ppm       | 5.2      | 15.8 min/19.3 min                    | 27   |
| MoS <sub>2</sub> /GaSe                                                   | 500 ppb       | 0.62     | 0.38 min/2.97 min                    | 28   |
| Co–ZnO                                                                   | 50 ppm        | 1.3      | -                                    | 29   |
| SnS <sub>2</sub> /TiO <sub>2</sub>                                       | 1 ppm         | 0.4      | 0.72 min/1.7 min                     | 30   |
| IGZO thin-film                                                           | 5 ppm         | 12.5     | -/10 min                             | 31   |
| 2D/2D ZnO/g-C₃N₄ (460 nm)                                                | 7 ppm         | 44.8     | 2.8 min/6.1 min                      | 32   |
| ZnO nanorod/Au hybrids                                                   | 10 ppm        | 17.5     | 25 s/29 s                            | 33   |

Table S5 Compared with reported materials for the  $NO_2$  sensing under visible-light and room temperature.

| ZnO/Pd hybrids                         | 100 ppb | 0.16 | -/3.1 min        | 34        |
|----------------------------------------|---------|------|------------------|-----------|
| 3D In <sub>2</sub> O <sub>3</sub> -ZnO | 5 ppm   | 9    | -                | 35        |
| $In_2O_3$ nanowire array               | 500 ppb | 4.5  | 9 min/20 min     | 36        |
| MXene/WS <sub>2</sub>                  | 10 ppm  | 0.6  | 56 s/53 s        | 37        |
| SV-MoS <sub>2</sub>                    | 200 ppb | 0.45 | 2.9 min/5.4 min  | 38        |
| 3D CNC                                 | 50 ppm  | 9    | 1.5 min/1.7 min  | 39        |
| CdS/ZnO                                | 100 ppb | 0.35 | 0.7 min/5.7 min  | 40        |
| HOF-1                                  | 100 ppm | 1700 | 2.5 min/0.6 min  | 41        |
| TDCOF                                  | 100 ppm | 228  | 6.0 min/1.8 min  | This work |
| Zn-TDCOF-12                            | 100 ppm | 554  | 8.1 min/10.6 min | This work |
| Zn-TDCOF-12                            | 1 ppm   | 7.1  | -                | This work |
| Zn-TDCOF-15                            | 100 ppm | 252  | 8.6 min/8.9 min  | This work |



**Fig. S35** Photo-induced gas sensor of TDCOF. **a** Response-recovery curve toward  $NO_2$  with different concentrations. **b** Response-concentration log-log plots for the  $NO_2$  sensor with different concentrations. **c** Response-recovery time curves to 100 ppm  $NO_2$  with the response and recovery time were calculated. **d** Sensing current response to 9 types of interfering gases (100 ppm).



Fig. S36 Response-recovery curve toward 100 ppm NO<sub>2</sub> of Zn-TDCOF-6.



**Fig. S37** Photo-induced gas sensor of Zn-TDCOF-9. **a** Response-recovery curve toward NO<sub>2</sub> with different concentrations. **b** Response-concentration log-log plots for the NO<sub>2</sub> sensor with different concentrations. **c** Response-recovery time curves to 100 ppm NO<sub>2</sub> with the response and recovery time were calculated. **d** Sensing current response to 9 types of interfering gases (100 ppm).



Fig. S38 Response-recovery curve toward  $NO_2$  with different concentrations of Zn-TDCOF-15.



Fig. S39 Response-recovery curve toward 100 ppm NO<sub>2</sub> of Zn-TDCOF-21 (amorphous).



Fig. S40 Structure of COF-366.



**Fig. S41** N 1s XPS spectra of COF-366 and Zn-COF-366 with a ratio of C-NH<sub>2</sub> and C=N (dangling bond). **a** COF-366. **b** Zn-COF-366.



**Fig. S42** Response-recovery curve toward 100 ppm NO<sub>2</sub> of COF-366 and Zn-COF-366 under visible light.



**Fig. S43** Response-recovery curve toward 100 ppm NO<sub>2</sub> based on the contrast sample of TAPP with different functional groups under visible light. **a** TPP. **b** CH<sub>3</sub>-TPP. **c** TAPP. **d** TNPP.



**Fig. S44** Response-recovery time curves to 100 ppm NO<sub>2</sub> of Zn-COF-366 under dark conditions ( $\pi$ -backbonding to NO<sub>2</sub>).



**Fig. S45** Response-recovery time curves to 10 ppm NO<sub>2</sub> of Zn-TDCOF-12 under dark conditions (chemical adsorption to NO<sub>2</sub>).



Fig. S46 FT-IR spectrum of Zn-TDCOF-12 after NO<sub>2</sub> (100 ppm NO<sub>2</sub>, 2 h) treatment.







**Fig. S47** Most favorable NO<sub>2</sub> adsorption configurations for the various sites of Zn-TDCOF. **a** Porphyrin zinc. **b** Pyridine zinc. **c** Dangling bond (-NH<sub>2</sub>). The red, sky-blue, gray, white and navy-blue spheres represent O, N, C, H and Zn atoms, respectively.



Fig. S48 Sensing current response to 100 ppm  $NO_2$  of  $NH_2$ -UiO-66.

#### References

(1) Yao, M. S.; Tang, W. X.; Wang, G. E.; Nath, B.; Xu, G. MOF Thin Film-Coated Metal Oxide Nanowire Array: Significantly Improved Chemiresistor Sensor Performance. *Adv. Mater.* **2016**, *28* (26), 5229-5234.

(2) Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. *J. Chem. Phys.* **1990**, *92* (1), 508-517.

(3) Delley, B. From molecules to solids with the DMol<sup>3</sup> approach. J. Chem. Phys. 2000, 113 (18), 7756-7764.

(4) Versluis, L.; Ziegler, T. The determination of molecular structures by density functional theory. The evaluation of analytical energy gradients by numerical integration. *J. Chem. Phys.* **1988**, *88* (1), 322-328.

(5) Barth, U. v.; Hedin, L. A local exchange-correlation potential for the spin polarized case. i. *J. Phys. C: Solid State Phys.* **1972**, *5* (13), 1629-1642.

(6) Lee, C.-S.; Hwang, T.-S.; Wang, Y.; Peng, S.-M.; Hwang, C.-S. Charge Density and Bonding in Bis(diiminosuccinonitrilo)nickel, Ni( $C_4N_4H_2$ )<sub>2</sub>: A Combined Experimental and Theoretical Study. *J. Phys. Chem.* **1996**, *100* (8), 2934-2941.

(7) Lin, T.; Zhang, W.-D.; Huang, J.; He, C. A DFT Study of the Amination of Fullerenes and Carbon Nanotubes: Reactivity and Curvature. *J. Phys. Chem. B* **2005**, *109* (28), 13755-13760.

(8) Matsuzawa, N.; Seto, J. e.; Dixon, D. A. Density Functional Theory Predictions of Second-Order Hyperpolarizabilities of Metallocenes. *J. Phys. Chem. A* **1997**, *101* (49), 9391-9398.

(9) Shang, S.; Yang, C.; Wang, C.; Qin, J.; Li, Y.; Gu, Q.; Shang, J. Transition-Metal-Containing Porphyrin Metal– Organic Frameworks as  $\pi$ -Backbonding Adsorbents for NO<sub>2</sub> Removal. *Angew. Chem. Int. Ed.* **2020**, *59* (44), 19680-19683.

(10) Chen, P.; Hu, J.; Yin, M.; Bai, W.; Chen, X.; Zhang, Y. MoS<sub>2</sub> Nanoflowers Decorated with Au Nanoparticles for Visible-Light-Enhanced Gas Sensing. ACS Appl. Nano Mater. **2021**, *4* (6), 5981-5991.

(11) Zou, X.; Fan, H.; Tian, Y.; Zhang, M.; Yan, X. Microwave-assisted hydrothermal synthesis of Cu/Cu<sub>2</sub>O hollow spheres with enhanced photocatalytic and gas sensing activities at room temperature. *Dalton Trans.* **2015**, *44* (17), 7811-7821.

(12) Zhang, Q.; Xie, G.; Xu, M.; Su, Y.; Tai, H.; Du, H.; Jiang, Y. Visible light-assisted room temperature gas sensing with ZnO-Ag heterostructure nanoparticles. *Sens. Actuators, B* **2018**, *259*, 269-281.

(13) Zhang, C.; Wang, J.; Olivier, M.-G.; Debliquy, M. Room temperature nitrogen dioxide sensors based on N719dye sensitized amorphous zinc oxide sensors performed under visible-light illumination. *Sens. Actuators, B* **2015**, *209*, 69-77.

(14) Zhang, C.; Liu, G.; Liu, K.; Wu, K. ZnO<sub>1-x</sub> coatings deposited by atmospheric plasma spraying for room temperature ppb-level NO<sub>2</sub> detection. *Appl. Surf. Sci.* **2020**, *528*, 147041.

(15) Cho, D.; Suh, J. M.; Nam, S.-H.; Park, S. Y.; Park, M.; Lee, T. H.; Choi, K. S.; Lee, J.; Ahn, C.; Jang, H. W.; et al. Optically Activated 3D Thin-Shell TiO<sub>2</sub> for Super-Sensitive Chemoresistive Responses: Toward Visible Light Activation. *Adv. Sci.* **2021**, *8* (3), 2001883.

(16) Eom, T. H.; Cho, S. H.; Suh, J. M.; Kim, T.; Lee, T. H.; Jun, S. E.; Yang, J. W.; Lee, J.; Hong, S.-H.; Jang, H. W. Substantially improved room temperature NO<sub>2</sub> sensing in 2-dimensional SnS<sub>2</sub> nanoflowers enabled by visible light illumination. *J. Mater. Chem. A* **2021**, *9* (18), 11168-11178.

(17) Geng, X.; Lahem, D.; Zhang, C.; Li, C.-J.; Olivier, M.-G.; Debliquy, M. Visible light enhanced black NiO sensors for ppb-level NO<sub>2</sub> detection at room temperature. *Ceram. Int.* **2019**, *45* (4), 4253-4261.

(18) Geng, X.; You, J.; Wang, J.; Zhang, C. Visible light assisted nitrogen dioxide sensing using tungsten oxide - Graphene oxide nanocomposite sensors. *Mater. Chem. Phys.* **2017**, *191*, 114-120.

(19) Geng, X.; Zhang, C.; Debliquy, M. Cadmium sulfide activated zinc oxide coatings deposited by liquid plasma spray for room temperature nitrogen dioxide detection under visible light illumination. *Ceram. Int.* **2016**, *42* (4),

4845-4852.

(20) Geng, X.; Zhang, C.; Luo, Y.; Liao, H.; Debliquy, M. Light assisted room-temperature NO<sub>2</sub> sensors with enhanced performance based on black  $SnO_{1-\alpha}@ZnO_{1-\beta}@SnO_{2-\gamma}$  nanocomposite coatings deposited by solution precursor plasma spray. *Ceram. Int.* **2017**, *43* (8), 5990-5998.

(21) Gu, D.; Wang, X.; Liu, W.; Li, X.; Lin, S.; Wang, J.; Rumyantseva, M. N.; Gaskov, A. M.; Akbar, S. A. Visible-light activated room temperature NO<sub>2</sub> sensing of SnS<sub>2</sub> nanosheets based chemiresistive sensors. *Sens. Actuators* **2020**, *305*, 127455.

(22) Huang, Y.; Jiao, W.; Chu, Z.; Ding, G.; Yan, M.; Zhong, X.; Wang, R. Ultrasensitive room temperature ppb-level NO<sub>2</sub> gas sensors based on SnS<sub>2</sub>/rGO nanohybrids with P-N transition and optoelectronic visible light enhancement performance. *J. Mater. Chem. C* **2019**, *7* (28), 8616-8625.

(23) Jo, Y.-M.; Lim, K.; Yoon, J. W.; Jo, Y. K.; Moon, Y. K.; Jang, H. W.; Lee, J.-H. Visible-Light-Activated Type II Heterojunction in Cu<sub>3</sub>(hexahydroxytriphenylene)<sub>2</sub>/Fe<sub>2</sub>O<sub>3</sub> Hybrids for Reversible NO<sub>2</sub> Sensing: Critical Role of  $\pi$ - $\pi$ \* Transition. *ACS Cent. Sci.* **2021**, *7* (7), 1176-1182.

(24) Kang, Y.; Pyo, S.; Jo, E.; Kim, J. Light-assisted recovery of reacted MoS<sub>2</sub> for reversible NO<sub>2</sub> sensing at room temperature. *Nanotechnology* **2019**, *30* (35), 355504.

(25) Li, H.-Y.; Yoon, J.-W.; Lee, C.-S.; Lim, K.; Yoon, J.-W.; Lee, J.-H. Visible light assisted NO<sub>2</sub> sensing at room temperature by CdS nanoflake array. *Sens. Actuators, B* **2018**, *255*, 2963-2970.

(26) Lim, K.; Jo, Y.-M.; Yoon, J.-W.; Kim, J.-S.; Lee, D.-J.; Moon, Y. K.; Yoon, J. W.; Kim, J.-H.; Choi, H. J.; Lee, J.-H. A Transparent Nanopatterned Chemiresistor: Visible-Light Plasmonic Sensor for Trace-Level NO<sub>2</sub> Detection at Room Temperature. *Small* **2021**, *17* (20), 2100438.

(27) Liu, D.; Tang, Z.; Zhang, Z. Visible light assisted room-temperature NO<sub>2</sub> gas sensor based on hollow SnO<sub>2</sub>@SnS<sub>2</sub> nanostructures. *Sens. Actuators, B* **2020**, *324*, 128754.

(28) Niu, Y.; Zeng, J.; Liu, X.; Li, J.; Wang, Q.; Li, H.; de Rooij, N. F.; Wang, Y.; Zhou, G. A Photovoltaic Self-Powered Gas Sensor Based on All-Dry Transferred MoS<sub>2</sub>/GaSe Heterojunction for ppb-Level NO<sub>2</sub> Sensing at Room Temperature. *Adv. Sci.* **2021**, *8* (14), 2100472.

(29) Sreedhar, A.; Reddy, I. N.; Ta, Q. T. H.; Doan, T. H. P.; Shim, J.; Noh, J.-S. Unveiling the impact of interfacially engineered selective  $V_2O_5$  nanobelt bundles with flake-like ZnO and Co-ZnO thin films for multifunctional visible-light water splitting and toxic gas sensing. *J. Power Sources* **2020**, *478*, 229081.

(30) Sun, Q.; Li, Y.; Hao, J.; Zheng, S.; Zhang, T.; Wang, T.; Wu, R.; Fang, H.; Wang, Y. Increased Active Sites and Charge Transfer in the SnS<sub>2</sub>/TiO<sub>2</sub> Heterostructure for Visible-Light-Assisted NO<sub>2</sub> Sensing. *ACS Appl. Mater. Interfaces* **2021**, *13* (45), 54152-54161.

(31) Vijjapu, M. T.; Surya, S. G.; Yuvaraja, S.; Zhang, X.; Alshareef, H. N.; Salama, K. N. Fully Integrated Indium Gallium Zinc Oxide NO<sub>2</sub> Gas Detector. *ACS Sens.* **2020**, *5* (4), 984-993.

(32) Wang, H.; Bai, J.; Dai, M.; Liu, K.; Liu, Y.; Zhou, L.; Liu, F.; Liu, F.; Gao, Y.; Yan, X.; et al. Visible light activated excellent NO<sub>2</sub> sensing based on 2D/2D ZnO/g-C<sub>3</sub>N<sub>4</sub> heterojunction composites. *Sens. Actuators, B* **2020**, *304*, 127287.

(33) Wang, J.; Fan, S.; Xia, Y.; Yang, C.; Komarneni, S. Room-temperature gas sensors based on ZnO nanorod/Au hybrids: Visible-light-modulated dual selectivity to NO<sub>2</sub> and NH<sub>3</sub>. *J. Hazard. Mater.* **2020**, *381*, 120919.

(34) Wang, J.; Hu, C.; Xia, Y.; Komarneni, S. Highly sensitive, fast and reversible NO<sub>2</sub> sensors at room-temperature utilizing nonplasmonic electrons of ZnO/Pd hybrids. *Ceram. Int.* **2020**, *46* (6), 8462-8468.

(35) Wang, T.; Yu, Q.; Zhang, S.; Kou, X.; Sun, P.; Lu, G. Rational design of 3D inverse opal heterogeneous composite microspheres as excellent visible-light-induced NO<sub>2</sub> sensors at room temperature. *Nanoscale* **2018**, *10* (10), 4841-4851.

(36) Wang, X.-X.; Li, H.-Y.; Guo, X. Flexible and transparent sensors for ultra-low NO2 detection at room

temperature under visible light illumination. J. Mater. Chem. A 2020, 8 (29), 14482-14490.

(37) Xia, Y.; He, S.; Wang, J.; Zhou, L.; Wang, J.; Komarneni, S. MXene/WS<sub>2</sub> hybrids for visible-light-activated NO<sub>2</sub> sensing at room temperature. *Chem. Commun.* **2021**, *57* (72), 9136-9139.

(38) Xia, Y.; Hu, C.; Guo, S.; Zhang, L.; Wang, M.; Peng, J.; Xu, L.; Wang, J. Sulfur-Vacancy-Enriched MoS<sub>2</sub> Nanosheets Based Heterostructures for Near-Infrared Optoelectronic NO<sub>2</sub> Sensing. *ACS Appl. Nano Mater.* 2020, *3* (1), 665-673.

(39) Yang, F.; Zheng, Z.; Lin, Z.; Wang, B.; Liu, P.; Yang, G. Visible-light-driven room-temperature gas sensor based on carbyne nanocrystals. *Sens. Actuators, B* **2020**, *316*, 128200.

(40) Yang, Z.; Guo, L.; Zu, B.; Guo, Y.; Xu, T.; Dou, X. CdS/ZnO Core/Shell Nanowire-Built Films for Enhanced Photodetecting and Optoelectronic Gas-Sensing Applications. *Adv. Optical Mater.* **2014**, *2* (8), 738-745.

(41) Deng, W.-H.; He, L.; Chen, E.-X.; Wang, G.-E.; Ye, X.-L.; Fu, Z.-H.; Lin, Q.; Xu, G. Crystalline microporous small molecule semiconductors based on porphyrin for high-performance chemiresistive gas sensing. *J. Mater. Chem. A* **2022**, *10* (24), 12977-12983.