Formal synthesis of kibdelomycin and derivatisation of amycolose

glycosides

Manuel Georg Schriefer^a, Laura Treiber^a, Rainer Schobert^a,*

^a Organic chemistry laboratory, University of Bayreuth, Universitaetsstr. 30, 95447 Bayreuth, Germany.

Supporting Information

Table of contents

1.	Gen	eral information
2.	Exp	erimental procedure
	2.1	Synthesis of amycolose fragment 4
	2.2	Synthesis of pyrrole carboxylic acid 31 15
	2.3	Failed routes to amycolose derivative 4
	2.4	Synthesis of sugar 43 – derivatization of amycolose
	2.5	Synthesis of decalin fragment 5
	2.6	Failed routes to the decalin
	2.7	Synthesis of reagents for the decalin fragment
	2.8	Synthesis of glycosides 62a and 62b
	2.9	Synthesis of 3-acyltetramic acid 61
	2.10	Synthesis of acid 59
	2.11	Synthesis of glycoside 65 for the formal synthesis71
	2.12	Failed routes to amykitanose75
	2.13	Synthesis amykitanose (13)
	2.14	Alternative formal synthesis of kibdelomycin (1)
3. References		
4. NMR-Spectra		

1. General information

Melting points were determined with a Büchi M-565 melting point apparatus and are uncorrected. IR spectra were recorded with a PerkinElmer Spectrum 100 FT-IR spectrophotometer (PerkinElmer, Rodgau, Germany) with ATR sampling unit. Optical rotations were measured at 589 nm (Na-D line) on a PerkinElmer 241 polarimeter (PerkinElmer, Rodgau, Germany); $[\alpha]_D^{20}$ (c g/100mL, solvent) values are given in 10⁻¹ deg cm² g⁻¹. High resolution mass spectra were obtained with a UPLC/Orbitrap MS system in ESI mode (ThermoFisher Scientific, Bremen, Germany). NMR spectra were recorded with a Bruker Avance III HD 500 spectrometer (¹H NMR: 500 MHz and ¹³C NMR: 125 MHz) (Bruker, Karlsruhe, Germany). Chemical shifts are given in parts per million, relative to the residual solvent peak as an internal standard and coupling constants (J) are quoted in Hz. Most tetramic acids were measured in CDCl₃ and in CD₃OD. In the latter they usually exist as a single (enol) tautomer. Quaternary C-atoms of tetramic acids were sometimes difficult to spot in JMOD or ¹³C NMR spectra. For these, more signals cropped up in HMBC and/or HSQC correlation spectra and were considered for peak assignment. In CDCl3 solution, signals of virtually all Catoms of tetramic acids were visible yet split up in multiple, difficult to assign sets for individual tautomers both in ¹H and JMOD/¹³C NMR spectra. In line with literature, we assume the tautomers with exocyclic C-C double bond as drawn for the 3-acyltetramic acids in scheme S10, to be the major tautomer.¹ For the purification of synthetic products, chromatography silica gel 60 (40-63 µm) or silica gel RP18 (40-63 µm) were used. Analytical thin layer chromatography (TLC) was carried out using Merck silica gel 60 F254 pre-coated aluminumbacked plates. Analytical HPLC was performed on a Shimadzu Nexera XR (Shimadzu GmbH, Duisburg, Germany) using a Knauer Eurospher II C18-column (150 × 4 mm) (Knauer GmbH, Berlin, Germany). Enantiomeric excess was determined by HPLC analysis (Waters Alliance HPLC; Waters 2695 Separation Module, Waters 2487 Dual λ Absorbance Detector) on chiral phase (Daicel Chiralpak OD3). All reagents were purchased from commercial sources and were used without further purification. All anhydrous solvents were used as supplied, except which tetrahydrofuran, 1,4-dioxane and toluene were freshly distilled over sodium/benzophenone, dichloromethane (CH₂Cl₂) which was freshly distilled over CaH₂, dimethylformamide (DMF) which was dried over molecular sieves (3 Å), and methanol (MeOH) which was freshly distilled over Mg. Moisture or air sensitive reactions were routinely carried out in oven-dried glassware under an argon atmosphere using standard Schlenk technique.

2. Experimental procedure

2.1 Synthesis of amycolose fragment 4

Scheme S1. Synthesis of amycolose derivate **4** starting from benzylated D-mannose **9**. a) BDMA, CSA, CHCl₃, 80 °C, 6.5 h; b) *n*BuLi, THF, -78 °C $\rightarrow -35$ °C, 3.75 h; c) VinylMgBr, THF, -78 °C, 3 h; d) *m*CPBA, CH₂Cl₂, rt, 22 h; e) LiAlH₄, THF, 0 °C \rightarrow rt, 2.5 h; f) SOCl₂, NEt₃, CH₂Cl₂, 0 °C, 3 h, g) NaIO₄, RuCl₃·xH₂O, MeCN, rt, 7 h; h) 1. NaN₃, DMF, 65 °C, 6.75 h, 2. Citric acid buffer, EtOAc, 45 °C, 15 h, 3. Citric acid, 3.5 h; i) LiAlH₄, THF, 0 °C \rightarrow rt, 1.75 h; j) Tf₂O, pyridine, CH₂Cl₂, -78 °C \rightarrow 0 °C, 1.25 h; k) NaN₃, NH₄Cl, MeOH, 80 °C, 12 h; l) TIPST, DTBP, *n*-octane, 140 °C, 6.75 h; m) LiAlH₄, THF, 0 °C \rightarrow rt, 16 h; o) BCl₃, CH₂Cl₂, -80 °C, 40 min.

(2*R*,4a*R*,6*S*,8a*R*)-6-(Benzyloxy)-2-phenyltetrahydropyrano[3,2-*d*][1,3]dioxin-8(4*H*)-one (21)

Benzylated mannose (9, 5.50 g, 20.3 mmol, 1.00 eq.) was solved in CHCl₃ (100 mL) and BDMA (7.02 mL, 46.8 mmol, 2.30 eq.) and CSA (709 mg, 3.05 mmol, 0.15 eq.) was added. The solution was heated at 80 $^{\circ}$ C and the vapor condensed in another flask. The reaction flask was

refilled every hour with CHCl₃ (ca. 50 mL) and stirred at 80 °C for 6.5 h. The solution was poured into sat. aq. NaHCO₃ solution (200 mL) and extracted with CH₂Cl₂ (3×200 mL). The

combined organic phases were washed with sat. aq. NaHCO₃ solution (3×150 mL) and brine (150 mL), dried over Na₂SO₄ and evaporated. The bis-acetal **20** (7.97 g, quant.) was immediately used without further purification for the next step. It was isolated as a diastereomeric mixture. **R**_f = 0.38 (hexanes/EtOAc 6:1); ¹**H-NMR** (500 MHz, CDCl₃) δ 7.56-7.29 (m, 15H), 6.29 (s, 0.60H), 5.96 (s, 0.31H), 5.65 (s, 0.61H), 5.53 (s, 0.32H), 5.28 (s, 0.31H), 5.22 (s, 0.60H), 4.78-4.49 (m, 3H), 4.38-4.19 (m, 2H), 3.94-3.72 (m, 3H) ppm; **HRMS** ESI *m/z* [M + H]⁺ calcd. for C₂₇H₂₇O₆ 447.18022, found 447.17924.

The raw bis-acetal **20** (7.97 g, 20.3 mmol, 1.00 eq) solved in dry THF (190 mL) at -78 °C under argon atmosphere and was treated with *n*BuLi (2.5M hexanes, 24.4 mL, 2.60 eq.) over 15 minutes. The solution was stirred at -78 °C for 3 h and at -35 °C for 30 min. Sat. aq. NH₄Cl-solution

(100 mL) was added and the organic phase was removed by rotary evaporation. The resulting yellow solid was collected by filtration, washed with water (50 mL), crushed, and washed with *n*-pentane (50 mL). The pale yellow solid ketone **21** (5.48 g, 78% over two steps) was dried at the rotary evaporator and was pure enough for the next step. $\mathbf{R}_{\mathbf{f}} = 0.47$ (hexanes/EtOAc 3:2); **mp** 122 °C (decomposition); $[\alpha]_D^{20} + 81.8^\circ$ (c 1.0 in CHCl₃); **IR** v_{max} /cm⁻¹ 3069 (w), 3032 (w), 2932 (w), 2869 (w), 1733 (w), 1454 (m), 1379 (m), 1267 (m), 1214 (m), 1129 (s), 1093 (s), 1018 (s); ¹**H-NMR** (500 MHz, CDCl₃) δ 7.51 (m, 2H), 7.39-7.30 (m, 8H), 5.59 (s, 1H), 5.33 (d, 1H, J = 4.8 Hz), 4.72 (d, 1H, J = 12.2 Hz), 4.55 (d, 1H, J = 12.2 Hz), 4.32 (m, 2H), 4.22 (dt, 1H, J = 4.8, 10.0 Hz), 3.91 (t, 1H, J = 10.1 Hz), 2.86 (ddd, 1H, J = 1.2, 4.9, 14.7 Hz), 2.72 (dd, 1H, J = 0.9, 14.7 Hz) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 197.7, 136.8, 136.6, 129.5, 128.7, 128.5, 128.2, 128.1, 126.6, 102.3, 98.8, 83.3, 69.6, 69.5, 65.5, 46.5 ppm; **HRMS** ESI m/z [M + Na]⁺ calcd. for C₂₀H₂₀O₅Na 363.12029, found 363.11918.

(2*R*,4a*R*,6*S*,8*R*,8a*R*)-6-(Benzyloxy)-2-phenyl-8-vinylhexahydropyrano[3,2-*d*][1,3]dioxin-8-ol (22)

Ketone **21** (213 mg, 626 μ mol, 1.00 eq.) was solved in dry THF (6.3 mL) under argon atmosphere at -78 °C. VinylMgBr (1M THF, 1.88 mL, 1.88 mmol, 3.00 eq.) was slowly dropped into the solution which was

stirred for 3 h at -78 °C. Sat. aq. NH₄Cl solution (30 mL) and H₂O (30 mL) were added, and the aqueous phase was extracted with EtOAc (3×50 mL). The combined organic phases were washed with brine (50 mL), dried over Na₂SO₄, and evaporated. The crude allyl alcohol **22** was

purified by column chromatography (SiO₂, pentane/EtOAc 4:1). The alcohol **22** (192 mg, 83%) was obtained as colourless solid. **R**_f = 0.82 (hexanes/EtOAc 3:2); **mp** 109.6 °C; $[\alpha]_D^{20}$ +139.7° (c 1.0 in CHCl₃); **IR** ν_{max} /cm⁻¹ 3518 (br. w), 3067 (w), 3033 (w), 2968 (w), 2933 (w), 2863 (w), 1455 (m), 1387 (m), 1116 (s), 1089 (s), 1017 (s), 905 (s); ¹**H-NMR** (500 MHz, CDCl₃) δ 7.48 (m, 2H), 7.40-7.28 (m, 8H), 5.89 (dd, 1H, *J* = 10.8, 17.2 Hz), 5.59 (s, 1H), 5.45 (dd, 1H, *J* = 1.3, 17.2 Hz), 5.21 (dd, 1H, *J* = 1.3, 10.8 Hz), 5.00 (dd, 1H, *J* = 1.2, 3.7 Hz), 4.79 (d, 1H, *J* = 12.0 Hz), 4.56 (d, 1H, *J* = 12.0 Hz), 4.28 (m, 2H), 4.22 (dt, 1H, *J* = 4.8, 10.0 Hz), 3.78 (m, 1H), 3.59 (d, 1H, *J* = 9.3 Hz), 3.56 (s, 1H), 2.05 (dd, 1H, *J* = 1.3, 14.8 Hz), 2.01 (dd, 1H, *J* = 3.8, 14.8 Hz) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 140.5, 137.5, 137.0, 129.0, 128.7, 128.3, 128.2, 128.2, 126.3, 115.3, 102.0, 96.4, 82.3, 71.0, 69.7, 69.4, 60.0, 40.4 ppm; **HRMS** ESI *m/z* [M + Na]⁺ calcd. for C₂₂H₂₄O₅Na 391.15160, found 391.15074.

(2*R*,4a*R*,6*S*,8*R*,8a*R*)-6-(Benzyloxy)-8-((*S*)-oxiran-2-yl)-2-phenylhexahydropyrano[3,2*d*][1,3]dioxin-8-ol (23) and (2*R*,4a*R*,6*S*,8*R*,8a*R*)-6-(benzyloxy)-8-((*R*)-oxiran-2-yl)-2phenylhexahydropyrano[3,2-*d*][1,3]dioxin-8-ol (24)

To a solution of allylalcohol **22** (50 mg, 136 μ mol, 1.00 eq.) in CH₂Cl₂ at room temperature was added MCPBA (58.5 mg, 339 μ mol, 2.50 eq.). The solution was stirred for 22 h and sat. aq. Na₂S₂O₃ solution (2 mL)

and sat. aq. NaHCO₃ solution (2 mL) was added. The mixture was extracted with EtOAc (3×15 mL), the combined organic phases were washed with 10% K₂CO₃ solution (15 mL) and brine (15 mL), dried over Na₂SO₄ and evaporated. The diastereomeric mixture was separated by SiO₂ column chromatography (pentane/EtOAc 5:1 to 2:1). The optical pure epoxides **24** (37 mg, 71%) and **23** (9 mg, 17%) were isolated as colourless crystalline solids. **24**: **R**_f = 0.39 (hexanes/EtOAc 2:1); **mp** 113.9 °C; $[\alpha]_D^{20}$ +99.0° (c 1.0 in CHCl₃); **IR** *v*_{max}/cm⁻¹ 3507 (br. w), 3067 (w), 3035 (w), 2934 (w), 2864 (w), 1455 (m), 1388 (m), 1099 (s), 1018 (s), 905 (s); ¹**H**-**NMR** (500 MHz, CDCl₃) δ 7.49 (m, 2H), 7.39-7.28 (m, 8H), 5.65 (s, 1H), 5.06 (d, 1H, *J* = 3.5 Hz), 4.76 (d, 1H, *J* = 11.9 Hz), 4.54 (d, 1H, *J* = 11.9 Hz), 4.33 (dd, 1H, *J* = 5.1, 10.2 Hz), 4.23 (dt, 1H, *J* = 5.1, 10.0 Hz), 3.82 (t, 1H, *J* = 10.0 Hz), 3.69 (d, 1H, *J* = 9.6 Hz), 3.63 (s, 1H), 3.16 (dd, 1H, *J* = 2.7, 4.1 Hz), 2.90 (dd, 1H, *J* = 4.0, 14.7 Hz) pm; ¹³C-**NMR** (125 MHz, CDCl₃) δ 137.4, 136.7, 129.1, 128.7, 128.3, 128.3, 128.2, 126.3, 102.0, 96.6, 80.6, 69.8, 69.4, 68.9, 59.6, 54.3, 43.8, 35.8 pm; **HRMS** ESI *m*/*z* [M + Na]⁺ calcd. for C₂₂H₂₄O₆Na 407.14651,

found 407.14562. **23**: $\mathbf{R}_{\mathbf{f}} = 0.32$ (hexanes/EtOAc 2:1); **mp** 120.6 °C; $[\alpha]_D^{20} +58.7^\circ$ (c 0.6 in CHCl₃); **IR** ν_{max} /cm⁻¹ 3506 (br. w), 3067 (w), 3035 (w), 2975 (w), 2931 (w), 2864 (w), 1455 (m), 1386 (w), 1119 (s), 1096 (s), 1025 (s) 911 (m); ¹**H-NMR** (500 MHz, CDCl₃) δ 7.49 (m, 2H), 7.40-7.16 (m, 8H), 5.63 (s, 1H), 4.99 (d, 1H, J = 4.4 Hz), 4.77 (d, 1H, J = 12.2 Hz), 4.58 (d, 1H, J = 12.2 Hz), 4.28 (m, 2H), 3.77 (m, 1H), 3.62 (m, 1H), 3.23 (s, 1H), 3.02 (dd, 1H, J = 2.7, 4.1 Hz), 2.90 (dd, 1H, J = 2.7, 5.2 Hz), 2.69 (dd, 1H, J = 4.1, 5.2 Hz), 2.04 (dd, 1H, J = 1.1, 14.9 Hz), 1.97 (dd, 1H, J = 0.8, 14.9 Hz) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 137.3, 137.2, 129.1, 128.7, 128.4, 128.3, 128.1, 126.2, 101.7, 95.8, 80.5, 69.6, 69.3, 68.5, 59.2, 55.9, 43.7, 37.2 ppm; **HRMS** ESI m/z [M + Na]⁺ calcd. for C₂₂H₂₄O₆Na 407.14651, found 407.14557.

(2R,4aR,6S,8R,8aR)-8-((S)-1-Azidoethyl)-6-(benzyloxy)-2-phenylhexahydropyrano[3,2d][1,3]dioxin-8-ol (7)

LiAlH₄ (128 mg, 3.38 mmol, 2.00 eq.) was suspended in dry THF (14 mL) at 0 °C under argon atmosphere and epoxide **24** (649 mg, 1.69 mmol, 1.00 eq) in dry THF (20 mL) was added dropwise. The

solution was stirred at 0 °C for 30 min and at room temperature for 2 h. AcMe (1.7 mL) was added, the solution stirred for 5 min, poured into a mixture of EtOAc (20 mL) and sat. aq. Na,K-tartrate solution (300 mL) and stirred for 2 h. The aqueous phase was separated and extracted with EtOAc (3×100 mL). The organic phases were washed with brine (100 mL), dried over Na₂SO₄ and the solvent removed in vacuo. Alcohol **27** (669 mg, quant.) was obtained as colourless resin and used without further purification in the next step. **R**_f = 0.55 (hexanes/EtOAc 1:1); $[\alpha]_{D}^{20}$ +81.5° (c 0.9 in CHCl₃); **IR** ν_{max} /cm⁻¹ 3500 (br. w), 3067 (w), 3032 (w), 2971 (w), 2934 (w), 2873 (w), 1455 (m), 1397 (m), 1095 (s), 1078 (s), 1014 (s); ¹**H-NMR** (500 MHz, CDCl₃) δ 7.49 (m, 2H), 7.40-7.12 (m, 8H), 5.62 (s, 1H), 5.06 (t, 1H, *J* = 2.7 Hz), 4.77 (d, 1H, *J* = 12.0 Hz), 4.55 (d, 1H, *J* = 12.0 Hz), 4.31 (dd, 1H, *J* = 5.1, 10.0 Hz), 4.24 (dt, 1H, *J* = 5.1, 9.8 Hz), 3.94 (qn, 1H, *J* = 6.4 Hz), 3.87 (d, 1H, *J* = 6.5 Hz) ppm; ¹³C-**NMR** (125 MHz, CDCl₃) δ 137.5, 137.0, 129.2, 128.7, 128.4, 128.3, 128.2, 126.3, 101.9, 97.0, 79.0, 72.3, 69.7, 69.5, 69.0, 59.6, 34.1, 17.5 ppm; **HRMS** ESI *m/z* [M + Na]⁺ calcd. for C₂₂H₂₆O₆Na 409.16216, found 409.16121.

Fig. S1. 1 H-NMR-spectrum of (S)-33. (S)-Mosher ester of 27.

Fig. S2. ¹H-NMR-spectrum of (R)-33. (R)-Mosher ester of 27.

The stereogenic centre of the secondary alcohol in **27** was determined by Mosher ester method. Comparison of the ¹H-NMR-spectra of (*S*)-**33** (fig. S1) and (*R*)-**33** (fig. S1) indicated the secondary alcohol to be (*R*)-configurated. Exact $\Delta\delta^{SR} = \delta^{S} - \delta^{R}$ -values are shown in Figure 1 (main manuscript). The stereogenic determination was made by standard procedure. To a solution of diol **27** (654 mg, 1.69 mmol, 1.00 eq.) and dest. dry NEt₃ (1.06 mL, 7.61 mmol, 4.50 eq.) in dry CH₂Cl₂ (16.9 mL) under argon atmosphere was added SOCl₂ (307 μ L, 4.23 mmol, 2.50 eq.) at 0 °C. The solution was stirred at 0 °C for 3 h and sat aq. NH₄Cl solution (25 mL) was

mixed by. The aqueous phase was extracted with EtOAc (4×25 mL) and the combined organic phases were washed with sat. aq. NH₄Cl solution (2×20 mL), sat. aq. NaHCO₃ solution (20 mL) and brine (20 mL). The solution was dried over Na₂SO₄, evaporated and the raw sulfite **28** (774 mg, quant.) used without purification. $\mathbf{R_f} = 0.50$ (hexanes/EtOAc 1:1); $[\alpha]_D^{20} - 10.8^{\circ}$ (c 1.0 in CHCl₃); **IR** v_{max} /cm⁻¹ 3065 (w), 3030 (w), 2980 (w), 2932 (w), 2870 (w), 1455 (m), 1386 (m), 1207 (s) 1101 (s), 1026 (s), 911 (s), 878 (s); ¹**H-NMR** (500 MHz, CDCl₃) δ 7.65-7.27 (m, 10H), 5.64 (s, 0.28H), 5.58 (s, 0.72H), 4.98 (m, 1H), 4.78 (m, 1H), 4.69 (q, 0.75H, J = 6.5 Hz) 4.56 (m, 1H), 4.37-4.27 (m, 1.30H), 4.23 (m, 1H), 3.80-3.66 (m, 1.58H), 3.58 (d, 0.73H, J = 9.4 Hz), 2.29 (d, 0.73H, J = 14.8 Hz), 2.10 (m, 1H), 1.95 (dd, 0.29H, J = 4.7, 14.8 Hz), 1.61 (d, 0.81H, J = 6.6 Hz), 1.55 (d, 2.13H, J = 6.5 Hz) ppm; major diastereomer: ¹³C-NMR (125 MHz, CDCl₃) δ 137.5, 137.0, 129.3, 128.6, 128.4, 127.8, 127.8, 126.1, 101.1, 94.8, 87.5, 80.9, 77.0, 69.4, 69.2, 58.7, 37.3, 13.7 ppm; minor diastereomer: ¹³C-NMR (125 MHz, CDCl₃) δ 137.4, 137.1, 129.1, 128.6, 128.4, 128.0, 126.7, 101.9, 94.9, 85.0, 85.0, 77.1, 69.5, 69.3, 59.6, 39.4, 16.1 ppm; **HRMS** ESI m/z [M + Na]⁺ calcd. for C₂₂H₂₄O₇SNa 455.11349, found 455.11272.

The sulfite **28** (724 mg, 1.58 mmol, 1.00 eq.) was solved in MeCN (9 mL)/H₂O (4.5 mL) at room temperature and NaIO₄ (355 mg, 1.66 mmol, 1.05 eq.) and RuCl₃·xH₂O (16 mg, 79.0 μ mol, 5 mol%) were added. The mixture was stirred at room temperature for 7 h, sat. aq.

Na₂S₂O₃ solution (40 mL) was added and extracted with EtOAc (3×50 mL). The combined organic phases were washed with brine (50 mL), dried over Na₂SO₄, and evaporated. The crude sulfate **29** (678 mg, 96%) was pure enough for the next step without purification. **R**_f = 0.34 (hexanes/EtOAc 1:1); $[\alpha]_D^{20}$ +74.1° (c 1.0 in CHCl₃); **IR** ν_{max} /cm⁻¹ 3069 (w), 3033 (w), 2926 (w), 2871 (w), 1455 (m), 1380 (s), 1208 (s), 1130 (m), 1105 (s), 1026 (s); ¹**H-NMR** (500 MHz, CDCl₃) δ 7.55 (m, 2H), 7.41-7.27 (m, 8H), 5.62 (s, 1H), 4.97 (d, 1H, *J* = 4.7 Hz), 4.75 (d, 1H, *J* = 12.4 Hz), 4.71 (q, 1H, *J* = 6.5 Hz), 4.54 (d, 1H, *J* = 12.4 Hz), 4.30 (dt, 1H, *J* = 5.2, 9.9 Hz), 4.23 (dd, 1H, *J* = 5.2, 10.4 Hz), 3.74 (t, 1H, *J* = 10.4 Hz), 3.71 (d, 1H, *J* = 9.9 Hz), 2.33 (d, 1H, *J* = 15.1 Hz), 1.98 (dd, 1H, *J* = 4.7, 15.1 Hz), 1.25 (d, 3H, *J* = 6.5 Hz) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 137.2, 136.7, 129.4, 128.6, 128.5, 128.0, 127.9, 126.4, 101.7, 94.5, 88.6, 83.7,

77.0, 69.5, 69.4, 69.1, 58.8, 37.5, 13.6 ppm; **HRMS** ESI m/z [M + H]⁺ calcd. for C₂₂H₂₅O₈S 449.12646, found 449.12551.

A solution of sulfate **29** (640 mg, 1.43 mmol, 1.00 eq.) in dry DMF (7.1 mL) under argon atmosphere was treated with NaN₃ (464 mg, 7.14 mmol, 5.00 eq.) and stirred at 65 °C for 6.75 h. The resulting sodium sulfate was hydrolyzed by adding pH 4.5 citrate-buffer (50 mL) and

EtOAc (20 mL) and stirring at 45 °C for 15 h. Further citric acid (5 g) was added and stirring at 45 °C was continued for 3.5 h. The mixture was extracted with EtOAc (4×50 mL) and the combined organic phases were washed with sat. aq. NaHCO₃ solution (50 mL), H₂O (50 mL) and brine (50 mL), dried over Na₂SO₄ and concentrated. Column chromatography (SiO₂, pentane/EtOAc 6:1) led to azide 7 (370 mg, 63%; 61% over 4 steps) as colourless solid. **R**_f = 0.38 (hexanes/EtOAc 4:1); **mp** 86.3 °C; $[\alpha]_D^{20}$ +106.3° (c 1.0 in CHCl₃); **IR** ν_{max} /cm⁻¹ 3504 (br. m), 3069 (w), 3037 (w), 2980 (w), 2934 (w), 2872 (w), 2092 (br. s), 1455 (m), 1402 (m), 1264 (m), 1117 (s), 1096 (s), 1019 (s); ¹**H-NMR** (500 MHz, CDCl₃) δ 7.51 (m, 2H), 7.41-7.18 (m, 8H), 5.59 (s, 1H), 5.09 (d, 1H, *J* = 3.8 Hz), 4.78 (d, 1H, *J* = 11.9 Hz), 4.56 (d, 1H, *J* = 11.9 Hz), 4.34 (dd, 1H, *J* = 5.1, 10.2 Hz), 3.64 (d, 1H, *J* = 5.1, 9.8 Hz), 4.08 (s, 1H), 3.84 (q, 1H, *J* = 6.9 Hz), 3.80 (t, 1H, *J* = 10.2 Hz), 3.64 (d, 1H, *J* = 9.5 Hz), 2.06 (d, 1H, *J* = 14.8 Hz), 1.94 (dd, 1H, *J* = 4.0, 14.8 Hz), 1.27 (d, 3H, *J* = 6.9 Hz) ppm; ¹³C-NMR (125 MHz, CDCl₃) δ 137.3, 136.6, 129.2, 128.8, 128.4 (2 signals), 128.3, 126.3, 101.9, 97.0, 79.9, 73.8, 69.9, 69.4, 62.4, 59.7, 35.0, 15.0 ppm; **HRMS** ESI *m*/z [M + Na]⁺ calcd. for C₂₂H₂₅O₅N₃Na 434.16864, found 434.16775.

(2*R*,4a*R*,6*S*,8*R*,8a*R*)-6-(Benzyloxy)-8-((*S*)-1-hydroxyethyl)-2-phenylhexahydropyrano-[3,2-*d*][1,3]dioxin-8-ol (25)

Epoxide **23** (475 mg, 1.24 mmol, 1.00 eq.) in dry THF (5 mL) was added to a suspension of LiAlH₄ (93.7 mg, 2.47 mmol, 2.00 eq.) in dry THF (20 mL) under argon atmosphere at 0 °C. The solution was stirred at 0 °C for 5 min and at room temperature for 1.75 h. EtOAc (15 mL) was added,

the mixture stirred for 5 min and poured into Na,K-tartrate solution (150 mL). After stirring for 40 min the mixture was extracted with EtOAc (3×75 mL). The combined organic phases were washed with brine (75 mL), dried over Na₂SO₄ and evaporated. After column chromatography (SiO₂, pentane/EtOAc 4:1) the diol **25** (462 mg, 97%) was obtained as colourless resin. **R**_f =

0.46 (hexanes/EtOAc 1:1); $[\alpha]_D^{20}$ +121.8° (c 1.0 in CHCl₃); **IR** v_{max} /cm⁻¹ 3499 (br. m), 3033 (w), 2975 (w), 2934 (w), 2871 (w), 1455 (m), 1397 (m), 1101 (s), 1018 (s); ¹H-NMR (500 MHz, CDCl₃) δ 7.47 (m, 2H), 7.39-7.16 (m, 8H), 5.59 (s, 1H), 5.07 (d, 1H, J = 3.8 Hz), 4.78 (d, 1H, J = 12.0 Hz), 4.56 (d, 1H, J = 12.0 Hz), 4.31 (dd, 1H, J = 5.1, 10.2 Hz), 4.24 (dt, 1H, J = 5.1, 9.8 Hz), 4.06 (q, 1H, J = 6.5 Hz), 3.92 (s, 1H), 3.78 (t, 1H, J = 10.1 Hz), 3.64 (d, 1H, J = 9.4 Hz), 2.74 (s, 1H), 2.08 (dd, 1H, J = 1.0, 14.7 Hz), 1.82 (dd, 1H, J = 4.2, 14.7 Hz), 1.25 (d, 3H, J = 6.5 Hz) ppm; ¹³C-NMR (125 MHz, CDCl₃) δ 137.2, 136.8, 129.3, 128.7, 128.4, 128.3 (2 signals), 126.3, 102.0, 96.9, 81.3, 72.9, 70.2, 69.8, 69.5, 59.6, 34.0, 16.0 ppm; **HRMS** ESI m/z [M + Na⁺] calcd. for C₂₂H₂₆O₆Na 409.16216, found 409.16120.

(2R,2'R,3R,4a'R,6'S,8a'R)-6'-(Benzyloxy)-3-methyl-2'-phenyltetrahydro-4'H-spiro-[oxirane-2,8'-pyrano[3,2-d][1,3]dioxine] (26)

To a solution of diol **25** (100 mg, 259 μ mol, 1.00 eq.) in dry CH₂Cl₂ (2 mL) and pyridine (200 μ L) under argon atmosphere at -78 °C was added Tf₂O (87.1 μ L, 518 μ mol, 2.00 eq.). The solution was stirred at 0 °C for 1.25 h. Sat. aq. NaHCO₃ solution(20 mL) and NaHCO₃ (solid,

1 g) was mixed by and stirred for 30 min at room temperature. The emulsion was extracted with CH₂Cl₂ (3×20 mL). After washing the combined organic phases with H₂O (20 mL) and brine (20 mL), they were dried over Na₂SO₄ and solvent was removed in vacuo. The pinkish white solid (105 mg, quant.) was used without further purification. **R**_f = 0.85 (hexanes/EtOAc 1:1); **mp** 142 °C; $[\alpha]_D^{20}$ +96.0° (c 1.0 in CHCl₃); **IR** *v*_{max}/cm⁻¹ 3067 (w), 3032 (w), 2968 (w), 2927 (w), 2864 (w), 1454 (m), 1384 (m), 1126 (s), 1095 (s), 1022 (s); ¹**H-NMR** (500 MHz, CDCl₃) δ 7.47-7.26 (m, 10H), 5.58 (s, 1H), 4.98 (d, 1H, *J* = 4.2 Hz), 4.78 (d, 1H, *J* = 12.3 Hz), 4.57 (d, 1H, *J* = 12.3 Hz), 4.30 (dt, 1H, *J* = 5.0, 9.9 Hz), 4.24 (d, 1H, *J* = 5.0, 10.3 Hz), 4.05 (d, 1H, *J* = 9.5 Hz), 3.77 (t, 1H, *J* = 10.3 Hz), 2.86 (q, 1H, *J* = 5.7 Hz), 2.37 (dd, 1H, *J* = 4.2, 14.8 Hz), 1.60 (dd, 1H, *J* = 0.7, 14.8 Hz), 1.54 (d, 3H, *J* = 5.7 Hz) ppm; ¹³C-NMR (125 MHz, CDCl₃) δ 137.6, 137.4, 129.0, 128.5, 128.3, 128.1, 127.8, 126.3, 101.7, 96.0, 69.8, 69.2, 61.8, 58.8, 58.3, 38.7, 14.1 ppm; **HRMS** ESI *m*/*z* [M + K⁺] calcd. for C₂₂H₂₄O₅K 407.12553, found 407.12479.

Half of the crude epoxide **26** (52.5 mg, 129 μ mol, 1.00 eq.) was suspended in MeOH (1.2 mL)/H₂O (300 μ L) and treated with NaN₃ (33.5 mg, 516 μ mol, 4.00 eq.) and NH₄Cl (13.8 mg, 258 μ mol, 2.00 eq.). The mixture was heated at 80 °C for 12 h. The volatile components were

removed by rotary evaporation and the remainder dissolved in EtOAc $(15 \text{ mL})/\text{H}_2\text{O}$ (15 mL). The aqueous phase was separated and extracted with EtOAc (2×10 mL). The combined organic phases were washed with brine (15 mL), dried over Na₂SO₄ and evaporated. The crude azide 7 was chromatographed (SiO₂, pentane/EtOAc 3:1) and the pure compound (43 mg, 81%) was obtained as colourless solid. For analytical data see prior performed synthesis of azide 7.

(2*R*,3*R*,4*R*,6*S*)-4-((*S*)-1-Azidoethyl)-6-(benzyloxy)-4-hydroxy-2-methyltetrahydro-2*H*pyran-3-yl benzoate (30)

Azide 7 (360 mg, 875 μ mol, 1.00 eq.) was placed in a sealed vessel with TIPST (187 μ L, 875 μ mol, 1.00 eq), DTBP (81.1 μ L, 438 μ mol, 0.50 eq.) and degassed *n*-octane (18 mL) under argon atmosphere. The solution was heated at 140 °C for 6.75 h, the solvent was removed in

vacuo and the remainder was chromatographed (SiO₂, pentane/EtOAc 15:1 to 12:1). The ester **30** (179 mg, 50%) was obtained as colourless solid. $\mathbf{R}_{f} = 0.59$ (hexanes/EtOAc 4:1); **mp** 90.1 °C; $[\boldsymbol{\alpha}]_{D}^{20}$ +111.7° (c 1.0 in CHCl₃); **IR** v_{max} /cm⁻¹ 3492 (br. m), 2981 (w), 2937 (w), 2912 (w), 2093 (s), 1721 (s), 1453 (m), 1267 (s), 1113 (s), 1027 (w); ¹**H-NMR** (500 MHz, CDCl₃) δ 8.11 (m, 2H), 7.60 (tt, 1H, J = 1.3, 7.4 Hz), 7.47 (m, 2H), 7.42-7.30 (m, 5H), 5.13 (d, 1H, J = 3.8 Hz), 5.01 (d, 1H, J = 9.7 Hz), 4.78 (d, 1H, J = 11.9 Hz), 4.57 (d, 1H, J = 11.9 Hz), 4.40 (s, 1H), 4.24 (dq, 1H, J = 6.4, 9.7 Hz), 3.60 (q, 1H, J = 6.9 Hz), 2.16 (dd, 1H, J = 1.0, 14.6 Hz), 1.87 (dd, 1H, J = 4.0, 14.6 Hz), 1.22 (d, 3H, J = 6.3 Hz), 1.15 (d, 3H, J = 6.9 Hz) ppm; ¹³C-**NMR** (125 MHz, CDCl₃) δ 166.1, 136.7, 133.7, 130.1, 129.5, 128.8, 128.7, 128.4, 128.3, 96.7, 75.7, 74.4, 69.9, 63.5, 62.1, 34.0, 17.5, 15.0 ppm; **HRMS** ESI m/z [M + Na]⁺ calcd. for C₂₂H₂₅O₆N₃Na 434.16864, found 434.16795.

(2*R*,3*R*,4*R*,6*S*)-4-((*S*)-1-Aminoethyl)-6-(benzyloxy)-2-methyltetrahydro-2*H*-pyran-3,4diol (6)

To a suspension of LiAlH₄ (22 mg, 583 μ mol, 3.00 eq.) in dry THF (4 mL) under argon atmosphere at 0 °C was added dropwise ester **30** (80 mg, 194 μ mol, 1.00 eq.). The solution was stirred at 0 °C for 7 h and further 17 h at room temperature. EtOAc (1 mL) was mixed by, stirred for 5 min and

poured into sat. aq. Na,K-tartrate solution (10 mL). The suspension was stirred further 2 h and extracted with EtOAc (3×40 mL). The combined organic phases were washed with brine, dried

over Na₂SO₄, and evaporated. After column chromatography (SiO₂, CH₂Cl₂/MeOH+0.5% NEt₃ 30:1 to 4:1) amine **6** (43 mg, 79%) was obtained as colourless resin. **R**_f = 0.11 (CH₂Cl₂/MeOH 4:1); $[\alpha]_D^{20}$ +108.3° (c 1.0 in CHCl₃); **IR** v_{max} /cm⁻¹ 3500-2500 (m), 3031 (m), 2970 (m), 2931 (m), 1735 (w), 1586 (m), 1455 (m), 1379 (m), 1258 (m), 1126 (s), 1064 (s), 1019 (s); ¹**H-NMR** (500 MHz, CDCl₃) δ 7.36-7.26 (m, 5H), 4.97 (d, 1H, *J* = 3.8 Hz), 4.71 (d, 1H, *J* = 11.8 Hz), 4.46 (d, 1H, *J* = 11.9 Hz), 4.09 (br. s, 4H), 3.85 (dq, 1H, *J* = 6.2, 9.4 Hz), 3.32 (d, 1H, *J* = 9.5 Hz), 3.05 (q, 1H, *J* = 6.5 Hz), 1.96 (dd, 1H, *J* = 0.8, 14.5 Hz), 1.57 (dd, 1H, *J* = 4.0, 14.5 Hz), 1.31 (d, 3H, *J* = 6.2 Hz), 1.12 (d, 3H, *J* = 6.5 Hz) ppm; ¹**H-NMR** (500 MHz, CD₃OD) δ 7.42-7.26 (m, 5H), 5.03 (d, 1H, *J* = 3.8 Hz), 4.71 (d, 1H, *J* = 11.8 Hz), 4.51 (d, 1H, *J* = 11.9 Hz), 3.88 (dq, 1H, *J* = 6.3, 9.5 Hz), 3.23 (d, 1H, *J* = 9.5 Hz), 3.18 (q, 1H, *J* = 6.7 Hz), 1.93 (dd, 1H, *J* = 1.1, 14.5 Hz), 1.70 (dd, 1H, *J* = 4.0, 14.5 Hz), 1.27 (d, 3H, *J* = 6.3 Hz), 1.08 (d, 3H, *J* = 6.8 Hz) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 137.0, 128.6, 128.2, 128.1, 96.4, 77.6, 71.7, 69.3, 65.0, 54.3, 36.0, 18.3, 17.8 ppm; ¹³**C-NMR** (125 MHz, CD₃OD) δ 138.7, 129.5, 129.2, 129.0, 98.0, 75.9, 74.5, 70.4, 66.1, 52.6, 34.4, 18.2, 16.4 ppm; **HRMS** ESI *m*/*z* [M + H]⁺ calcd. for C₁₅H₂₄O₄N 282.16998, found 282.16969.

N-((*S*)-1-((2*R*,3*R*,4*R*,6*S*)-6-(Benzyloxy)-3,4-dihydroxy-2-methyltetrahydro-2*H*-pyran-4yl)ethyl)-3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxamide (32)

A solution of amine **6** (45 mg, 160 μ mol, 1.00 eq.), carboxylic acid **31** (38.8 mg, 200 μ mol, 1.25 eq.), HOBt (30.6 mg, 200 μ mol, 1.25 eq.) and dry NEt₃ (55.8 μ L, 400 μ mol, 2.50 eq.) in dry CH₂Cl₂ (2 mL) was treated with EDC·HCl (61.3 mg, 320 μ mol, 2.00 eq.) at 0 °C under argon atmosphere. The solution was slowly warmed to room temperature over

3 h and stirred further 13 h at room temperature. The reaction was quenched with 1M HCl (2 mL) and poured into a mixture of EtOAc (40 mL) and 1M HCl (40 mL). The organic phase was separated, and the aqueous phase extracted with EtOAc (2×40 mL). The combined organic phases were washed with 1M HCl (40 mL), sat. aq. NaHCO₃ solution (2×40 mL) and brine (40 mL). After drying over Na₂SO₄, the organic phase was evaporated and chromatographed (SiO₂, CH₂Cl₂/MeOH 100:1 to 40:1). The amide **32** (61 mg, 83%) was obtained as a reddish solid foam. **R**_f = 0.74 (CH₂Cl₂/MeOH 9:1); **mp** 68.6 °C; $[\alpha]_D^{20}$ +90.5° (c 1.0 in CHCl₃); **IR** v_{max} /cm⁻¹ 3412 (br. m), 3208 (br. m), 2976 (w), 2933 (m), 1629 (s), 1532 (s), 1455 (m), 1413 (m), 1272 (m), 1126 (m), 1047 (s), 1023 (m), 759 (m); ¹H-NMR (500 MHz, CDCl₃) δ 11.00, (s, 1H), 7.40-7.28 (m, 5H), 6.93 (d, 1H, *J* = 8.8 Hz), 5.04 (d, 1H, *J* = 3.4 Hz), 4.72 (d, 1H, *J* =

11.8 Hz), 4.50 (d, 1H, J = 11.9 Hz), 4.46 (m, 1H), 4.16 (s, 1H), 3.76 (dq, 1H, J = 6.2, 9.4 Hz), 3.27 (d, 1H, J = 9.3 Hz), 2.47 (br. s, 1H), 2.25 (s, 3H), 2.02 (d, 1H, J = 14.4 Hz), 1.86 (dd, 1H, J = 3.9, 14.4 Hz), 1.34 (d, 3H, J = 6.2 Hz), 1.26 (d, 3H, J = 6.9 Hz) ppm; ¹³C-NMR (125 MHz, CDCl₃) δ 159.6, 136.7, 128.7, 128.5, 128.3, 128.2, 118.5, 111.0, 110.1, 96.3, 74.3, 73.5, 69.6, 65.7, 50.5, 35.2, 18.0, 16.4, 11.2 ppm; **HRMS** ESI m/z [M + Na]⁺ calcd. for C₂₁H₂₆O₅N₂Cl₂Na 479.11110, found 479.11029.

3,4-Dichloro-5-methyl-*N*-((1*S*)-1-((2*R*,3*R*,4*R*)-3,4,6-trihydroxy-2-methyltetrahydro-2*H*pyran-4-yl)ethyl)-1*H*-pyrrole-2-carboxamide (4)

To a solution of amide 32 (20 mg, 43.7 µmol, 1.00 eq.) in dry CH₂Cl₂ (2 mL) under argon

atmosphere was added BCl₃ (1M CH₂Cl₂, 219 μ L, 219 μ mol, 5.00 eq.) at -80 °C. The solution was stirred at -80 °C for 40 min and a few drops of H₂O were added. The emulsion was evaporated to dryness and chromatographed (SiO₂, CH₂Cl₂/MeOH 40:1 to 15:1). The anomeric mixture of amycolose derivative **4** (13 mg, 81%) was obtained as

colourless resin. $\mathbf{R}_{f} = 0.35, 0.42$ (CH₂Cl₂/MeOH 9:1); IR v_{max} /cm⁻¹ 3668-3028 (br. m), 2976 (w), 2932 (m), 1758 (w), 1706 (m), 1627 (s), 1536 (s), 1416 (m), 1377 (m), 1269 (m), 1067 (s), 1001 (m), 803 (w), 764 (w); ¹H-NMR (500 MHz, CDCl₃) δ 9.62 (s, 0.83H), 9.56 (s, 0.19H), 6.65 (d, 1H, J = 6.5 Hz), 6.21 (br. s, 0.72H), 5.64 (br. s, 0.64H), 5.23 (d, 0.81H, J = 3.5 Hz), 5.15 (dd, 0.19H, J = 2.1, 9.3 Hz), 4.41 (qn, 1H, J = 6.8 Hz), 4.00 (dq, 0.82H, J = 6.2, 9.3 Hz),3.69 (dq, 0.19H, J = 6.3, 9.2 Hz), 3.19 (d, 0.74H, J = 9.3 Hz), 3.17 (d, 0.26H, J = 9.1 Hz), 2.94-1.53 (m, 6.78H), 2.29 (s, 2.23H), 2.28 (s, 0.78H), 1.99 (dd, 0.24H, J = 2.3, 13.3 Hz), 1.95 (d, 0.95H, *J* = 1.0, 13.9 Hz), 1.70 (dd, 0.87H, *J* = 3.9, 13.9 Hz), 1.46 (dd, 0.26H, *J* = 9.3, 13.0 Hz), 1.34 (d, 3H, J = 6.2 Hz), 1.31 (d, 3H, J = 7.0 Hz) ppm; ¹H-NMR (500 MHz, CD₃OD) δ 5.21 (m, 0.75H), 5.05 (d, 0.31H, J = 2.1, 9.5 Hz), 4.37 (m, 1H), 4.05 (dq, 0.68H, J = 6.2, 9.4 Hz), 3.73 (dq, 0.30H, J = 6.2, 9.2 Hz), 3.21 (d, 0.73H, J = 9.4 Hz), 3.17 (d, 0.33H, J = 9.3 Hz), 2.23(s, 3H), 1.90 (dd, 0.73H, *J* = 1.4, 14.1 Hz), 1.88 (dd, 0.27H, *J* = 2.1, 13.3 Hz), 1.80 (dd, 0.73H, J = 3.9, 14.1 Hz), 1.53 (dd, 0.31H, J = 9.5, 13.3 Hz), 1.26 (m, 6H) ppm; ¹³C-NMR (125 MHz, $CDCl_3$) δ 161.7, 161.5, 129.3, 129.1, 117.4, 117.3, 112.6, 112.4, 111.2, 111.1, 92.9, 92.2, 77.2, 76.3, 74.1, 74.0, 70.8, 64.7, 52.6, 52.5, 37.5, 33.6, 18.2, 18.1, 16.3, 11.5, 11.5 ppm; ¹³C-NMR $(125 \text{ MHz}, \text{CD}_3\text{OD}) \delta 161.7, 161.6, 129.4, 129.4, 120.0, 120.0, 112.3, 112.2, 110.6$ 93.5, 92.9, 76.3, 76.1, 75.0, 74.7, 71.6, 65.8, 52.3, 52.0, 39.2, 35.5, 18.6, 18.5, 16.2, 10.8 ppm; **HRMS** ESI m/z [M + Na]⁺ calcd. for C₁₄H₂₀O₅N₂Cl₂Na 389.06415, found 389.06320.

 α -/ β -Anomeric ratio and signal form of OH-groups in ¹H-NMR-spectra depends on the purification method as well as solvent and pH.

Spectroscopic data corresponded to those reported in the literature.²

Trace impurities in the NMR-spectra of the compounds in the amycolose-sequence can result from the formation of different α -/ β -anomers best observed in the ¹H-NMR at the anomeric and benzylic position as shown below (fig. S3). The amount of the wrong anomer in the synthesis sequence depends on the purity of the benzyl α -D-mannopyranoside (9) as starting material but has no influence on the (diastereoselective) reactions.

Fig. S3. Comparison of the anomeric (left) and benzylic (right) position of ketone **21** in the ¹H-NMR-spectra with different pure starting materials. The upper spectra show a α/β -ratio of ca. 9:1, while the others show 100% α .

Scheme S2. Synthesis of pyrrole carbonic acid 31. Reagents and conditions: a) NaOH, ethylene glycol, N₂H₄·xH₂O, 210 °C, 2.5 h; b) trichloroacetyl chloride, THF, 0 °C, 16 h; c) Na, EtOH, rt, 35 min; d) SO₂Cl₂, CH₂Cl₂, 0 °C, 3.5 h; e) NaOH, H₂O/MeOH, rt, 22 h.

The route is also possible with a methyl ester (Methyl esterification by K₂CO₃/MeOH, 79%).

2,2,2-Trichloro-1-(5-methyl-1*H*-pyrrol-2-yl)ethan-1-one (SI-3)

Pyrrole-2-carbaldehyde (SI-1, 5.71 g, 60.0 mmol, 1.00 eq.) and NaOH (12.5 g, 312 mmol, 5.20 eq.) were solved in ethylene glycol (80 mL) under argon atmosphere and hydrazine hydrate (18.1 mL, 372 mmol, 6.20 eq.) was added. The

N H SI-2

flask was equipped with a Dean-Stark apparatus and heated at 210 °C for 2.5 h. An azeotrope of glycol and 2-methyl pyrrole (**SI-2**) was condensed at the reflux condenser and collected in the Dean-Stark trap as biphasic mixture which was added to Et₂O (200 mL). The organic phase was washed with H₂O (100 mL, 2×50 mL), dried over Na₂SO₄ and evaporated. The raw methyl pyrrole (**SI-2**, 4.28 g, 88%) was used without further purification. ¹H-NMR (500 MHz, CDCl₃) δ 7.88 (br. s, 1H), 6.67 (q, 1H, *J* = 2.2 Hz), 6.15 (q, 1H, *J* = 2.8 Hz), 5.93 (m, 1H), 2.30 (s, 3H) ppm.

Spectroscopic data corresponded to those reported in the literature.³

To a solution of trichloro acetylchloride (2.47 mL, 22.0 mmol, 1.10 eq.) in dry THF (10 mL) was slowly added 2-methyl pyrrole (**SI-2**, 1.72 mL, 20.0 mmol, 1.00 eq.) under argon atmosphere at 0 °C. The red solution was

stirred at room temperature for 16 h and sat. aq. NaHCO₃ solution (100 mL) and 10% aq. K_2CO_3 solution (50 mL) were added. The mixture was extracted with EtOAc (4×50 mL) and the combined organic phases were washed with 10% aq. K_2CO_3 solution (50 mL) as well as brine (50 mL), dried over NaSO₄ and evaporated. The pyrrole **SI-3** (4.35 g, 96%) was obtained as

shiny black solid and was pure enough for the next step. $\mathbf{R}_{f} = 0.85$ (hexanes/EtOAc 1:1); IR v_{max} /cm⁻¹3315 (s), 3141 (w), 3102 (w), 2957 (w), 2920 (w), 1764 (w), 1636 (s), 1493 (m), 1399 (m), 1365 (s), 1262 (s), 1218 (s), 1054 (s), 842 (s), 808 (s), 784 (s), 743 (s), 726 (s), 681 (s); ¹H-NMR (500 MHz, CDCl₃) δ 9.47 (br. s, 1H), 7.32 (dd, 1H, J = 2.6, 3.7 Hz), 6.11 (t, 1H, J = 3.7 Hz), 2.40 (s, 3H) ppm; ¹³C-NMR (125 MHz, CDCl₃) δ 172.7, 139.5, 122.8, 122.0, 111.3, 68.7, 13.6 ppm.

Spectroscopic data corresponded to those reported in the literature.⁴

Ethyl 5-methyl-1*H*-pyrrole-2-carboxylate (SI-4)

Sodium (924 mg, 40.2 mmol, 1.30 eq.) was added to absolute EtOH (33 mL) and stirred until full dilution. Trichloro acetate **SI-3** (7.00 g, 30.9 mmol, 1.00 eq.) was added at room temperature and the solution was stirred for

35 min. It was concentrated at the rotary evaporator and 3M HCl (25 mL) was added. The solution was extracted with Et₂O (3×50 mL) and the organic phases were washed with sat. aq. NaHCO₃ solution (50 mL) and brine (50 mL). After drying over Na₂SO₄, the solvent was removed by rotary evaporation. The pale brown pyrrole **SI-4** (3.81 g, 81%) was used without purification. **mp** 97.2 °C, **R**_f = 0.87 (hexanes/EtOAc 2:1); **IR** v_{max} /cm⁻¹ 3288 (s), 3143 (w), 2987 (w), 2913 (w), 1667 (s), 1494 (m), 1321 (s), 1220 (s), 1152 (s), 1025 (s), 801 (s), 774 (s); ¹**H-NMR** (500 MHz, CDCl₃) δ 8.97 (s, 1H), 6.81 (m, 1H), 5.95 (m, 1H), 4.30 (q, 2H, *J* = 7.1 Hz), 2.31 (s, 3H), 1.34 (t, 3H, *J* = 7.1 Hz) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 161.3, 133.7, 121.6, 116.1, 109.0, 60.2, 14.6, 13.3 ppm; **HRMS** ESI *m*/*z* [M+H]⁺ calcd. for C₈H₁₂NO₂ 154.08626 found 154.08601.

Spectroscopic data corresponded to those reported in the literature.⁴

Ethyl 3,4-dichloro-5-methyl-1*H*-pyrrole-2-carboxylate (SI-5)

Ester SI-4 (2.06 g, 13.4 mmol, 1.00 eq.) was solved in CH_2Cl_2 (67 mL) at 0 °C and SO_2Cl_2 (2.17 mL, 26.9 mmol, 2.00 eq.) was slowly added. The solution was stirred for 3.5 h at 0 °C and sat. aq. $Na_2S_2O_3$ solution (80 mL)

and sat. aq. NaHCO₃ solution (100 mL) were added. The mixture was extracted with EtOAc (2×100 mL), the combined organic phases were washed with brine (100 mL), dried over Na₂SO₄ and evaporated. The crude product was chromatographed (SiO₂, pentane/EtOAc 7:1 to 5:1). Pyrrole **SI-5** (741 mg, 25%) was obtained as colourless needles. $\mathbf{R}_{f} = 0.59$

(hexanes/EtOAc 2:1); **IR** v_{max} /cm⁻¹ 3315 (s), 3141 (w), 3102 (w), 2957 (w), 2920 (w), 1764 (m), 1636 (s), 1558 (m), 1493 (m), 1399 (m), 1365 (s), 1262 (s), 1218 (s), 1054 (s), 943 (w), 880 (w), 842 (s), 808 (s), 784 (s), 743 (s), 726 (s), 681 (s); ¹**H-NMR** (500 MHz, CDCl₃) δ 9.02 (s, 1H), 4.35 (q, 2H, J = 7.1 Hz), 2.29 (s, 3H), 1.38 (t, 3H, J = 7.1 Hz) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 160.0, 129.1, 117.6, 116.2, 111.9, 61.1, 14.5, 11.7 ppm (quaternary C-atoms indicated by HMBC-correlations); **HRMS** ESI m/z [M + H]⁺ calcd. for C₈H₁₀Cl₂NO₂ 222.00831, found 222.00833.

3,4-Dichloro-5-methyl-1*H*-pyrrole-2-carboxylic acid (31)

Ester SI-5 (732 mg, 3.30 mmol, 1.00 eq.) was suspended in MeOH (33 mL) and H_2O (8.8 mL) at room temperature and 3M NaOH (4.40 mL, 13.2 mmol, 4.00 eq.) was added. The mixture was stirred for 22 h and further 3M NaOH

(20 mL) was added. The mixture was extracted once with EtOAc (20 mL) and the aqueous phase was acidified to pH 1-2 with 1M HCl. The aqueous phase was extracted with EtOAc (3×50 mL). These organic phases were dried over Na₂SO₄ and evaporated. The carboxylic acid **31** (608 mg, 95%) was obtained as red solid. **mp** 102 °C (decomposition).**R**_f = 0.49 (hexanes/EtOAc 2:1); **IR** v_{max} /cm⁻¹ 3113 (s), 2924 (s), 2590 (m), 2325 (s),1646 (s), 1544 (m), 1572 (m), 1498 (s), 1466 (m), 1360 (m), 1326 (m), 1283 (m), 1249 (m), 1102 (m), 1036 (m), 763 (m), 711 (m); ¹**H-NMR** (500 MHz, CD₃OD) δ 2.23 (s, 3H) ppm; ¹³**C-NMR** (125 MHz, CD₃OD) δ 162.2, 130.6, 117.9, 117.2, 111.6, 10.9 ppm; **HRMS** ESI *m/z* [M – H]⁻ calcd. for C₆H₄Cl₂NO₂ 191.96246, found 191.96179.

2.3 Failed routes amycolose derivative 4

Our first try to build up amycolose derivative **4** was starting from lactic acid ester **SI-6** and perform a *de novo* synthesis of the sugar scaffold. Formation of ketones **SI-9a/b** was accomplished using Weinreb amide method. α,β -unsaturated esters **SI-10a/b** were synthesised in a HWE-olefination of ketones **SI-9a/b** with phosphonate **SI-15** which was itself synthesised by semihydrogenation under Lindlar-conditions of the corresponding alkyne. A base mediated deconjugation formed terminal dienes **SI-11a/b** which led to only low yields in the following Grubbs metathesis reaction. The Sharpless dihydroxylation to diols **SI-13a/b** was not observed. The following steps towards amycolose derived carbohydrate **4** should have been introduction of an amine and reduction of the lactone.

Scheme S3. Attempts to synthesise amycolose derivative 4 starting from lactic acid ester SI-6. Reagents and conditions: a) SI-7a: TBSCl, imidazole, DMAP, CH₂Cl₂, rt, 19 h; SI-7b: DHP, PPTS, CH₂Cl₂, rt; b) MeONHMe·HCl, *i*PrMgCl, LiCl/BuLi, THF, 0 °C, 19 h; c) MeMgBr/MeLi, THF; d) BuLi, LiHMDS, SI-15, THF; e) LDA/LiHMDS, HMPT, THF, -78 °C, then AcOH, Et₂O; f) Grubbs catalyst 2nd generation, Ti(O*i*Pr)₄, CH₂Cl₂, reflux, 21 h; g) AD-mix.

Another idea synthesising amycolose derivative 4 was starting from sugar based mannitol (SI-16) using a fully diastereoselective approach. After acetonide protection of both terminal diols a monobenzoylation was carried out (\rightarrow SI-18). The free hydroxyl group was oxidised and ketone SI-19 was treated with vinylMgBr. After protection of alcohol SI-20, the following acetonide deprotection was not possible. The next steps should have been the deoxygenation of the primary position, protection of the vicinal hydroxy groups as well as amine and aldehyde formation and ultimate deprotection to carbohydrate **4**.

Scheme S4. Attempts to synthesise amycolose starting from mannitol (SI-16). Reagents and conditions: a) ZnCl₂, acetone, rt, 15 h; b) Cu(bipy), DIPEA, BzCl, CH₂Cl₂/CHCl₃, 0 °C \rightarrow rt, 5 h; c) DMP, NaHCO₃, CH₂Cl₂, rt, 3 h; d) vinylMgBr, THF, -78 °C, 40 min; e) 1. KH, THF, 0 °C, 10 min, 2. TBSCl, rt, 2 h.

Scheme S5. Synthesis of amycolose derived carbohydrate 43. Reagents and conditions: a) Ac₂O, pyridine, rt, 22 h; b) BnOH, BF₃·OEt, 4 Å MS, CH₂Cl₂, 0 °C \rightarrow rt, on; c) NaOMe, MeOH, rt, 4 d; d) MoO₂(acac)₂, collidine, AcCl, 1,4-dioxane, RT, 3 h; e) MEMCl, DIPEA, CH₂Cl₂, 0 °C \rightarrow 40 °C, 1 d; f) DIBAL, toluene, 0 °C, 3 h; g) DMP, CH₂Cl₂, 0 °C \rightarrow rt, 5 h; h) vinylMgBr, THF, -78 °C, 5 h; i) 1. O₃, CH₂Cl₂/MeOH, -78 °C, 10 min; 2. NaBH₄, rt, 24 h; j) *p*TsCl, DMAP, NEt₃, CH₂Cl₂, rt, 21 h; k) NaN₃, DMF, 65 °C, 17 h; l) 1. PPh₃, THF, rt, 2 d; 2. H₂O, rt, 3 d; m) **31**, EDC·HCl, HOBt, DMAP, CH₂Cl₂, 0 °C \rightarrow rt, on; n) BCl₃, CH₂Cl₂, -78 °C, 3.5 h.

(3R,4R,5R,6S)-2-(Benzyloxy)-6-methyltetrahydro-2H-pyran-3,4,5-triol (34)

L-Rhamnose (12, 10.0 g, 54.9 mmol, 1.00 eq.) was dissolved in Ac_2O (57.0 mL) and pyridine (57.0 mL) at room temperature. The solution was stirred for 22 h and the volatiles were removed under reduced pressure. The crude product was diluted with CH_2Cl_2 and a sat. aq. Cu_2SO_4 solution. The

aqueous phase was extracted thrice with CH_2Cl_2 . The combined organic phases were dried over Na_2SO_4 and the solvents were removed under reduced pressure. After purification by column chromatography (SiO₂, pentane/EtOAc 5:1 \rightarrow 3:1 \rightarrow 2:1) the product (18.2 g, 54.9 mmol) was isolated in quantitative yield.

The peracetylated rhamnose (18.0 g, 54.3 mmol, 1.00 eq.) in dry CH_2Cl_2 (147 mL) was treated with BnOH (28.2 mL, 271 mmol, 5.00 eq.) and 4 Å molecular sieve (12 g) at room temperature. After stirring for 30 min BF₃·OEt₂ (55.0 mL, 434 mmol, 8.00 eq.) was added at 0 °C over a period of 45 min. The mixture was allowed to warm to room temperature overnight. After TLC showed complete conversion of the starting material, the reaction was quenched by slow addition of H_2O . The mixture was diluted with CH_2Cl_2 . The aqueous phase was extracted four times with CH_2Cl_2 , and the combined organic phases were dried over Na_2SO_4 . The volatiles were removed under reduced pressure and the crude product was used without further purification.

Fully protected rhamnose (20.7 g, 54.3 mmol, 1.00 eq.) was dissolved in dry MeOH (180 mL) and treated with NaOMe (25wt%, 3.72 mL, 16.3 mmol, 0.30 eq.) at room temperature. After 18 h of stirring, another portion of NaOMe (25wt%, 3.72 mL, 16.3 mmol, 0.30 eq.) was added. Stirring was continued for 3 d. The mixture was neutralised by addition of DOWEX. The solid was filtered off over celite® and the solvents were removed under reduced pressure. Purification by column chromatography (SiO₂, pentane/EtOAc 1:1→0:1) gave the product **34** (13.7 g, 99%, α:β >10:1) as a light yellow resin, minor impurities occurred due to β-anomer. **R**_f = 0.40 (CH₂Cl₂/MeOH 9:1); $[\alpha]_D^{20} - 8.52^\circ$ (c 1.0 in CHCl₃); **IR** *v_{max}*/cm⁻¹ 3392 (m), 2991 (w), 2906 (w), 1455 (w), 1276 (m), 1261 (m), 1131 (m), 1049 (m), 980 (m), 911 (w), 810 (w), 764 (s), 750 (s), 698 (m); ¹**H-NMR** (500 MHz, CD₃OD) δ 7.37-7.22 (m, 5H), 4.75 (d, 1H, *J* = 1.6 Hz), 4.69 (d, 1H, *J* = 11.9 Hz), 4.51 (d, 1H, *J* = 11.9 Hz), 3.82 (dd, 1H, *J* = 1.6, 3.4 Hz), 3.68 (dd, 1H, *J* = 3.4, 9.5 Hz), 3.62 (dq, 1H, *J* = 6.2, 9.5 Hz), 3.39 (t, 1H, *J* = 9.5 Hz), 1.27 (d, 3H, *J* = 6.2 Hz) ppm; ¹³C-**NMR** (125 MHz, CD₃OD) δ 139.1, 129.4, 129.1, 128.8, 100.8, 74.0, 72.4, 72.3, 70.01, 70.00, 18.0 ppm.

Spectroscopic data corresponded to those reported in the literature.⁵

(*3R*,4*R*,5*S*,6*S*)-2-(Benzyloxy)-3,5-dihydroxy-6-methyltetrahydro-2*H*-pyran-4-yl acetate (SI-26)

Benzylated rhamnose **34** (900 mg, 3.54 mmol, 1.00 eq.) in dry 1,4-dioxane (29 mL) was treated with $MoO_2(acac)_2$ (57.7 mg, 177 µmol, 0.05 eq.), collidine (937 µL, 7.08 mmol, 2.00 eq.) and AcCl (379 µL, 5.31 mmol, 1.50 eq.) at room temperature. The mixture was stirred for 3 h and diluted

with H₂O and CH₂Cl₂. The aqueous phase was extracted twice with CH₂Cl₂ and the combined organic phases were dried over Na₂SO₄. The volatiles were removed under reduced pressure. Purification by column chromatography (SiO₂, pentane/EtOAc 2:1 \rightarrow 1:1) afforded the product **SI-26** (994 mg, 95%) as a colourless resin. The product was isolated as major isomer of a mixture of different regiosiomers (100:10:7). **R**_f = 0.64 (CH₂Cl₂/MeOH 9:1); [α]_D²⁰ -74.5° (c 1.0 in CHCl₃); **IR** ν_{max} /cm⁻¹ 3439 (m), 2980 (w), 2933 (w), 1717 (m), 1497 (w), 1455 (w), 1372

(m), 1275 (m), 1260 (s), 1128 (m), 1049 (s), 983 (m), 886 (w), 842 (w), 805 (w), 764 (s), 750 (s), 699 (m); major regioisomer ¹**H-NMR** (500 MHz, CDCl₃) δ 7.38-7.27 (m, 5H), 5.08 (dd, 1H, J = 3.3, 9.8 Hz), 4.83 (d, 1H, J = 1.7 Hz), 4.72 (d, 1H, J = 12.0 Hz), 4.52 (d, 1H, J = 12.0 Hz), 4.05 (dd, 1H, J = 1.7, 3.3 Hz), 3.78 (dq, 1H, J = 6.2, 9.5 Hz), 3.64 (t, 1H, J = 9.8 Hz), 2.45 (br. s, 2H), 2.14 (s, 3H), 1.35 (d, 3H, J = 6.2 Hz) ppm; major regioisomer ¹³C-NMR (125 MHz, CDCl₃) δ 171.9, 137.0, 128.6, 128.2, 128.1, 98.5, 75.1, 71.7, 70.0, 69.3, 68.9, 21.3, 17.7 ppm; HRMS ESI m/z [M + Na]⁺ calcd. for C₁₅H₂₀O₆Na 315.11521 found 315.11417.

(3*R*,4*R*,5*S*,6*S*)-2-(Benzyloxy)-3,5-bis((2-methoxyethoxy)methoxy)-6-methyltetrahydro-2*H*-pyran-4-yl acetate (35)

Carbohydrate SI-26 (11.4 g, 38.3 mmol, 1.00 eq.) in dry CH_2Cl_2 (58 mL) was treated with DIPEA (20.0 mL, 115 mmol, 3.00 eq.) and MEMCl (13.1 mL, 115 mmol, 3.00 eq.) at 0 °C. After 30 min at 0 °C, the solution was allowed to warm to room temperature. DIPEA (6.67 mL, 38.3 mmol,

1.00 eq.) and MEMCl (4.37 mL, 38.3 mmol, 1.00 eq.) were added after 7 h at 0 °C. The solution was stirred at room temperature overnight and for 6 h at 40 °C. As soon as TLC showed complete conversion, the mixture was allowed to come to room temperature and EtOAc as well as sat. aq. K₂CO₃ solution were added. The organic phase was separated and washed with 1M HCl. The combined aqueous phases were extracted thrice with EtOAc. All organic phases were washed with brine and dried over Na₂SO₄. Removal of the solvent under reduced pressure and purification of the crude product by column chromatography (SiO₂, pentane/EtOAc $4:1\rightarrow 3:1\rightarrow 2:1\rightarrow 1:1$) gave the product **35** (14.4 g, 80%) as a colourless resin and as a mixture of regioisomers. $\mathbf{R}_{f} = 0.38$ (hexanes/EtOAc 1:1); $[\alpha]_{D}^{20} - 79.9^{\circ}$ (c 1.0 in CHCl₃); IR v_{max} /cm⁻¹ 2935 (m), 2888 (m), 2816 (w), 1743 (m), 1456 (m), 1367 (m), 1237 (s), 1111 (m), 1035 (s), 750 (m) 700 (m); major regioisomer ¹H-NMR (500 MHz, CDCl₃) δ 7.36-7.26 (m, 5H), 5.23 (dd, 1H, J = 3.3, 9.5 Hz), 4.86 (d, 1H, J = 6.7 Hz), 4.85 (d, 1H, J = 2.0 Hz), 4.73 (d, 1H, J = 2.0 Hz)6.7 Hz), 4.73 (d, 1H, J = 6.7 Hz), 4.72 (d, 1H, J = 6.7 Hz), 4.70 (d, 1H, J = 12.0 Hz), 4.51 (d, 1H, J = 12.0 Hz), 4.51 (d, 1H, J = 12.0 Hz), 4.51 (d, 2H, J = 12.0 Hz)), 4.51 (d, 2H, J = 12.0 Hz))) 1H, J = 12.0 Hz), 4.05 (dd, 1H, J = 2.0, 3.2 Hz), 3.80-3.63 (m, 6H), 3.53 (m, 2H), 3.45 (m, 2H), 3.38 (s, 3H), 3.35 (s, 3H), 2.08 (s, 3H), 1.31 (d, 3H, J = 6.2 Hz) ppm; major regioisomer ¹³C-NMR (125 MHz, CDCl₃) δ 170.2, 137.3, 128.5, 128.0, 127.9, 97.7, 96.9, 95.8, 77.7, 75.0, 73.2, 71.8, 71.6, 69.2, 68.0, 67.8, 67.2, 59.22, 59.17, 21.3, 18.1 ppm; **HRMS** ESI *m*/*z* [M + Na]⁺ calcd. for C₂₃H₃₆O₁₀ 495.21925 found 495.22007.

(3*R*,4*R*,5*R*,6*S*)-2-(Benzyloxy)-3,5-bis((2-methoxyethoxy)methoxy)-6-methyltetrahydro-2*H*-pyran-4-ol (SI-27)

The fully protected sugar **35** (859 mg, 1.82 mmol, 1.00 eq.) in dry toluene (25.0 mL) was treated with DIBAL (3.49 mL, 3.49 mmol, 1.90 eq.) at 0 °C. After stirring for 3 h at this temperature, sat. aq. Na,K-tartrate solution, Na,K-tartrate and acetone were added. The mixture was stirred

for 40 min at room temperature. The organic phase was separated, and the aqueous phase was extracted thrice with CH₂Cl₂. The combined organic phases were washed with brine and dried over Na₂SO₄. Removal of the solvents and purification by column chromatography (SiO₂, pentane/EtOAc 2:1 \rightarrow 1:1 \rightarrow 0:1) afforded product **SI-27** (640 mg, 82%) as a colourless oil and as a mixture of regioisomers. **R**_f = 0.71 (CH₂Cl₂/MeOH 95:5); [α]²⁰_{*D*} -61.9° (c 1.0 in CHCl₃); **IR** v_{max} /cm⁻¹ 3463 (m), 2980 (m), 2924 (m), 2889 (m), 2826 (w), 1455 (m), 1366 (w), 1276 (m), 1261 (m), 1112 (m), 1024 (s), 984 (m), 845 (m), 800 (w), 764 (s), 750 (s), 700 (m); major regioisomer ¹**H-NMR** (500 MHz, CDCl₃) δ 7.37-7.26 (m, 5H), 4.93 (d, 1H, *J* = 6.8 Hz), 4.91 (d, 1H, *J* = 6.8 Hz), 4.80 (d, 1H, *J* = 7.1 Hz), 4.78 (d, 1H, *J* = 7.1 Hz), 4.70 (d, 1H, *J* = 11.9 Hz), 4.48 (d, 1H, *J* = 11.9 Hz), 3.96 (m, 1H), 3.89 (m, 2H), 3.78 (m, 2H), 3.70 (m, 3H), 3.56 (m, 2H), 3.50 (m, 2H), 3.41 (t, 1H, *J* = 8.5 Hz), 3.38 (s, 3H), 3.36 (s, 3H), 1.29 (d, 3H, *J* = 6.3 Hz) ppm; major regioisomer ¹³C-**NMR** (125 MHz, CDCl₃) δ 137.6, 128.6, 127.90, 127.89, 98.1, 97.1, 96.6, 83.0, 77.9, 71.8, 71.7, 70.2, 69.2, 67.8, 67.4, 67.3, 59.2, 59.1, 17.9 ppm; **HRMS** ESI *m/z* [M + Na]⁺ calcd. for C₂₁H₃₄O₉Na 453.20890 found 453.20950.

(3*S*,5*S*,6*S*)-2-(Benzyloxy)-3,5-bis((2-methoxyethoxy)methoxy)-6-methyltetrahydro-4*H*pyran-4-one (36)

Partially protected rhamnose SI-27 (5.53 g, 12.8 mmol, 1.00 eq.) was dissolved in CH₂Cl₂ p.a.

(51.0 mL) and DMP (6.53 g, 15.4 mmol, 1.20 eq.) was added at 0 °C. The suspension was allowed to warm to room temperature after 30 min. The reaction was quenched by addition of sat. aq. Na₂S₂O₃ solution and sat. aq. NaHCO₃ solution after 5 h. The aqueous phase was extracted thrice

with EtOAc, combined organic phases were washed with sat. aq. Na₂S₂O₃ solution, sat. aq. NaHCO₃ solution, brine and dried over Na₂SO₄. Solvents were removed under reduced pressure. The crude product was purified by column chromatography (SiO₂, pentane/EtOAc 2:1) to give a mixture of product and residues of DMP. It was diluted in EtOAc and washed

twice with sat. aq. Na₂S₂O₃ solution and sat. aq. NaHCO₃ solution alternately. The product **36** (4.58 g, 84%) was obtained as a colourless oil and as a mixture of regioisomers. $\mathbf{R}_{\mathbf{f}} = 0.67$ (hexanes/EtOAc 1:1); $[\boldsymbol{\alpha}]_D^{20} - 143.9^\circ$ (c 1.0 in CHCl₃); $\mathbf{IR} v_{max}$ /cm⁻¹ 2938 (m), 2896 (m), 2826 (w), 1745 (m), 1137 (s), 1123 (s), 1052 (s), 997 (m), 751 (m); major regioisomer ¹**H-NMR** (500 MHz, CDCl₃) δ 7.35-7.23 (m, 5H), 5.06 (d, 1H, J = 1.6 Hz), 4.82 (d, 1H, J = 7.1 Hz), 4.76 (d, 1H, J = 7.1 Hz), 4.74 (s, 2H), 4.68 (d, 1H, J = 12.2 Hz), 4.51 (d, 1H, J = 12.2 Hz), 4.40 (d, 1H, J = 9.4 Hz), 4.02 (d, 1H, J = 1.6 Hz), 3.98 (dq, 1H, J = 6.1, 9.4 Hz), 3.76 (m, 2H), 3.71-3.61 (m, 2H), 3.52 (m, 2H), 3.46 (m, 2H), 3.36 (s, 3H), 3.32 (s, 3H), 1.40 (d, 3H, J = 6.2 Hz) ppm; major regioisomer ¹³C-NMR (125 MHz, CDCl₃) δ 202.2, 136.6, 128.5, 128.0, 127.9, 99.7, 95.5, 95.2, 81.2, 80.0, 71.7, 71.6, 70.5, 69.1, 67.8, 67.6, 59.1, 59.0, 18.7 ppm; **HRMS** ESI *m/z* [M + Na]⁺ calcd. for C₂₁H₃₂O₉Na 451.19321 found 451.19385.

(*3R*,5*S*,6*S*)-2-(Benzyloxy)-3,5-bis((2-methoxyethoxy)methoxy)-6-methyl-4-vinyltetrahydro-2*H*-pyran-4-ol (37)

separated, and the aqueous phase was extracted thrice with EtOAc, combined organic phases were washed with brine and dried over Na₂SO₄. Removal of the solvent under vacuum and purification by column chromatography (SiO₂, pentane/EtOAc 3:1 \rightarrow 2:1 \rightarrow 1:1) gave the product **37** (3.73 g, 79%, dr >30:1 determined by NMR) as a colourless oil and as a mixture of regioisomers. **R**_f = 0.52 (hexanes/EtOAc 1:1); $[\alpha]_D^{20} -90.5^{\circ}$ (c 1.0 in CHCl₃); **IR** *v_{max}*/cm⁻¹ 3498 (m), 2942 (m), 2891 (m), 1455 (w), 1362 (w), 1200 (w), 1173 (m), 1135 (m), 1112 (m), 1024 (s), 958 (m), 847 (w), 739 (w), 700 (m); major regioisomer ¹**H-NMR** (500 MHz, CDCl₃) δ 7.30-7.07 (m, 5H), 6.07 (ddd, 1H, *J* = 1.2, 10.7, 17.2 Hz), 5.61 (dd, 1H *J* = 2.0, 17.2 Hz), 5.22 (dd, 1H, *J* = 2.0, 10.7 Hz), 4.91 (d, 1H, *J* = 0.9 Hz), 4.77 (d, 1H, *J* = 11.7 Hz), 4.74 (s, 2H), 4.70 (s, 2H), 4.55 (d, 1H, *J* = 11.7 Hz), 4.09 (d, 1H, *J* = 9.7 Hz), 3.51 (m, 2H), 3.48-3.39 (m, 2H), 3.38 (s, 3H), 3.35 (s, 3H), 1.33 (d, 3H, *J* = 6.3 Hz) ppm; major regioisomer ¹³**C-NMR** (125 MHz, CDCl₃) δ 139.5, 136.7, 128.7, 128.32, 128.27, 116.3, 98.0, 97.1, 96.1, 79.71, 79.69, 74.4, 71.8, 71.6, 69.8, 67.9, 67.5, 64.4, 59.21, 59.15, 18.1 ppm; **HRMS** ESI *m*/*z* [M + Na]⁺ calcd. for C₂₃H₃₆O₉Na 479.22483 found 479.22515.

Fig. S4. Relevant NOE-signals for elucidation of stereoconfiguration of glycoside 37.

(3*R*,5*S*,6*S*)-2-(Benzyloxy)-4-(hydroxymethyl)-3,5-bis((2-methoxyethoxy)methoxy)-6methyltetrahydro-2*H*-pyran-4-ol (38)

Carbohydrate **37** (3.61 g, 7.90 mmol, 1.00 eq.) was dissolved in MeOH *p.a.* (120 mL) and CH₂Cl₂ *p.a.* (120 mL) and cooled to -78 °C. O₃/O₂ was bubbled through the solution until it turned blue. This was followed by passing oxygen through the solution up to the blue colour disappeared.

NaBH₄ (724 mg, 19.1 mmol, 2.40 eq.) was added and the solution was slowly allowed to come to room temperature. After stirring for 24 h, the residues were filtered off over celite® and the volatiles were removed under reduced pressure. Purification of the crude product by column chromatography (SiO₂, CH₂Cl₂/MeOH 19:1) gave the product **38** (3.28 g, 90%) as a colourless oil and as a mixture of regioisomers. **R**_f = 0.25 (hexanes/EtOAc 1:1); $[\alpha]_D^{20}$ -52.4° (c 1.0 in CHCl₃); **IR** *v*_{max}/cm⁻¹ 3486 (m), 2977 (m), 2935 (m), 2886 (m), 2819 (w), 1456 (m), 1363 (w), 1276 (m), 1261 (m), 1112 (m), 1024 (s), 847 (w), 764 (s), 750 (s), 701 (w); major regioisomer ¹**H-NMR** (500 MHz, CDCl₃) δ 7.36-7.26 (m, 5H), 4.99 (s, 1H), 4.84 (d, 1H, *J* = 7.0 Hz), 4.80 (d, 1H, *J* = 7.0 Hz), 4.76 (d, 1H, *J* = 7.0 Hz), 4.75 (d, 1H, *J* = 11.5 Hz), 4.73 (d, 1H, *J* = 7.0 Hz), 4.54 (d, 1H, *J* = 11.5 Hz), 4.11 (d, 1H, *J* = 1.2 Hz), 3.98 (dq, 1H, *J* = 6.3, 9.7 Hz), 3.86 (d, 1H, *J* = 1.0 Hz), 3.79 (ddd, 1H, *J* = 3.8, 5.3, 9.1 Hz), 3.76-3.63 (m, 5H), 3.56-3.42 (m, 5H), 3.38 (s, 3H), 3.36 (s, 3H), 2.47 (dd, 1H, *J* = 3.8, 9.8 Hz), 1.31 (d, 3H, *J* = 6.3 Hz) ppm; major regioisomer ¹³C-NMR (125 MHz, CDCl₃) δ 136.5, 128.7, 128.32, 128.26, 98.1, 97.8, 96.0, 78.8, 75.11, 75.06, 71.7, 71.6, 69.9, 68.4, 67.6, 64.1, 63.9, 59.2, 59.1, 18.0 ppm; **HRMS** ESI *m/z* [M + Na]⁺ calcd. for C₂₂H₃₆O₁₀Na 483.21957 found 483.22007.

((3*R*,5*S*,6*S*)-2-(Benzyloxy)-4-hydroxy-3,5-bis((2-methoxyethoxy)methoxy)-6-methyltetrahydro-2*H*-pyran-4-yl)methyl-4-methylbenzenesulfonate (39)

Carbohydrate **38** (36.0 mg, 78.2 μ mol, 1.00 eq.) was dissolved in dry CH₂Cl₂ (550 μ L) and treated with *p*TsCl (22.4 mg, 117 μ mol, 1.50 eq.), dry NEt₃ (16.3 μ L, 117 μ mol, 1.50 eq.) and DMAP (478 μ g, 3.91 μ mol, 0.05 eq.) at room temperature. The solution was stirred for 21 h and H₂O

was added. The organic phase was separated, and the aqueous phase was extracted thrice with EtOAc. The combined organic phases were washed with 1M HCl, H₂O as well as brine and dried over Na₂SO₄. The solvents were removed under vacuum and the crude product was purified by column chromatography (SiO₂, pentane/EtOAc 2:1). The tosylated sugar **39**

(37.1 mg, 77%) was isolated as a colourless oil. It was pure enough for next step. $\mathbf{R}_{f} = 0.41$ (hexanes/EtOAc 1:1); $[\alpha]_{D}^{20} -58.8^{\circ}$ (c 1.0 in CHCl₃); $\mathbf{IR} v_{max}/\text{cm}^{-1}$ 3482 (m), 2931 (m), 2890 (m), 1600 (w), 1456 (m), 1362 (m), 1177 (s), 1114 (m), 1033 (s), 972 (m), 841 (m), 752 (w), 700 (m), 663 (w); major regioisomer ¹H-NMR (500 MHz, CDCl₃) δ 7.79 (d, 2H, J = 8.3 Hz), 7.36-7.26 (m, 7H), 5.06 (s, 1H), 4.80 (d, 1H, J = 7.3 Hz), 4.73 (d, 1H, J = 7.2 Hz), 4.71 (d, 1H, J = 11.5 Hz), 4.69 (d, 1H, J = 7.2 Hz), 3.76 (ddd, 1H, J = 2.8, 6.3, 9.3 Hz), 3.93 (dq, 1H, J = 6.1, 9.6 Hz), 3.78 (d, 1H, J = 1.2 Hz), 3.76 (ddd, 1H, J = 2.8, 6.3, 9.3 Hz), 3.69 (m, 1H), 3.61-3.47 (m, 5H), 3.44-3.39 (m, 2H), 3.40 (s, 3H), 3.36 (s, 3H), 2.41 (s, 3H), 1.31 (d, 3H, J = 6.1 Hz) ppm; major regioisomer ¹³C-NMR (125 MHz, CDCl₃) δ 144.8, 136.4, 133.1, 129.9, 128.7, 128.6, 128.4, 128.33, 128.27, 128.1, 98.0, 97.6, 96.8, 78.9, 75.2, 74.2, 71.6, 70.1, 68.6, 67.6, 63.8, 59.3, 59.1, 21.8, 17.7 ppm; HRMS ESI m/z [M + Na]⁺ calcd. for C₂₉H₄₂O₁₂SNa 637.22820 found 637.22892.

(3*R*,5*S*,6*S*)-4-(Azidomethyl)-2-(benzyloxy)-3,5-bis((2-methoxyethoxy)methoxy)-6-methyltetra-hydro-2*H*-pyran-4-ol (40)

Tosylated sugar **39** (2.40 g, 3.90 mmol, 1.00 eq.) in dry DMF (15 mL) was treated with NaN₃ (760 mg, 11.7 mmol, 3.00 eq.) at room temperature. The mixture was stirred at 65 °C for 17 h and NaN₃ (760 mg, 11.7 mmol, 3.00 eq.) was added again. After stirring for a further 35 h at 70 °C, it was

allowed to come to room temperature and H₂O was added. The aqueous phase was extracted thrice with EtOAc and the combined organic phases were washed with H₂O, brine and dried over Na₂SO₄. After removal of the solvents under vacuum, the crude product was purified by column chromatography (SiO₂, pentane/EtOAc 2:1 \rightarrow 1.5:1) to give azide **40** (1.78 g, 94%) as a colourless oil, minor impurities occur due to regioisomers. **R**_f = 0.53 (hexanes/EtOAc 1:1); $[\alpha]_D^{20} -41.1^\circ$ (c 1.0 in CHCl₃); **IR** v_{max} /cm⁻¹ 3484 (m), 2928 (m), 2880 (m), 2826 (w), 2099 (s), 1455 (m), 1364 (w), 1276 (m), 1261 (m), 1200 (w), 1134 (m), 1111 (s), 1022 (s), 977 (m), 919 (m), 847 (m), 764 (m), 750 (s), 700 (m); major regioisomer ¹**H-NMR** (500 MHz, CDCl₃) δ 7.38-7.26 (m, 5H), 5.05 (d, 1H, J = 0.9 Hz), 4.85 (d, 1H, J = 7.1 Hz), 4.80 (d, 1H, J = 7.1 Hz), 4.77 (d, 1H, J = 7.1 Hz), 4.75 (d, 1H, J = 11.5 Hz), 4.73 (d, 1H, J = 7.1 Hz), 4.55 (d, 1H, J = 11.5 Hz), 4.18 (d, 1H, J = 2.2 Hz), 3.95 (dq, 1H, J = 6.5, 9.9 Hz), 3.86 (d, 1H, J = 1.4 Hz), 3.85 (dd, 1H, J = 4.1, 4.9, 10.8 Hz), 3.75 (ddd, 1H, J = 2.9, 6.2, 10.8 Hz), 3.69 (ddd, 1H, J = 4.1, 4.9, 10.8 Hz), 3.42 (ddd, 1H, J = 2.9, 6.4, 10.8 Hz), 3.39 (s, 3H), 3.36

(s, 3H), 3.37 (m, 1H), 3.23 (dd, 1H, J = 2.4, 12.5 Hz), 1.29 (d, 3H, J = 6.5 Hz) ppm; major regioisomer ¹³C-NMR (125 MHz, CDCl₃) δ 136.4, 128.8, 128.4 (2 signals), 98.2, 97.9, 96.4, 80.0, 75.9, 75.3, 71.8, 71.6, 70.1, 68.6, 67.6, 64.1, 59.22, 59.16, 54.5, 17.9 ppm; HRMS ESI m/z [M + Na]⁺ calcd. for C₂₂H₃₅N₃O₉Na 508.22636 found 508.22655.

(2*R*,3*R*,4*S*,5*S*,6*S*)-4-(Aminomethyl)-2-(benzyloxy)-3,5-bis((2-methoxyethoxy)methoxy)-6methyltetrahydro-2*H*-pyran-4-ol (41)

Azide **40** (952 mg, 1.96 mmol, 1.00 eq.) in dry THF (20 mL) was treated with PPh₃ (1.29 g, 4.90 mmol, 2.50 eq.) and stirred until TLC showed full consumption of starting material. H₂O (384 μ L, 19.6 mmol, 10.0 eq.) was added and stirring was continued for 3 days. The volatiles were removed

under reduced pressure and the crude product was purified by column chromatography (SiO₂, 15% MeOH in CH₂Cl₂ + 0.5% NEt₃→10 % MeOH in CH₂Cl₂+0.5% NEt₃). Amin **41** (772 mg, 86%) was isolated as a colourless oil, minor impurities occur due to regioisomers. **R**_f = 0.24 (CH₂Cl₂/MeOH 9:1); $[\alpha]_D^{20}$ -59.5° (c 1.0 in CHCl₃); **IR** v_{max} /cm⁻¹ 3495 (m), 2926 (m), 2882 (m), 1456 (m), 1363 (w), 1276 (m), 1261 (m), 1201 (w), 1111 (m), 1021 (s), 846 (m), 765 (s), 750 (s), 846 (m), 765 (s), 750 (s), 700 (m); major regioisomer ¹**H-NMR** (500 MHz, CDCl₃) δ 7.39-7.26 (m, 5H), 4.97 (d, 1H, J = 0.9 Hz), 4.82 (d, 1H, J = 6.9 Hz), 4.81 (d, 1H, J = 7.0 Hz), 4.78 (d, 1H, J = 6.9 Hz), 4.76 (d, 1H, J = 11.8 Hz), 3.80 (ddd, 1H, J = 3.4, 5.6, 10.9 Hz), 3.76-3.69 (m, 3H), 3.59-3.46 (m, 4H), 3.41 (d, 1H, J = 9.8 Hz), 3.39 (s, 3H), 3.37 (s, 3H), 2.97 (d, 1H, J = 13.3 Hz), 2.82 (d, 1H, J = 13.3 Hz), 1.89 (br. s, 3H), 1.31 (d, 3H, J = 6.4 Hz) ppm; major regioisomer ¹³**C-NMR** (125 MHz, CDCl₃) δ 136.5, 128.8, 128.4, 128.3, 98.0, 97.9, 95.8, 80.3, 75.0, 74.6, 71.8, 71.7, 69.9, 68.5, 68.0, 64.3, 59.24, 59.21, 44.9, 18.1 ppm; **HRMS** ESI m/z [M + H]⁺ calcd. for C₂₂H₃₈NO₉ 460.25411 found 460.25302.

N-(((2*R*,3*R*,4*S*,5*S*,6*S*)-2-(Benzyloxy)-4-hydroxy-3,5-bis((2-methoxyethoxy)methoxy)-6methyltetrahydro-2*H*-pyran-4-yl)methyl)-3,4-dichloro-5-methyl-1*H*-pyrrole-2carboxamide (42)

To a solution of amin **41** (42.0 mg, 91.4 μ mol, 1.00 eq.) and carbonic acid **31** (21.3 mg, 110 μ mol, 1.20 eq.) in dry CH₂Cl₂ (1 mL) was added dry NEt₃ (31.8 μ L, 228 μ mol, 2.50 eq.), EDC·HCl (26.3 mg, 137 μ mol, 1.50 eq.) and HOBt (16.8 mg, 110 μ mol, 1.20 eq.) at 0 °C. The

mixture was allowed to warm to room temperature overnight. Reaction was quenched by addition of sat. aq. NaHCO₃ solution. Aqueous phase was extracted with EtOAc thrice and combined organic phases were dried over Na₂SO₄. Removal of solvents under reduced pressure and purification by column chromatography (SiO₂, pentane/EtOAc

1:1-→CH₂Cl₂/MeOH 50:1) gave amide **42** (47.2 mg, 81%) as a light red oil. Minor impurities occur due to regioisomers. **R**_f = 0.35 (hexanes/EtOAc 1:1); $[\alpha]_D^{20} - 42.7^\circ$ (c 1.0 in CHCl₃); **IR** v_{max} /cm⁻¹ 3407 (m), 3208 (m), 2924 (m), 2882 (m), 1629 (m), 1533 (m), 1455 (m), 1417 (w), 1379 (w), 1276 (m), 1262 (m), 1113 (m), 1024 (s9, 847 (m), 764 (s), 750 (s), 700 (m); major regioisomer ¹**H-NMR** (500 MHz, CDCl₃) δ 9.41 (m, 1H), 7.38-7.27 (5H, m), 7.23 (m, 1H), 5.02 (d, 1H, J = 1.3 Hz), 4.83 (d, 1H, J = 7.0 Hz), 4.78 (d, 1H, J = 7.0 Hz), 4.75 (d, 1H, J = 11.8 Hz), 4.71 (d, 1H, J = 7.3 Hz), 4.64 (d, 1H, J = 7.3 Hz), 4.56 (d, 1H, J = 11.8 Hz), 4.34 (d, 1H, J = 1.6 Hz), 4.00 (m, 2H), 3.75 (t, 2H, J = 4.7 Hz), 3.71 (ddd, 1H, J = 2.9, 5.8, 10.9 Hz), 3.68 (m, 1H), 3.55 (m, 3H), 3.47 (d, 1H, J = 9.5 Hz), 3.46-3.36 (m, 2H), 3.34 (s, 3H), 3.32 (m, 1H), 3.29 (s, 3H), 2.29 (s, 3H), 1.58 (m, 1H), 1.33 (d, 3H, J = 6.3 Hz) ppm; major regioisomer ¹³C-NMR (125 MHz, CDCl₃) δ 159.8, 136.5, 128.7, 128.31, 128.27, 128.2, 118.6, 111.3, 110.2, 109.2, 98.4, 98.0, 96.8, 79.8, 76.3, 74.4, 71.7, 71.5, 70.0, 68.5, 67.4, 64.4, 59.2, 59.0, 41.9, 29.8, 18.1, 11.3 ppm; **HRMS** ESI m/z [M + H]⁺ calcd. for C₂₈H₄₁Cl₂N₂O₁₀ 635.21328 found 635.21334.

3,4-Dichloro-5-methyl-*N*-(((2*R*,3*R*,4*S*,5*S*,6*S*)-2,3,4,5-tetrahydroxy-6-methyltetrahydro-2*H*-pyran-4-yl)methyl)-1*H*-pyrrole-2-carboxamide (43)

Carbohydrate **42** (24.3 mg, 37.8 μ mol, 1.00 eq.) in dry CH₂Cl₂ (1 mL) was treated dropwise with BCl₃ (1M CH₂Cl₂, 453 μ L, 12.0 eq.) at -78 °C. The solution was stirred at this temperature for 2 h, before BCl₃ (113 μ L, 4.00 eq.) was added again. Stirring was continued for 1.5 h and H₂O was added to stop the reaction. All volatiles were removed at the rotary

evaporator and the crude product was purified by column chromatography (SiO₂, CH₂Cl₂ 19:1 \rightarrow 10:1 MeOH in CH₂Cl₂). This yielded the product **43** (13.3 mg, 93%, α : β 1.7:1) as a colourless foam. **R**_f = 0.37 (CH₂Cl₂/MeOH 9:1); $[\alpha]_D^{20}$ +7.17° (c 1.0 in CHCl₃); IR ν_{max} /cm⁻¹ 3310 (s), 2925 (s), 2530 (m), 1606 (s), 1499 (s), 1450 (s), 1323 (m), 1272 (m), 1164 (m), 1071 (s), 761 (m); major regioisomer, α -anomer ¹**H-NMR** (500 MHz, CD₃OD) δ 5.06 (d, 1H, *J* = 1.2 Hz), 3.87 (m, 1H), 3.71 (dq, 1H, *J* = 6.2, 9.5 Hz), 3.52 (m, 1H), 3.46 (d, 1H, *J* = 1.0 Hz), 3.34 (d, 1H, J = 9.5 Hz), 2.23 (s, 3H), 1.27 (d, 3H, J = 6.2 Hz) ppm; major regioisomer, β anomer ¹H-NMR (500 MHz, CD₃OD) δ 4.96 (d, 1H, J = 1.2 Hz), 4.02 (dq, 1H, J = 6.2, 9.7 Hz), 3.89 (m, 1H), 3.57 (d, J = 1.5 Hz), 3.55 (m, 1H), 3.40 (d, 1H, J = 9.7 Hz), 2.23 (s, 3H), 1.29 (d, 3H, J = 6.2 Hz) ppm; major regioisomer ¹³C-NMR (125 MHz, CD₃OD) δ 162.3, 129.7, 119.6, 112.4, 96.3, 75.7, 72.5, 70.6, 65.6, 44.4, 18.2, 10.8 ppm; minor regioisomer ¹³C-NMR (125 MHz, CD₃OD) δ 162.4, 129.6, 119.6, 110.7, 93.6, 75.5, 73.2, 72.6, 71.3, 45.2, 18.3, 14.5 ppm; HRMS ESI m/z [M + H]⁺ calcd. for C₁₃H₁₉Cl₂N₂O₆ 369.06147 found 369.06091.

The vinyl group in **37** is amenable to a good many other functionalisations, e.g., dihydroxylations affording vicinal diols such as **SI-28**, Wacker-type oxidations leading to methyl ketones such as **SI-29**, hydroborations to give primary alcohols like **SI-30**, or Grubbs-catalysed metathesis to non-terminal alkenes like **SI-31** (Scheme S6).

Scheme S6. Possible transformations of olefin 37 as a common intermediate

Scheme S7. Synthesis of decalin core 5.

Reagents and conditions: a) NaI, acetone, reflux, 21 h; b) 1. **19**, Zn, THF, reflux, 3.5 h, 2. Thioester **18**, Pd(PPh₃)₄, toluene, rt, 23 h; c) 1. (*S*)-CBS-catalyst, BH₃·THF, rt, 1 h, 2. **44**, $-35 \degree$ C, 3.5 h; d) MEMCl, DIPEA, CH₂Cl₂, 40 °C, 23 h; e) 1. KHMDS, THF, $-78 \degree$ C, 30 min, 2. MoOPH, $-78 \degree$ C, 4 h; f) TESCl, imidazole, DMAP, CH₂Cl₂, 0 °C \rightarrow 40 °C, 4.5 h; g) DIBAL, toluene, $-78 \degree$ C, 5 h; h) 1. LiHMDS, phosphonate **49**, THF, 0 °C, 1 h, 2. **48**, 0 °C \rightarrow rt, 17 h; i) toluene, 80 °C, 3 d; j) HF·py, THF, 0 °C, 15 h; k) NaOMe, CH₂Cl₂, 0 °C \rightarrow rt, 3 h; n) DIBAL, CH₂Cl₂, 0 °C \rightarrow rt, 3 h; m) 1. MePPh₃Br, KO*t*Bu, THF, 0 °C, 45 min, 2. **52**, THF, 0 °C \rightarrow rt, 3 h; n) DIBAL, CH₂Cl₂, 0 °C, 5 h; o) DMP, NaHCO₃, CH₂Cl₂, 0 °C \rightarrow rt, 3 h; p) 1. TMSCN, NEt₃, CH₂Cl₂, 0 °C \rightarrow rt, 4 h 20 min, 2. NH₄F, EtOH, 0 °C, 2 h; q) DMP, CH₂Cl₂, 0 °C, 1.5 h; r) LiBF₄, MeCN/H₂O, rt \rightarrow 55 °C, 4.5 h.

Ethyl 4-iodobutanoate (19)

Bromo-butyric acid ester **SI-32** (20.0 mL, 133 mmol, 1.00 eq.) dissolved in acetone *p.a.* (1.3 L) was treated with NaI (100 g, 667 mmol, 5.00 eq.) at room temperature. The mixture was stirred under reflux for 21 h. The suspension

was filtered off over celite® and washed with Et_2O . The filtrate was washed with H_2O . The aqueous phase was reextracted with Et_2O thrice and dried over Na_2SO_4 . Removal of the solvent and purification by column chromatography (SiO₂, pentane—pentane/EtOAc 30:1) furnished

iodide **19** (31.6 g, 98%) as a yellow liquid. **R**_f = 0.61 (hexanes/EtOAc 98:2); **IR** v_{max} /cm⁻¹ 2981 (m), 2936 (w), 2908 (w), 1732 (s), 1444 (m), 1374 (m), 1352 (w), 1308 (w), 1226 (m), 1192 (s), 1163 (m), 1121 (m), 1097 (w), 1032 (m), 857 (w), 769 (w); ¹H-NMR (500 MHz, CDCl₃) δ 4.13 (q, 2H, J = 7.1 Hz), 3.24 (t, 2H, J = 6.7 Hz), 2.44 (t, 2H, J = 7.1 Hz), 2.13 (qn, 2H, J = 7.0 Hz), 1.26 (t, 3H, J = 7.1 Hz) ppm.

Spectroscopic data corresponded to those reported in the literature.⁶

Ethyl (6*E*,8*E*)-5-oxodeca-6,8-dienoate (44)

A solution of iodide **19** (26.7 g, 109 mmol, 3.00 eq.) in dry THF (120 mL) was treated with Zn (14.1 g, 215 mmol, 5.90 eq.) and stirred under reflux for 3.5 h. This mixture was added to a solution

of thioester **18** (5.99 g, 36.3 mmol, 1.00 eq.) in dry. toluene (125 mL) at room temperature. The mixture was treated with Pd(PPh₃)₄ (2.10 g, 1.82 mmol, 0.05 eq.) and stirred for 23 h at room temperature. The solids were filtered off over celite® and the organic phases were washed with 1M HCl, sat. aq. NaHCO₃ solution as well as brine and dried over Na₂SO₄. The solvents were removed under vacuum and the crude product was purified by column chromatography (SiO₂, pentane/EtOAc 9:1 \rightarrow 8:1) to give product **44** (6.93 g, 91%) as a light-yellow oil. **R**_f = 0.68 (hexanes/EtOAc 8:1); IR *v*_{max}/cm⁻¹ 2979 (m), 2940 (m), 1732 (s), 1687 (m), 1664 (m), 1639 (m), 1596 (m), 1447 (w), 1418 (w), 1376 (m), 1323 (w), 1197 (m), 1100 (m), 1028 (m), 1000 (m), 949 (w), 858 (w); ¹**H-NMR** (500 MHz, CDCl₃) δ 7.13 (m, 1H), 6.19 (m, 2H), 6.05 (d, 1H, *J* = 15.4 Hz), 4.12 (q, 2H, *J* = 7.2 Hz), 2.62 (t, 2H, *J* = 7.2 Hz), 2.35 (t, 2H, *J* = 7.2 Hz), 1.94 (qn, 2H, *J* = 7.3 Hz), 1.86 (d, 3H, *J* = 4.9 Hz), 1.25 (t, 3H, *J* = 7.3 Hz) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 200.1, 173.4, 143.2, 140.6, 130.4, 127.7, 60.5, 39.4, 33.6, 19.6, 19.0, 14.4 ppm; **HRMS** ESI *m*/z [M + H]⁺ calcd. for C₁₂H₁₉O₃ 211.13287 found 211.13260.

Ethyl (R,6E,8E)-5-hydroxydeca-6,8-dienoate (17)

A solution of (S)-CBS-catalyst (3.95 g, 14.3 mmol, 1.50 eq.) in dry THF (90 mL) was treated with BH_3 ·THF (10.5 mL, 10.5 mmol, 1.10 eq.) at room temperature. After stirring for 1 h, ketone **44**

(2.00 g, 9.51 mmol, 1.00 eq.) was added dissolved in dry THF (22 mL) at -35 °C over 1.5 h. The reaction was stirred for a further 2h and quenched with sat. aq. NH₄Cl solution. The phases

were separated, and the organic phase was washed with sat. aq. NH₄Cl solution again. The combined aqueous phases were reextracted with Et₂O twice, the combined organic phases were washed with brine and dried over Na₂SO₄. The volatiles were removed under reduced pressure. Column chromatography (SiO₂, pentane/EtOAc $8:1 \rightarrow 6:1 \rightarrow 5:1 \rightarrow 4:1 \rightarrow 3:1$) gave product 17 (1.82 g, 90%, 91% ee, E/Z 11:1) as a light-yellow liquid. E/Z isomerization occurred at double bond between position 8 and 9. $\mathbf{R}_{\mathbf{f}} = 0.30$ (hexanes/EtOAc 4:1); $[\boldsymbol{\alpha}]_{D}^{20} - 6.97^{\circ}$ (c 1.0 in CHCl₃); IR v_{max}/cm^{-1} 3439 (m), 2985 (m), 2935 (m), 2875 (w), 1732 (s), 1448 (m), 1374 (m), 1276 (s), 1261 (s), 1163 (m), 1099 (m), 1030 (m), 990 (m), 860 (w), 765 (s), 750 (s); E,E-isomer ¹**H-NMR** (500 MHz, CDCl₃) δ 6.18 (dd, 1H, J = 10.5, 15.2 Hz), 6.03 (ddq, 1H, J = 1.4, 10.5, 15.0 Hz), 5.71 (dq, 1H, J = 6.7, 15.0 Hz), 5.55 (dd, 1H, J = 7.1, 15.2 Hz), 4.12 (q, 2H, J =7.2 Hz), 4.12 (m, 1H), 2.33 (t, 2H, *J* = 7.3 Hz), 1.75 (dd, 3H, *J* = 1.4, 6.7 Hz), 1.74-1.52 (m, 4H), 1.25 (t, 3H, J = 7.1 Hz) ppm; significant signals *E*,*Z*-isomer ¹H-NMR (500 MHz, CDCl₃) δ 6.53 (ddt, 1H, J = 0.9, 11.1, 15.2 Hz), 6.00 (m, 1H), 5.66 (m, 1H), 5.52 (m, 1H), 4.19 (m, 1H), 1.25 (t, 3H, J = 7.1 Hz) ppm; *E,E*-isomer ¹³C-NMR (125 MHz, CDCl₃) δ 173.7, 132.9, 131.2, 130.7, 130.2, 72.4, 60.3, 36.6, 34.1, 20.9, 18.1, 14.3 ppm; significant signals E,Z-isomer ¹³C-NMR (125 MHz, CDCl₃) δ 135.2, 128.5, 127.2, 125.9, 72.5 ppm; HRMS ESI m/z [M – OH]⁺ calcd. for C₁₂H₁₉O₂ 195.13796 found 195.13789.

Fig. S6. Differentiation of **17** and *Z*-**17** in ¹H-NMR-spectrum. S33

Ethyl (R,6E,8E)-5-((2-methoxy)methoxy)deca-6,8-dienoate (45)

Alcohol 17 (2.28 g, 10.7 mmol, 1.00 eq.) in dry CH_2Cl_2 (100 mL) was treated with MEMCl (2.46 mL, 21.5 mmol, 2.00 eq.) and DIPEA (5.48 mL, 32.2 mmol, 3.00 eq.) at room temperature. The

OMEM

46

Ö

ÓН

EtO

solution was stirred for 23 h at 40 °C. 0.5M HCl was added, and the aqueous phase was extracted with EtOAc thrice. The combined organic phases were washed with brine and dried over Na₂SO₄. Removal of the solvent under vacuum and purification by column chromatography (SiO₂, pentane/EtOAc 7:1→5:1) gave MEM-protected alcohol 45 (2.55 g, 79%) as a colourless liquid in 79% yield. $\mathbf{R}_{f} = 0.43$ (hexanes/EtOAc 4:1); $[\alpha]_{D}^{20} - 96.0^{\circ}$ (c 1.0 in CHCl₃); IR v_{max}/cm^{-1} 2977 (m), 2931 (m), 2879 (m), 1733 (s), 1451 (m), 1372 (m), 1276 (m), 1260 (m), 1178 (m), 1135 (m), 1089 (m), 1023 (s), 990 (s), 931 (w), 852 (m), 765 (s), 750 (s); *E,E*-isomer ¹**H-NMR** (500 MHz, CDCl₃) δ 6.15 (dd, 1H, J = 10.5, 15.3 Hz), 6.02 (ddq, 1H, J = 1.3, 10.5, 15.1 Hz), 5.70 (dq, 1H, J = 6.8, 15.1 Hz), 5.33 (dd, 1H, J = 8.2, 15.3 Hz), 4.76 (d, 1H, J =7.1 Hz), 4.61 (d, 1H, J = 7.1 Hz), 4.11 (q, 2H, J = 7.1 Hz), 4.04 (m, 1H), 3.79 (ddd, 1H, J = 2.9, 4.9, 10.3 Hz), 3.60 (m, 1H), 3.55 (m, 2H), 3.39 (s, 3H), 2.30 (t, 2H, *J* = 7.4 Hz), 1.74 (dd, 3H, J = 1.3, 6.8 Hz), 1.73-1.48 (m, 4H), 1.24 (t, 3H, J = 7.1 Hz) ppm; significant signals *E*,*Z*-isomer ¹**H-NMR** (500 MHz, CDCl₃) δ 6.49 (ddt, 1H, J = 0.9, 11.1, 15.3 Hz), 5.98 (m, 1H), 5.51 (dqu, 1H, J = 7.0, 10.7 Hz), 5.33 (dd, 1H, J = 8.0, 15.3 Hz), 4.79 (d, 1H, J = 7.1 Hz), 4.63 (d, 1H, J = 7.1 Hz), 4.12 (q, 1H, 7.1 Hz), 4.11 (m, 1H), 3.82 (m, 1H), 3.65 (m, 1H), 3.57 (m, 2H), 3.39 (s, 3H), 2.31 (m, 2H), 1.25 (t, 3H, J = 7.1 Hz) ppm; *E*,*E*-isomer ¹³C-NMR (125 MHz, CDCl₃) δ 173.7, 133.7, 130.8, 130.5, 130.0, 92.6, 76.2, 71.9, 67.0, 60.4, 59.2, 35.2, 34.3, 21.1, 18.3, 14.4 ppm; significant signals *E*,*Z*-isomer ¹³C-NMR (125 MHz, CDCl₃) δ 132.4, 128.6, 128.4, 127.4, 92.7, 76.4, 67.1 ppm; **HRMS** ESI m/z [M + Na]⁺ calcd. for C₁₆H₂₈O₅Na 323.18290 found 323.18275.

Ethyl (5R,6E,8E)-2-hydroxy-5-((2-methoxyethoxy)methoxy)deca-6,8-dienoate (46)

Ester 45 (2.50 g, 8.32 mmol, 1.00 eq.) was dissolved in dry THF (83 mL) and treated with KHMDS (12.5 mL, 12.5 mmol, 1.50 eq.) at -78 °C. The solution was stirred for 30 min, before MoOPH

phase was extracted thrice with EtOAc, organic phases were washed with H₂O, brine and dried over Na₂SO₄. Crude product was purified by column chromatography (SiO₂, pentane/EtOAc 4:1 \rightarrow 3:1) to yield α -hydroxylated ester 46 (2.34 g, 89%, dr 1.6:1) as a colourless liquid. R_f = 0.24 (hexanes/EtOAc 4:1); $[\alpha]_D^{20} - 93.9^\circ$ (c 1.0 in CHCl₃); **IR** v_{max} /cm⁻¹ 3462 (w), 2980 (m), 2933 (m), 2884 (m), 1735 (m), 1449 (w), 1368 (w), 1261 (m), 1276 (m), 1199 (m), 1103 (m), 1024 (m), 991 (m), 853 (w), 764 (s), 750 (s); *E,E*-isomer major diastereomer ¹H-NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 6.16 \text{ (dd, 1H, } J = 10.5, 15.2 \text{ Hz}\text{)}, 6.02 \text{ (dd, 1H, } J = 10.4, 15.0 \text{ Hz}\text{)}, 5.72$ (dq, 1H, J = 6.8, 15.0 Hz), 5.34 (m, 1H), 4.76 (d, 1H, J = 6.9 Hz), 4.62 (d, 1H, J = 6.9 Hz), 4.23(m, 2H), 4.18 (m, 1H), 4.09 (m, 1H), 3.80 (m, 1H), 3.60 (m, 1H), 3.55 (m, 2H), 3.39 (s, 3H), 2.93 (m, 1H), 1.88 (m, 1H), 1.75 (d, 3H, J = 6.8 Hz), 1.78-1.58 (m, 3H), 1.29 (t, 3H, J = 7.1 Hz) ppm; significant signals *E*,*E*-isomer minor diastereomer ¹H-NMR (500 MHz, CDCl₃) δ 4.62 (d, 1H, J = 7.0 Hz), 3.39 (s, 3H), 2.89 (m, 1H), 1.29 (t, 3H, J = 7.1 Hz) ppm; significant signals *E*,*Z*-isomer major diastereomer ¹**H-NMR** (500 MHz, CDCl₃) δ 6.49 (dd, 1H, *J* = 11.0, 15.2 Hz), 5.98 (m, 1H), 5.52 (dq, 1H, J = 7.1, 10.6 Hz), 5.34 (m, 1H), 4.78 (d, 1H, J = 7.1 Hz), 4.64 (d, 1H, J = 7.1 Hz), 3.40 (s, 3H) ppm; *E*,*E*-isomer major diastereomer ¹³C-NMR (125) MHz, CDCl₃) δ 175.1, 133.6, 130.6, 130.4, 129.6, 92.5, 76.2, 71.8, 70.4, 67.0, 61.6, 59.1, 31.1, 30.4, 18.1, 14.2 ppm; significant signals *E*,*E*-isomer minor diastereomer ¹³C-NMR (125 MHz, CDCl₃) *δ* 175.1, 133.6, 130.6, 130.4, 129.6, 92.5, 76.0, 71.8, 70.1, 67.0, 61.7, 59.1, 30.7, 30.2 ppm; significant signals *E*,*Z*-isomer major diastereomer ¹³C-NMR (125 MHz, CDCl₃) δ 133.1, 128.5, 128.3, 127.3, 92.6, 76.4 ppm; **HRMS** ESI m/z [M + Na]⁺ calcd. for C₁₆H₂₈O₆Na 339.17781 found 339.17700.

Fig. S7. Significant signals in ¹H-NMR-spectrum of ester **46**.

Ethyl (5*R*,6*E*,8*E*)-5-((2-methoxy)methoxy)-2-((triethylsilyl)oxy)deca-6,8-dienoate (47)

To a solution of α -hydroxylated ester **46** (2.29 g, 7.22 mmol, 1.00 eq.) in dry CH₂Cl₂ (72 mL) TESCl (2.42 mL, 14.4 mmol, 2.00 eq.), imidazole (1.47 g, 21.7 mmol, 3.00 eq.) and DMAP

(88.2 mg, 722 µmol, 0.10 eq.) were added at 0 °C. The suspension was stirred at 40 °C for 4.5 h. Sat. aq. NH₄Cl solution was added. The aqueous phase was extracted with CH₂Cl₂ thrice and organic phases were dried over Na₂SO₄. The crude product was purified by column chromatography (SiO₂, pentane/EtOAc 8:1) to give TES-protected α -hydroxylated ester 47 (3.27 g, quant.) as a colourless liquid. **R**_f = 0.24 (hexanes/EtOAc 4:1); $[\alpha]_D^{20}$ -61.7° (c 1.0 in CHCl₃); **IR** *v*_{max}/cm⁻¹ 2956 (m), 2914 (m), 2878 (m), 1752 (m), 1726 (m), 1458 (m), 1276 (m), 1261 (m), 1134 (m), 1023 (m), 990 (m), 764 (s), 750 (s); *E*,*E*-isomer major diastereomer ¹**H-NMR** (500 MHz, CDCl₃) δ 6.14 (dd, 1H, *J* = 10.5, 15.2 Hz), 6.02 (ddq, 1H, *J* = 1.4, 10.4, 15.0 Hz), 5.69 (dq, 1H, *J* = 6.8, 15.0 Hz), 5.33 (dd, 1H, *J* = 8.2, 15.2 Hz), 4.76 (d, 1H, *J* = 6.9 Hz), 4.61 (d, 1H, *J* = 6.9 Hz), 4.17 (m, 3H), 4.04 (m, 1H), 3.77 (m, 1H), 3.59 (m, 1H), 3.55
(m, 2H), 3.38 (s, 3H), 1.89-1.76 (m, 1H), 1.75 (d, 3H, J = 6.5 Hz), 1.73-1.58 (m, 3H), 1.27 (t, 3H, J = 7.1 Hz), 0.95 (t, 9H, J = 8.0 Hz), 0.61 (q, 6H, J = 8.0 Hz) ppm; significant signals *E*,*E*-isomer minor diastereomer ¹H-NMR (500 MHz, CDCl₃) δ 4.76 (d, 1H, J = 6.9 Hz), 3.39 (s, 3H), 1.75 (d, 3H, J = 6.7 Hz), 1.27 (t, 3H, J = 7.1 Hz) ppm; significant signals *E*,*Z*-isomer major diastereomer ¹H-NMR (500 MHz, CDCl₃) δ 6.48 (dd, 1H, J = 11.0, 15.3 Hz), 5.98 (m, 1H), 5.51 (dq, 1H, J = 7.2, 10.8 Hz), 5.44 (dd, 1H, J = 8.2, 15.2), 4.77 (d, 1H, J = 7.1 Hz), 4.63 (d, 1H, J = 7.1 Hz), 4.10 (m, 1H), 3.39 (s, 3H) ppm; *E*,*E*-isomer major diastereomer ¹³C-NMR (125 MHz, CDCl₃) δ 173.8, 133.7, 130.8, 130.4, 129.9, 92.6, 76.6, 72.2, 71.9, 67.0, 60.9, 59.2, 31.5, 31.4, 18.3, 14.4, 6.86, 4.71 ppm; significant signals *E*,*E*-isomer minor diastereomer ¹³C-NMR (125 MHz, CDCl₃) δ 130.8, 130.4, 129.9, 92.5, 76.1, 71.8, 31.2, 31.1 ppm; significant signals *E*,*Z*-isomer major diastereomer ¹³C-NMR (125 MHz, CDCl₃) δ 130.8, 130.4, 129.9, 92.5, 76.1, 71.8, 31.2, 31.1 ppm; significant signals *E*,*Z*-isomer major diastereomer ¹³C-NMR (125 MHz, CDCl₃) δ 130.8, 130.4, 129.9, 92.6, 76.1, 71.8, 31.2, 31.1 ppm; significant signals *E*,*Z*-isomer major diastereomer ¹³C-NMR (125 MHz, CDCl₃) δ 130.8, 130.4, 129.9, 92.5, 76.1, 71.8, 31.2, 31.1 ppm; significant signals *E*,*Z*-isomer major diastereomer ¹³C-NMR (125 MHz, CDCl₃) δ 130.8, 130.4, 129.9, 92.5, 76.1, 71.8, 31.2, 31.1 ppm; significant signals *E*,*Z*-isomer major diastereomer ¹³C-NMR (125 MHz, CDCl₃) δ 130.8, 130.4, 129.9, 92.5, 76.1, 71.8, 31.2, 31.1 ppm; significant signals *E*,*Z*-isomer major diastereomer ¹³C-NMR (125 MHz, CDCl₃) δ 132.34, 132.29, 128.7, 128.4 ppm; HRMS ESI *m*/*z* [M + Na]⁺ calcd. for C₂₂H₄₂O₆SiNa 453.26429 found 453.26346.

(S)-4-Benzyl-3-((2*E*,4*R*,7*R*,8*E*,10*E*)-7-((2-methoxyethoxy)methoxy)-4-((triethylsilyl)oxy)-dodeca-2,8,10-trienoyl)-5,5-dimethyloxazolidin-2-one (16)

Ester 47 (1.20 g, 2.79 mmol, 1.00 eq.) in dry toluene (28 mL) was treated dropwise with DIBAL (4.18 mL, 4.18 mmol, 1.50 eq.) at -78 °C. The reaction was stirred at this temperature for 5 h, before it

was stopped by addition of acetone (1 mL) and sat. aq. Na,K-tartrate solution. The two-phase mixture was stirred vigorously at room temperature for 2 h. The organic phase was separated, and the aqueous phase was extracted with EtOAc four times. The combined organic phases were washed with H₂O and dried over Na₂SO₄. Aldehyde **48** was used without further purification. **R**_f = 0.24 (hexanes/EtOAc 4:1); **IR** v_{max} /cm⁻¹ 3435 (w), 2954 (m), 2933 (m), 2908 (m), 2877 (m), 1731 (m), 1696 (w), 1457 (m), 1414 (m), 1367 (m), 1240 (m), 1199 (w), 1104 (s), 1042 (s), 1018 (s), 975 (s), 849 (m), 809 (m), 741 (s); *E,E*-isomer major diastereomer ¹**H-NMR** (500 MHz, CDCl₃) δ 9.58 (t, 1H, *J* = 1.6 Hz), 6.14 (dd, 1H, *J* = 10.4, 15.8 Hz), 6.02 (ddq, 1H, *J* = 1.4, 10.5, 15.0 Hz), 5.70 (dq, 1H, *J* = 6.8, 15.0 Hz), 5.32 (dd, 1H, *J* = 8.1, 15.2 Hz), 4.76 (d, 1H, *J* = 7.0 Hz), 4.61 (d, 1H, *J* = 7.0 Hz), 4.03 (m, 1H), 3.97 (m, 1H), 3.77 (m, 1H), 3.59 (m, 1H), 3.55 (m, 2H), 3.38 (s, 3H), 1.80-1.57 (m, 4H), 1.75 (d, 3H, *J* = 6.5 Hz), 0.95 (t, 9H, *J* = 7.9 Hz), 0.61 (q, 6H, *J* = 7.9 Hz) ppm; significant signals *E*,*Z*-isomer major diastereomer ¹**H-NMR** (500 MHz, CDCl₃) δ 9.59 (t, 1H, *J* = 1.4 Hz), 6.48 (dd, 1H, *J* = 11.2, 15.2 Hz), 5.99 (m, 1H), 5.52 (dq, 1H, *J* = 7.1, 10.8 Hz), 5.44 (dd, 1H, *J* = 8.2, 15.2 Hz), 4.10 (m, 1H), 3.40 (s, 3H) ppm.

A solution of phosphonate **49** (1.24 g, 3.49 mmol, 1.25 eq.) in dry THF (7 mL) was treated with LiHMDS (3.35 mL, 3.35 mmol, 1.20 eq.) at 0 °C. After stirring for 1 h, crude aldehyde **48** (1.08 g, 2.79 mmol, 1.00 eq.) dissolved in dry

THF (3 mL) was added dropwise. The mixture was allowed to warm to room temperature overnight. Sat. aq. NH₄Cl solution stopped the reaction after 17 h of stirring. The aqueous phase was extracted with EtOAc thrice, combined organic phases were washed with H2O, brine and dried over Na₂SO₄. Removal of the solvent under vacuum and purification by column chromatography (SiO₂, pentane/EtOAc $8:1\rightarrow 6:1\rightarrow 4:1\rightarrow 2:1$) furnished trien 16 (1.18 g, 70%) over two steps) as a colourless oil. $\mathbf{R}_{\mathbf{f}} = 0.38$ (hexanes/EtOAc 4:1); $[\alpha]_D^{20}$ +27.4° (c 1.0 in CHCl₃); **IR** v_{max} /cm⁻¹ 2952 (m), 2936 (m), 2877 (m), 1778 (s), 1687 (m), 1640 (w), 1497 (w), 1456 (w), 1354 (m), 1329 (w), 1274 (w), 1242 (w), 1207 (w), 1180 (w), 1159 (w), 1100 (s), 1040 (s), 821 (w), 729 (m), 702 (w); *E,E*-isomer major diastereomer ¹H-NMR (500 MHz, CDCl₃) δ 7.39 (dt, 1H, J = 1.3, 15.3 Hz), 7.32-7.20 (m, 5H), 7.04 (ddd, 1H, J = 2.3, 5.2, 15.3 Hz), 6.14 (dd, 1H, J = 10.6, 15.2 Hz), 6.03 (dd, 1H, J = 10.6, 14.8 Hz), 5.69 (dg, 1H, J = 6.8, 14.8 Hz), 5.32 (dd, 1H, J = 8.3, 15.2 Hz), 4.76 (d, 1H, J = 7.0 Hz), 4.61 (d, 1H, J = 7.0 Hz), 4.55 (dt, 1H, J = 3.6, 9.6 Hz), 4.38 (m, 1H), 4.02 (m, 1H), 3.79 (m, 1H), 3.60 (m, 1H), 3.55 (m, 2H), 3.38 (s, 3H), 3.21 (m, 1H), 2.89 (tt, 1H, J = 6.0, 9.7 Hz), 1.75 (d, 3H, J = 6,7 Hz), 1.71-1.53 (m, 4H), 1.38 (s, 3H), 1.35 (s, 3H), 0.95 (t, 9H, *J* = 8.0 Hz), 0.61 (q, 6H, *J* = 8.0 Hz) ppm; significant signals *E*,*E*-isomer minor diastereomer ¹**H-NMR** (500 MHz, CDCl₃) δ 4.76 (d, 1H, J = 6.9 Hz), 3.39 (s, 3H), 1.37 (s, 3H), 1.36 (s, 3H), 0.96 (t, 3H, J = 7.9 Hz) ppm; significant signals *E*,*Z*-isomer major diastereomer ¹**H-NMR** (500 MHz, CDCl₃) δ 7.40 (dt, 1H, *J* = 1.5, 15.3 Hz), 6.48 (dd, 1H, J = 10.7, 15.3 Hz), 5.98 (m, 1H), 5.51 (dq, 1H, J = 7.1, 10.4 Hz), 5.44 (dd, 1H, J = 8.3, 15.3 Hz), 4.09 (m, 1H), 3.39 (s, 3H) ppm; E, E-isomer major diastereomer ¹³C-**NMR** (125 MHz, CDCl₃) *δ* 165.4, 152.8, 152.6, 137.2, 133.7, 130.8, 130.4, 130.0, 129.2, 128.8, 126.9, 119.6, 92.5, 82.2, 76.7, 72.0, 71.9, 67.0, 63.9, 59.2, 35.4, 33.5, 31.2, 28.8, 22.5, 18.3, 6.99, 4.95 ppm; significant signals *E,E*-isomer minor diastereomer ¹³C-NMR (125 MHz, CDCl₃) *δ* 165.3, 152.7, 137.3, 130.4, 130.0, 119.5, 82.2, 76.4, 71.8, 63.9, 33.4, 31.0, 28.7, 22.5 ppm; **HRMS** ESI m/z [M + Na]⁺ calcd. for C₃₄H₅₃NO₇SiNa 638.34835 found 638.34784.

(4*S*)-4-Benzyl-3-((1*S*,2*S*,4a*R*,5*R*,8a*S*)-5-((2-methoxyethoxy)methoxy)-2-methyl-8-((triethylsilyl)oxy)-1,2,4a,5,6,7,8,8a-octahydronaphthalene-1-carbonyl)-5,5-dimethyloxazolidin-2-one (15)

Trien **16** (513 mg, 833 μ mol, 1.00 eq.) was dissolved in dry toluene (28 mL) and heated at 80 °C for 2 days. Temperature was raised to 100°C and stirring was continued for 1 d. The solvent was removed at the rotary evaporator. Crude product was purified by column chromatography (SiO₂, pentane/EtOAc 6:1 \rightarrow 8:1) to give Diels-Alder-product **15** (219 mg, 43%,

de >96%) as a colourless resin. **R**_f = 0.50 (hexanes/EtOAc 4:1); $[\alpha]_D^{20}$ +63.3° (c 1.0 in CHCl₃); **IR** *v*_{max}/cm⁻¹ 3030 (w), 2934 (m), 2876 (m), 1776 (s), 1690 (m), 1497 (w), 1456 (m), 1393 (w), 1374 (m), 1352 (m), 1301 (w), 1273 (m), 1242 (m), 1207 (w), 1221 (w), 1180 (w); 1159 (w), 1129 (w), 1101 (s), 1086 (s), 1039 (s), 1005 (s), 984 (m), 919 (m), 882 (w), 839 (w), 821 (m), 805 (w), 764 (w), 727 (s), 702 (s); ¹**H-NMR** (500 MHz, CDCl₃) *δ* 7.32 (d, 4H, *J* = 4.4 Hz), 7.24 (sex, 1H, *J* = 4.4 Hz), 5.88 (d, 1H, *J* = 10.0 Hz), 5.61 (ddd, 1H, *J* = 2.6, 4.8, 10.0 Hz), 4.89 (d, 1H, *J* = 7.1 Hz), 4.75 (d, 1H, *J* = 7.1 Hz), 4.57 (dd, 1H, *J* = 2.3, 11.0 Hz), 4.30 (s, 1H), 4.05 (dd, 1H, *J* = 5.9, 11.2 Hz), 3.78 (dt, 1H, *J* = 4.6, 11.1 Hz), 3.73 (dt, 1H, *J* = 4.6, 11.1 Hz), 3.58 (t, 2H, *J* = 4.6 Hz), 3.39 (s, 3H), 3.33 (dd, 1H, *J* = 2.1, 14.3 Hz), 3.24 (dt, 1H, *J* = 4.4, 10.7 Hz), 2.84 (m, 1H), 2.79 (dd, 1H, *J* = 11.2, 14.3 Hz), 2.53 (tq, 1H, *J* = 2.0, 10.7 Hz), 1.93 (m, 1H), 1.81 (dq, 1H, *J* = 3.2, 14.0 Hz), 1.77-1.67 (m, 2H), 1.55 (m, 1H), 1.33 (d, 6H, *J* = 6.9 Hz), 0.93 (t, 9H, *J* = 7.9 Hz), 0.85 (d, 3H, *J* = 7.1 Hz), 0.60-0.46 (m, 6H) ppm; ¹³C-NMR (125 MHz, CDCl₃) *δ* 174.6, 151.8, 137.3, 131.1, 129.0, 128.9, 126.9, 126.2, 94.8, 81.5, 79.6, 71.9, 67.2, 66.0, 64.0, 59.2, 43.7, 39.0, 38.8, 35.2, 31.9, 31.0, 29.3, 27.0, 23.2, 17.7, 7.16, 5.43 ppm; HRMS ESI *m/z* [M + Na]⁺ calcd. for C₃₄H₅₃NO₇SiNa 638.34835 found 638.34778.

(4*S*)-4-Benzyl-3-((1*S*,2*S*,4a*R*,5*R*,8a*S*)-8-hydroxy-5-((2-methoxyethoxy)methoxy)-2methyl-1,2,4a,5,6,7,8,8a-octahydronaphthalene-1-carbonyl)-5,5-dimethyloxazolidin-2one (50)

Diels-Alder product **15** (198 mg, 321 μ mol, 1.00 eq.) was dissolved in THF *p.a.* (3.2 mL) and treated with HF·pyridine (459 μ L, 17.7 mmol, 55.0 eq.) at 0 °C. The solution was stirred 15 h at this temperature and quenched with sat. aq. NaHCO₃ solution. The aqueous phase was extracted with EtOAc four times, combined organic phases were washed

with brine and dried over Na₂SO₄. The deprotected alcohol **50** (161 mg, quant.) was used without further purification. $\mathbf{R_f} = 0.42$ (hexanes/EtOAc 1:1); $[\alpha]_D^{20}$ +69.5° (c 1.0 in MeOH); **IR** v_{max}/cm^{-1} 3485 (w), 2927 (m), 2880 (m), 1775 (s), 1692 (m), 1497 (w), 1455 (m), 1394 (m), 1373 (m), 1353 (m), 1297 (m), 1276 (m), 1230 (m), 1207 (m), 1176 (m), 1159 (m), 1101 (s), 1087 (s), 1036 (s), 956 (m), 921 (w), 844 (w), 822 (w), 766 (w), 730 (s), 700 (m); ¹**H-NMR** (500 MHz, CDCl₃) δ 7.32-7.27 (m, 4H), 7.23 (m, 1H), 5.88 (d, 1H, J = 10.0 Hz), 5.63 (ddd, 1H, J = 2.6, 4.6, 10.0 Hz), 4.88 (d, 1H, J = 7.1 Hz), 4.74 (d, 1H, J = 7.1 Hz), 4.56 (dd, 1H, J = 4.0, 9.7 Hz), 4.10 (m, 1H), 4.07 (dd, 1H, J = 5.8, 11.2 Hz), 3.77 (dt, 1H, J = 4.6, 11.1 Hz), 3.71 (dt, 1H, J = 4.6, 11.1 Hz), 3.56 (t, 2H, J = 4.6 Hz), 3.39 (s, 3H), 3.24 (m, 1H), 3.14 (dd, 1H, J = 4.0, 14.3 Hz), 2.88 (dd, 1H, J = 9.7, 14.3 Hz), 2.78 (m, 1H), 2.31 (tq, 1H, J = 2.6, 11.2 Hz), 1.98 (m, 1H), 1.84 (m, 1H), 1.74 (dt, 1H, J = 2.2, 11.2 Hz), 1.55 (m, 2H), 1.35 (d, 6H, J = 7.7 Hz), 1.27 (d, 1H, J = 5.3 Hz), 0.80 (d, 3H, J = 7.1 Hz) ppm; ¹³C-NMR (125 MHz, CDCl₃) δ 174.0, 152.7, 137.0, 131.8, 129.2, 128.8, 127.0, 125.8, 94.7, 82.5, 79.0, 71.9, 67.2, 65.3, 63.8, 59.2, 43.9, 39.9, 38.4, 35.6, 31.4, 31.3, 28.3, 26.7, 22.3, 17.4 ppm; HRMS ESI m/z [M + Na]⁺ calcd. for C₂₈H₃₉NO₇Na 524.26187 found 524.26081.

Methyl(1*S*,2*S*,4a*R*,5*R*,8a*S*)-8-hydroxy-5-((2-methoxyethoxy)methoxy)-2-methyl-1,2,4a,5,6,7,8,8a-octahydronaphthalene-1-carboxylate (51)

Alcohol **50** (554 mg, 1.10 mmol, 1.00 eq.) in dry CH_2Cl_2 (11 mL) was treated with NaOMe (50 wt%, 505 μ L, 2.21 mmol, 2.00 eq.) at 0 °C. After stirring for 3 h, sat. aq. NH₄Cl solution was added, and the aqueous phase was extracted wit EtOAc four times. The combined organic phases were washed with sat. aq. NaHCO₃ solution as well as brine and dried over Na₂SO₄.

Removal of the solvent under reduced pressure and purification by column chromatography (SiO₂, pentane/EtOAc 3:1→2:1→2:3→1:2) gave methylester **51** (325 mg, 90%) in 90% yield as a colourless oil. **R**_f = 0.35 (hexanes/EtOAc 1:1); $[\alpha]_D^{20}$ +82.8° (c 1.0 in MeOH); **IR** *v_{max}*/cm⁻¹ 3484 (w), 3024 (w), 2932 (m), 2877 (m), 1732 (s), 1453 (w), 1436 (w), 1366 (w), 1296 (w), 1243 (w), 1199 (m), 1172 (m), 1127 (s), 1107 (s), 1032 (s), 1019 (s), 956 (m), 937 (m), 871 (m), 849 (w), 775 (w), 750 (m), 730 (m), 676 (w); ¹**H-NMR** (500 MHz, CDCl₃) δ 5.89 (d, 1H, *J* = 10.0 Hz), 5.61 (ddd, 1H, *J* = 2.6, 4.4, 10.0 Hz), 4.88 (d, 1H, *J* = 7.1 Hz), 4.74 (d, 1H, *J* = 7.1 Hz), 4.21 (s, 1H), 3.77 (dt, 1H, *J* = 4.6, 11.1 Hz), 3.71 (dt, 1H, *J* = 4.6, 11.1 Hz), 3.69 (s, 3H), 3.56 (t, 2H, *J* = 4.6 Hz), 3.39 (s, 3H), 3.23 (dt, 1H, *J* = 3.9, 10.6 Hz), 2.90 (dd, 1H, *J* = 6.0, 11.6 Hz), 2.59 (m, 1H), 2.34 (tq, 1H, *J* = 2.6, 10.6 Hz), 1.99 (m, 1H), 1.84 (m, 1H), 1.72-1.56

(m, 3H), 1.28 (m, 1H), 0.90 (d, 3H, J = 7.1 Hz) ppm; ¹³C-NMR (125 MHz, CDCl₃) δ 174.2, 131.5, 126.2, 94.7, 79.2, 71.9, 67.2, 65.4, 59.2, 51.5, 45.1, 39.6, 38.1, 32.2, 31.5, 26.7, 17.6 ppm; HRMS ESI m/z [M + Na]⁺ calcd. for C₁₇H₂₈NO₆Na 351.17781 found 351.17722.

Methyl(1*S*,2*S*,4a*R*,5*R*,8a*S*)-5-((2-methoxyethoxy)methoxy)-2-methyl-8-methylene-1,2,4a,5,6,7,8,8a-octahydronaphthalene-1-carboxylate (14)

To a solution of alcohol **51** (305 mg, 928 μ mol, 1.00 eq.) in CH₂Cl₂ *p.a.* (9.3 mL) was added DMP (590 mg, 1.39 mmol, 1.50 eq.) and NaHCO₃ (390 mg, 4.64 mmol, 5.00 eq.) at 0 °C. The suspension was allowed to warm to room temperature and stirred for 3 h. After addition of sat. aq. Na₂S₂O₃

solution and sat. aq. NaHCO₃ solution, the aqueous phase was extracted with EtOAc four times. The combined organic phases were washed with sat. aq. NaHCO₃ solution, sat. aq. Na₂S₂O₃ solution as well as brine and dried over Na₂SO₄. The crude product was purified by column chromatography (SiO₂, pentane/EtOAc 3:1 \rightarrow 3:2 \rightarrow 1:1) to give ketone **52** (290 mg, 96%) as a colourless resin in 96% yield. The product wasn't further purified, but directly used in the next reaction. **R**_f = 0.53 (hexanes/EtOAc 1:1); $[\alpha]_D^{20}$ +111.1° (c 1.0 in MeOH); **IR** *v*_{max}/cm⁻¹ 3035 (w), 2958 (m), 2928 (m), 2877 (m), 1737 (s), 1720 (s), 1455 (m), 1436 (m), 1375 (w), 1326 (w), 1255 (m), 1197 (m), 1174 (m), 1145 (m), 1097 (s), 1034 (s), 927 (w), 854 (w), 814 (w), 742 (m); ¹**H-NMR** (500 MHz, CDCl₃) δ 5.84 (d, 1H, *J* = 10.0 Hz), 5.70 (ddd, 1H, *J* = 2.6, 4.4, 10.0 Hz), 4.89 (d, 1H, *J* = 7.1 Hz), 4.79 (d, 1H, *J* = 7.1 Hz), 3.77 (dt, 1H, *J* = 4.7, 10.9 Hz), 3.71 (m, 1H), 3.69 (s, 3H), 3.57 (t, 2H, *J* = 4.6 Hz), 3.40 (s, 3H), 2.84 (dd, 1H, *J* = 6.4, 11.5 Hz), 2.71 (t, 1H, *J* = 12.0 Hz), 2.66-2.47 (m, 4H), 2.39 (m, 1H), 2.17 (m, 1H), 1.71 (dq, 1H, *J* = 5.7, 13.4 Hz), 0.86 (d, 3H, *J* = 7.2 Hz) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 209.6, 174.2, 132.7, 124.7, 95.2, 77.7, 71.8, 67.5, 59.2, 51.7, 46.8, 45.1, 42.6, 38.8, 32.9, 31.0, 17.8 ppm; **HRMS** ESI *m*/*z* [M + Na]⁺ calcd. for C₁₇H₂₆O₆Na 349.16216 found 349.16156.

Methylphosphoniumbromide (2.14 g, 6.00 mmol, 1.20 eq.) in dry THF (10 mL) was treated with KO*t*Bu (561 mg, 5.00 mmol, 1.00 eq.) at 0 °C. The suspension was stirred for 45 min. A solution of ketone **52** (268 mg, 821 μ mol, 1.00 eq.) in dry THF (4.3 mL) was treated with the suspension of

ylide (0.5M, 3.28 mL, 1.64 mmol, 2.00 eq.) at 0 °C and stirred for 3 h at room temperature. Sat. aq. NH₄Cl solution was added, and the aqueous phase was extracted with EtOAc four times. The combined organic phases were dried over Na₂SO₄ and the solvents were removed *in vacuo*. Purification of the crude product by column chromatography (SiO₂, pentane/EtOAc 5:1) delivered decalin **14** (240 mg, 90%) as a colourless liquid in 90% yield. **R**_f = 0.74 (hexanes/EtOAc 1:1); $[\alpha]_D^{20}$ +101.6° (c 1.0 in MeOH); **IR** v_{max} /cm⁻¹ 2934 (m), 2877 (m), 1742 (s), 1653 (w), 1455 (m), 1436 (m), 1365 (w), 1325 (m), 1300 (w), 1256 (m), 1192 (m), 1132 (s), 1109 (s), 1058 (m), 1032 (s), 931 (m), 892 (m), 852 (m), 818 (w), 775 (w), 745 (m), 730 (m), 670 (w); ¹**H-NMR** (500 MHz, CDCl₃) δ 5.84 (dt, 1H, J = 1.4, 10.0 Hz), 5.68 (ddd, 1H, J = 2.6, 4.6, 10.0 Hz), 4.87 (d, 1H, J = 7.1 Hz), 4.75 (d, 1H, J = 7.1 Hz), 4.73 (s, 1H), 4.39 (s, 1H), 3.76 (dt, 1H, J = 4.7, 11.0 Hz), 3.70 (dt, 1H, J = 4.7, 11.0 Hz), 3.67 (s, 3H), 3.57 (t, 2H, J = 4.6 Hz), 3.40 (dt, 1H, J = 4.6, 10.8 Hz), 3.40 (s, 3H), 2.92 (dd, 1H, J = 6.3, 11.9 Hz), 2.62 (m, 1H), 2.38-2.28 (m, 2H), 2.23-2.13 (m, 2H), 1.87 (tq, 1H, J = 2.2, 10.8 Hz), 1.46-1.35 (m, 1H), 0.89 (d, 3H, J = 7.2 Hz) ppm; ¹³C-NMR (125 MHz, CDCl₃) δ 174.7, 150.3, 131.7, 125.4, 104.7, 95.0, 79.5, 71.9, 67.2, 59.2, 51.5, 48.5, 45.4, 38.5, 34.9, 34.7, 31.7, 18.3 ppm; **HRMS** ESI m/z [M + H]⁺ calcd. for C₁₈H₂₉O₅ 325.20095 found 325.19994.

(1*S*,2*S*,4a*R*,5*R*,8a*S*)-5-((2-Methoxyethoxy)methoxy)-2-methyl-8-methylene-1,2,4a,5,6,7,8,8a-octahydronaphthalene-1-carbaldehyde (53)

Ester 14 (220 mg, 678 μ mol, 1.00 eq.) dissolved in dry CH₂Cl₂ (6.8 mL) was treated with DIBAL (2.03 mL, 2.03 mmol, 3.00 eq.) at 0 °C. After stirring at this temperature for 4 h another portion of DIBAL (339 μ L, 339 μ mol, 0.50 eq.) was added. As soon as TLC showed complete conversion of the

starting material, sat. aq. Na,K-tartrate solution was added and the two-phase mixture was stirred vigorously at room temperature for 45 min. The aqueous phase was extracted with EtOAc thrice, combined organic phases were washed with brine and dried over Na₂SO₄. Solvents were removed at the rotary evaporator. Crude product **SI-33** (211 mg, quant.) was used without further purification. **R**_f = 0.53 (hexanes/EtOAc 1:1); $[\alpha]_D^{20}$ +76.5° (c 0.9 in MeOH); **IR** *v*_{max}/cm⁻¹ 3424 (w), 3027 (w), 2930 (m), 2875 (m), 1649 (m), 1454 (m), 1394 (w), 1366 (m), 1296 (w), 1242 (w), 1200 (w), 1178 (w), 1155 (w), 1109 (m), 1086 (m), 1052 (s), 1037 (s), 1014 (s), 982 (m), 923 (m), 896 (m), 849 (w), 830 (w), 749 (m), 739 (m), 720 (w), 677 (w); ¹**H-NMR** (500 MHz, CDCl₃) δ 5.80 (d, 1H, *J* = 10.1 Hz), 5.76 (ddd, 1H, *J* = 1.9, 4.4, 10.1 Hz), 4.88 (s, 1H), 4.85 (d, 1H, *J* = 7.1 Hz), 4.76 (s, 1H), 4.74 (d, 1H, *J* = 7.1 Hz), 4.15 (dt, 1H, *J* = 4.7, 11.3 Hz), 3.76 (dt, 1H, *J* = 4.7, 10.9 Hz), 3.70 (dt, 1H, *J* = 4.7, 10.9 Hz), 3.56 (t, 2H, *J* = 4.7 Hz), 3.55 (m, 1H), 3.40 (s, 3H), 3.37 (dt, 1H, *J* = 4.5, 10.7 Hz), 2.50 (m, 1H), 2.31 (m, 2H), 2.21 (m, 1H), 2.05 (dt, 1H, *J* = 5.3 Hz), 0.99 (d, 3H, *J* = 7.1 Hz) pm; ¹³C-**NMR**

(125 MHz, CDCl₃) δ 150.3, 133.4, 125.2, 106.3, 95.0, 80.1, 71.9, 67.2, 62.1, 59.2, 50.6, 39.2, 38.5, 35.8, 35.6, 30.5, 16.4 ppm; **HRMS** ESI *m*/*z* [M + H]⁺ calcd. for C₁₇H₂₉O₄ 297.20604 found 297.20509.

A solution of alcohol **SI-33** (180 mg, 607 μ mol, 1.00 eq.) in CH₂Cl₂ *p.a.* (6 mL) was treated with NaHCO₃ (255 mg, 3.04 mmol, 5.00 eq.) and DMP (386 mg, 911 μ mol, 1.50 eq.) at 0 °C. The suspension was stirred at this temperature for 1 h and at room temperature for 2 h. Sat. aq. NaHCO₃

solution and sat. aq. Na₂S₂O₃ solution were added. The aqueous phase was extracted with EtOAc thrice, the combined organic phases were washed with sat. aq. NaHCO₃ solution, sat. Na₂S₂O₃ aq. solution as well as brine and dried over Na₂SO₄. The crude product was purified by column chromatography (SiO₂, pentane/EtOAc $6:1\rightarrow5:1$) to give aldehyde **53** (163 mg, 91%) as a colourless liquid. **R**_f = 0.71 (hexanes/EtOAc 1:1); $[\alpha]_D^{20}$ +43.0° (c 0.4 in MeOH); **IR** ν_{max}/cm^{-1} 2929 (m), 2878 (m), 1720 (m), 1652 (w), 1455 (m), 1366 (w), 1261 (m), 1199 (w), 1166 (w), 1102 (s), 1094 (s), 1032 (s), 895 (m), 849 (w), 803 (m), 741 (m); ¹**H-NMR** (500 MHz, CDCl₃) δ 9.64 (d, 1H, J = 4.3 Hz), 5.87 (dt, 1H, J = 1.5, 10.1 Hz), 5.67 (ddd, 1H, J = 2.6, 4.5, 10.1 Hz), 4.88 (d, 1H, J = 7.1 Hz), 4.82 (s, 1H), 4.76 (d, 1H, J = 7.1 Hz), 4.38 (s, 1H), 3.77 (dt, 1H, J = 4.8, 10.8 Hz), 3.71 (dt, 1H, J = 4.8, 10.8 Hz), 3.57 (t, 2H, J = 4.8 Hz), 3.44 (dt, 1H, J = 4.6, 10.7 Hz), 3.40 (s, 3H), 2.74-2.62 (m, 2H), 2.42-2.29 (m, 3H), 2.18 (dt, 1H, J = 4.6, 13.5 Hz), 1.92 (tq, 1H, J = 2.1, 10.7 Hz), 1.44 (m, 1H), 1.01 (d, 3H, J = 6.9 Hz) ppm; ¹³C-NMR (125 MHz, CDCl₃) δ 207.5, 148.8, 132.0, 125.8, 107.5, 94.9, 79.3, 71.9, 67.3, 59.2, 50.3, 48.5, 37.4, 34.74, 34.67, 32.4, 16.9 ppm; **HRMS** ESI m/z [M + H]⁺ calcd. for C₁₇H₂₇O₄ 295.19039 found 295.18976.

(1*S*,2*S*,4a*R*,5*R*,8a*S*)-5-((2-Methoxyethoxy)methoxy)-2-methyl-8-methylene-1,2,4a,5,6,7,8,8a-octahydronaphthalene-1-carbonyl cyanide (54)

Aldehyde **53** (86.2 mg, 292 μ mol, 1.00 eq.) in dry CH₂Cl₂ (3 mL) was treated with TMSCN (110 μ L, 876 μ mol, 3.00 eq.) and dry NEt₃ (121 μ L, 876 μ mol, 3.00 eq.) at 0 °C. The solution was stirred at this temperature for 20 min and at room temperature for 4 h. The volatiles were removed at the rotary

0_∖ H

MEMŌ 53

evaporator. Crude product was dissolved in EtOH *p.a.* and NH₄F (48.7 mg, 1.31 mmol, 4.50 eq.) was added at 0 °C. After 2 h of stirring TLC showed complete conversion of the starting material. H₂O was added and the aqueous phase was extracted with EtOAc thrice. Combined organic phases were washed with brine and dried over Na₂SO₄. The solvents were

removed under reduced pressure and the oily, colourless product SI-34 (92.3 mg, quant., dr 1.1:1) was used without further purification. $\mathbf{R}_{\mathbf{f}} = 0.64$ (hexanes/EtOAc 1:1); $[\boldsymbol{\alpha}]_{\mathbf{p}}^{20} + 61.1^{\circ}$ (c 0.5 in MeOH); IR v_{max}/cm⁻¹ 3385 (m), 3076 (w), 3030 (w), 2933 (m), 2881 (m), 1651 (m), 1455 (m), 1395 (w), 1366 (w), 1296 (w), 1244 (w), 1170 (m), 1098 (s), 1036 (s), 894 (m), 848 (m), 754 (m), 737 (w), 677 (w); major diastereomer ¹H-NMR (500 MHz, CDCl₃) δ 5.83 (d, 1H, J = 10.0 Hz), 5.74 (ddd, 1H, J = 2.5, 5.1, 10.0 Hz), 5.30 (m, 1H), 4.93 (s, 1H), 4.85 (d, 1H, 1), 4.85 (d, 1H), 4.85 (d J = 7.1 Hz), 4.74 (d, 1H, J = 7.1 Hz), 4.68 (s, 1H), 3.75 (dt, 1H, J = 4.7, 10.9 Hz), 3.69 (dt, 1H, J = 4.7, 10.9 Hz), 3.56 (t, 2H, J = 4.7 Hz), 3.43 (m, 1H), 3.39 (s, 3H), 2.73 (m, 1H), 2.55 (m, 1H), 2.40-2.25 (m, 3H), 2.22-1.95 (m, 3H), 1.44 (m, 1H), 1.19 (d, 3H, J = 7.1 Hz) ppm; minor diastereomer ¹H-NMR (500 MHz, CDCl₃) δ 5.81 (d, 1H, J = 10.0 Hz), 5.72 (ddd, 1H, J = 2.5, 5.1, 10.0 Hz), 5.30 (m, 1H), 4.94 (s, 1H), 4.85 (d, 1H, *J* = 7.1 Hz), 4.74 (d, 1H, *J* = 7.1 Hz), 4.65 (s, 1H), 3.75 (dt, 1H, J = 4.7, 10.9 Hz), 3.69 (dt, 1H, J = 4.7, 10.9 Hz), 3.56 (t, 2H, J = 4.7 Hz), 3.43 (m, 1H), 3.40 (s, 3H), 2.63 (m, 1H), 2.35 (m, 3H), 2.22-1.95 (m, 4H), 1.44 (m, 1H), 1.21 (d, 3H, J = 7.1 Hz) ppm; major diastereomer ¹³C-NMR (125 MHz, CDCl₃) δ 150.7, 132.7, 125.4, 119.4, 106.2, 95.0, 79.8, 71.9, 67.2, 61.1, 59.2, 50.5, 40.0, 38.0, 35.8, 35.7, 31.7, 18.2 ppm; minor diastereomer ¹³C-NMR (125 MHz, CDCl₃) δ 150.1, 132.7, 125.4, 119.4, 105.7, 95.0, 79.9, 71.9, 67.2, 60.9, 59.2, 50.7, 40.0, 39.5, 35.65, 35.61, 29.3, 17.1 ppm; HRMS ESI m/z [M + H]⁺ calcd. for C₁₈H₂₈NO₄ 322.20128 found 322.20044.

A solution of cyanohydrin **SI-34** (87.0 mg, 271 μ mol, 1.00 eq.) in dry CH₂Cl₂ (2.7 mL) was treated with DMP (138 mg, 325 μ mol, 1.20 eq.) at 0 °C. The suspension was stirred for 1.5 h at this temperature, before it was filtered off over celite®. The solvent was removed *in vacuo* and the crude

product was purified by column chromatography (SiO₂, pentane/EtOAc 5:1) to give the acylcyanide **54** (71.3 mg, 82%) as a colourless liquid. $\mathbf{R}_{\mathbf{f}} = 0.77$ (hexanes/EtOAc 1:1); $[\boldsymbol{\alpha}]_D^{20}$ +111.3° (c 1.0 in MeOH); **IR** v_{max} /cm⁻¹ 2934 (m), 2879 (m), 2217 (w), 1708 (m), 1653 (w), 1455 (w), 1177 (m), 1096 (s), 1054 (s), 1026 (s), 897 (m), 744 (m); ¹**H-NMR** (500 MHz, CDCl₃) δ 5.91 (dt, 1H, J = 1.5, 10.1 Hz), 5.70 (ddd, 1H, J = 2.6, 4.6, 10.1 Hz), 4.87 (s, 1H), 4.87 (d, 1H, J = 7.1 Hz), 4.75 (d, 1H, J = 7.1 Hz), 4.29 (s, 1H), 3.76 (dt, 1H, J = 4.8, 10.9 Hz), 3.70 (dt, 1H, J = 4.8, 10.9 Hz), 3.56 (t, 2H, J = 4.8 Hz), 3.45 (dt, 1H, J = 4.6, 10.7 Hz), 3.39 (s, 3H), 3.18 (dd, 1H, J = 2.1, 10.7 Hz), 1.43 (m, 1H), 1.04 (d, 3H, J = 7.1 Hz) ppm; ¹³C-NMR (125 MHz, CDCl₃) δ 180.6, 148.8, 130.8, 125.9, 113.6, 107.2, 94.9, 79.0, 71.8, 67.4, 59.2, 52.7, 48.4, 37.8, 34.7, 34.3, 32.0, 17.4 ppm; **HRMS** ESI m/z [M + Na]⁺ calcd. for C₁₈H₂₅NO₄Na 342.16758 found 342.16726.

(1*S*,2*S*,4a*R*,5*R*,8a*S*)-5-Hydroxy-2-methyl-8-methylene-1,2,4a,5,6,7,8,8a-octahydronaphthalene-1-carbonyl cyanide (5)

MEM-ether **54** (25.1 mg, 78.3 μ mol, 1.00 eq.) in MeCN *p.a.* (1.5 mL) and H₂O (0.1 mL) was treated with LiBF₄ (183 mg, 1.96 mmol, 25.0 eq.) at room temperature. The mixture was stirred at 55 °C for 4.5 h. H₂O was added at 0 °C and the aqueous phase was extracted with EtOAc thrice. The combined organic

phases were washed with brine and dried over Na₂SO₄. Purification of the crude product by column chromatography (SiO₂, pentane/EtOAc 4:1 \rightarrow 3:1) gave product **5** (18.2 mg, 99%) as a colourless resin. **R**_f = 0.30 (hexanes/EtOAc 3:1); $[\alpha]_D^{20}$ +157.3° (c 1.0 in CHCl₃); **IR** *v*_{max}/cm⁻¹ 3375 (m), 3081 (w), 3032 (w), 2965 (w), 2939 (m), 2877 (m), 2217 (m), 1708 (s), 1652 (m), 1454 (m), 1377 (w), 1328 (w), 1260 (w), 1163 (m), 1062 (s), 1029 (s), 999 (w), 896 (m), 868 (w), 838 (w), 741 (s), 674 (m); ¹**H-NMR** (500 MHz, CDCl₃) δ 6.00 (dt, 1H, *J* = 1.4, 10.1 Hz), 5.73 (ddd, 1H, *J* = 2.6, 4.6, 10.1 Hz), 4.89 (s, 1H), 4.30 (s, 1H), 3.52 (dt, 1H, *J* = 4.6, 10.5 Hz), 3.18 (dd, 1H, *J* = 6.3, 12.2 Hz), 2.83 (m, 1H), 2.43 (m, 1H), 2.36 (t, 1H, *J* = 11.6 Hz), 2.30-2.22 (m, 2H), 1.84 (tq, 1H, *J* = 2.2, 10.6 Hz), 1.65 (br. s, 1H), 1.52-1.43 (m, 1H), 1.05 (d, 3H, *J* = 7.2 Hz) ppm; ¹³C-NMR (125 MHz, CDCl₃) δ 180.7, 148.8, 130.9, 125.8, 113.6, 107.4, 73.3, 52.6, 49.9, 37.8, 37.5, 34.5, 32.1, 17.4 ppm.

2.6 Failed routes to the decalin

One promising and short route started from dibromide **SI-35** which was elongated by a tin mediated reaction to alcohol **SI-36**. After TBS-protection and formylation an HWE- or Wittig olefination with an auxiliary based phosphonate **SI-39** or ylide **SI-40** was not possible. The following steps should have been performed analogously to the actual route.

Scheme S8. Attempt to synthesise triene SI-42 starting from vinylbromide SI-35. Reagents and conditions: a) Sn, CH₂O, cat. HBr, Et₂O/H₂O, rt, 19 h; b) TBSCl, imidazole, DMAP, CH₂Cl₂, rt, 21 h, c) 1. *t*BuLi, Et₂O, -78 °C, 30 min, 2. DMF, 3.5 h.

After failure of the olefination of an α,β -unsaturated aldehyde we had the plan to introduce the terminal alkene after the olefination reaction. Starting with malic acid (SI-43) it was first chemoselectively esterified and TBS-protected (\rightarrow SI-45). The carboxyl group was reduced to alcohol SI-46 which was iodinated in an Appel-reaction (\rightarrow SI-47). The following Fukuyama coupling was not successful due to low formation of the zinc organyl.

Scheme S9. Tested route to α -hydroxylated ester SI-48. Reagents and conditions: a) 1. (TFA)₂, rt, 3 h, 2. MeOH, rt, 22.5 h, b) 1. TBSCl, imidazole, DMAP, CH₂Cl₂, rt, 23 h, 2. K₂CO₃, H₂O, MeOH, rt, 2.5 h, c) 1. EtOCOCl, NMM, THF, -10 °C, 1.2 h, 2. NaBH₄, H₂O, 1 h; d) PPh₃, imidazole, I₂, THF, 0 °C, 1 h.

Scheme S10. Synthesis of thioester 18, phosphonate 49 and molybdenum reagent SI-57 needed for formation of decalin 5.

Reagents and conditions: a) DCC, DMAP, EtSH, CH_2Cl_2 , 0 °C \rightarrow rt, 21 h; b) SOCl₂, MeOH, 0 °C \rightarrow reflux, 20 h; c) Boc₂O, NEt₃, imidazole, CH_2Cl_2 , 17 h; d) MeMgBr, THF, 0 °C \rightarrow rt, 2 d; e) KOtBu, THF, 0 °C, 30 min; f) 1. *n*BuLi, THF, -80 °C, 10 min, 2. Bromoacetylbromide, -80 °C \rightarrow rt, 13.5 h; g) P(OMe)₃, 20.5 h, rt \rightarrow 60 °C; h) 1. H₂O₂, 40 °C, 4.25 h, 2. HMPA, rt, 5 min, 3. Pyridine, THF, rt, 15 min.

(S)-Ethyl (2E,4E)-hexa-2,4-dienethioate (18)

Sorbic acid (SI-49) (5.00 g, 44.6mmol, 1.00 eq.) was dissolved in dry CH_2Cl_2 (203 mL). DCC (9.66 g, 46.8 mmol, 1.05 eq.), DMAP (545 mg, 4.46 mmol, 0.10 eq.) were added at room temperature. At 0 °C EtSH

(4.29 mL, 58.0 mmol, 1.30 eq.) was dripped to the mixture and it was stirred for 21 h at room temperature. The reaction mixture was filtered off over celite® and the solvents were partially removed. The organic phase was washed with sat. aq. NaHCO₃ solution and H₂O. The combined aqueous phases were reextracted with CH₂Cl₂ once and the organic phases were washed with brine. It was dried over Na₂SO₄. The solvent was removed *in vacuo* and the crude product was purified by column chromatography (SiO₂, CH₂Cl₂/MeOH 30:1 \rightarrow 20:1) to give thioester **18** (6.97 g, quant.) as a light-yellow liquid. **R**_f = 0.92 (CH₂Cl₂/MeOH 25:1); ¹**H-NMR** (500 MHz, CDCl₃) δ 7.17 (dd, 1H, *J* = 10.2, 15.2 Hz), 6.25-6.11 (m, 2H), 6.06 (d, 1H, *J* =

15.2 Hz), 2.95 (q, 2H, J = 7.4 Hz), 1.86 (d, 3H, J = 6.1 Hz), 1.28 (t, 3H, J = 7.4 Hz) ppm; ¹³C-NMR (125 MHz, CDCl₃) δ 190.3, 141.0, 140.8, 129.8, 126.3, 23.3, 19.0, 15.0 ppm.

Spectroscopic data corresponded to those reported in the literature.⁷

(S)-4-Benzyl-5,5-dimethyloxazolidin-2-one (SI-54)

L-Phenylalanin (SI-50, 19.8 g, 120 mmol, 1.00 eq.) in MeOH *p.a.* (300 mL) was treated with SOCl₂ (26.1 mL, 360 mmol, 3.00 eq.) at 0 °C. The mixture was stirred at reflux for 20 h. The volatiles were removed under reduced pressure. The crude product was dissolved in MeOH *p.a.* and solvents were

removed. This procedure was carried out multiple times. Methylesterhydrochlorid **SI-51** (25.7 g, quant.) was isolated as a colourless solid and used without further purification.

Methylester **SI-51** (25.7 g, 119 mmol, 1.00 eq.) in dry CH_2Cl_2 (300 mL) was treated with dry NEt₃ (18.3 mL) and Boc₂O (27.3 g, 125 mmol, 1.05 eq.) in dry CH_2Cl_2 (100 mL) at 0 °C. The suspension was stirred at this temperature for 20 min, dry NEt₃ (4.15 mL, 29.8 mmol, 0.25 eq.) was added

again and stirring was continued at room temperature for 16 h. Imidazole (810 mg, 11.9 mmol, 0.10 eq.) was added and stirring was continued for 30 min. The mixture was poured into citric acid solution (1M). Organic phase was separated and washed with citric acid solution (1M) twice, with 1 vol% HCl twice and with brine once. They were dried over Na₂SO₄, and solvents were removed at the rotary evaporator. The Boc-protected phenylalanineester **SI-52** (33.1 g, 92%) was isolated as a clear brownish resin and was used without further purification.

Ester **SI-52** (27.9 g, 100 mmol, 1.00 eq.) in dry THF (200 mL) was treated with MeMgBr (3M in Et₂O, 133 mL, 400 mmol) at 0 $^{\circ}$ C over 45 min. Solution was stirred at room temperature for 2 d. MeOH and H₂O was added, and the

suspension was filtered off over celite[®]. The solvent was removed under reduced pressure and the crude product was suspended in Et_2O , filtered off over celite[®] and the solvent was again removed at the rotary evaporator. This procedure was repeated once. Alcohol **SI-53** (25.4 g, 91%) was isolated as a pale brown resin.

Alcohol **SI-53** (25.4 g, 90.9 mmol, 1.00 eq.) in dry THF (364 mL) was treated with KO*t*Bu (12.2 g, 109 mmol, 1.20 eq.) at 0 °C. After stirring for 30 min, sat. aq. NH₄Cl solution and EtOAc were added, and the aqueous phase was extracted with EtOAc twice. Combined organic phases were washed with brine and dried

over Na₂SO₄. After removal of the volatiles under reduced pressure, the crude product was recrystallised with pentane/Et₂O twice. Oxazolidinone **SI-54** (8.29 g, 44%) was obtained as colourless needles. **R**_f = 0.26 (hexanes/EtOAc 2:1); **mp** 66.5 °C; Lit.⁸ **mp** 66-67 °C; **IR** v_{max} /cm⁻¹ 3263 (m), 3030 (w), 2980 (m), 2933 (w), 1739 (s), 1604 (w), 1496 (m), 1455 (m), 1374 (m), 1298 (m), 1271 (m), 1241 (w), 1218 (w), 1189 (w), 1143 (w), 1085 (m), 995 (m), 967 (w), 940 (w), 914 (w), 884 (w), 771 (m), 744 (m), 700 (s); ¹**H-NMR** (500 MHz, CDCl₃) δ 7.34 (m, 2H), 7.27 (m, 1H), 7.18 (m, 2H), 4.87 (br. s , 1H), 3.69 (ddd, 1H, J= 0.6, 3.7, 10.8 Hz), 2.84 (dd, 1H, J= 3.7, 13.3 Hz), 2.67 (dd, 1H, J= 10.8, 13.3 Hz), 1.48 (s, 3H), 1.46 (s, 3H) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 158.0, 137.0, 129.2, 129.0, 127.4, 127.1, 83.3, 63.2, 37.2, 27.7, 22.1 ppm.

Spectroscopic data corresponded to those reported in the literature.⁸

(S)-4-Benzyl-3-(2-bromoacetyl)-5,5-dimethyloxazolidin-2-one (SI-55)

A solution of oxazolidinone **SI-54** (6.00 g, 29.2 mmol, 1.00 eq.) in dry THF (73 mL) was treated with *n*BuLi (12.3 mL, 30.7 mmol, 1.05 eq.) at -80 °C. After 10 min, bromoacetylbromide (2.67 mL, 32.7 mmol, 1.12 eq.) was added at -80 °C and stirring was continued for 13.5 h at room temperature.

Sat. aq. NH₄Cl solution and EtOAc were added and the aqueous phase was extracted with EtOAc thrice. Combined organic phases were washed with sat. aq. NaHCO₃ solution as well as brine and dried over Na₂SO₄. Crude product was purified by column chromatography (SiO₂, pentane/EtOAc 5:1) to yield bromide **SI-55** (7.14 g, 75%) as a light-yellow oil. **R**_f = 0.76 (hexanes/EtOAc 4:1); $[\alpha]_D^{20}$ -26.3° (c 1.0 in CHCl₃); **IR** ν_{max} /cm⁻¹ 3060 (w), 3028 (w), 2983 (w), 2940 (w), 1773 (s), 1698 (s), 1605 (w), 1497 (w), 1455 (w), 1415 (w), 1393 (m), 1358 (s), 1327 (m), 1276 (s), 1234 (m), 1207 (m), 1184 (m), 1161 (m), 1142 (m), 1094 (s), 1024 (w), 962 (m), 920 (w), 902 (w), 849 (w), 761 (m), 731 (m), 700 (m), 653 (m); ¹**H-NMR** (500 MHz, CDCl₃) δ 7.35-7.21 (m, 5H), 4.58 (d, 1H, *J* = 12.4 Hz), 4.51 (dd, 1H, *J* = 3.8, 9.7 Hz), 4.44 (d, 1H, *J* = 12.4 Hz), 3.19 (dd, 1H, *J* = 3.8, 14.6 Hz), 2.90 (dd, 1H, *J* = 9.7, 14.6 Hz), 1.42 (s, 3H), 1.41 (s, 3H) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 166.4, 152.3, 136.6, 129.2, 128.9, 127.1, 83.4, 64.2, 35.1, 28.8, 28.5, 22.4 ppm; **HRMS** ESI *m*/*z* [M + H]⁺ calcd. for C₁₄H₁₇NO₃Br 326.03863 found 326.03800.

Spectroscopic data corresponded to those reported in the literature.⁹

Dimethyl-(*S*)-(2-(4-benzyl-5,5-dimethyl-2-oxooxazolidin-3-yl)-2-oxoethyl)phosphonate (49)

Bromide **SI-55** (5.17 g, 15.8 mmol, 1.00 eq.) was treated with $P(OMe)_3$ (9.36 mL, 79.2 mmol, 5.00 eq.) at room temperature. The mixture was stirred for 17 h at room temperature and for 3.5 h at 60 °C. The volatiles were removed under reduced pressure and the crude product was purified

by column chromatography (SiO₂, EtOAc) to give phosphonate **49** (5.15 g, 92%) as a colourless resin. $\mathbf{R}_{f} = 0.59$ (EtOAc); $[\alpha]_{D}^{20}-12.3^{\circ}$ (c 1.0 in CHCl₃); **IR** v_{max}/cm^{-1} 3011 (w), 2957 (w), 2854 (w), 1771 (s), 1695 (s), 1605 (w), 1498 (w), 1456 (w), 1396 (m), 1357 (s), 1322 (m), 1265 (s), 1211 (m), 1185 (m), 1160 (m), 1094 (m), 1056 (m), 1020 (s), 964 (m), 926 (w), 901 (w), 882 (m), 846 (m), 806 (m), 764 (m), 731 (s), 700 (m), 677 (m); ¹H-NMR (500 MHz, CDCl₃) δ 7.33-7.21 (m, 5H), 4.53 (dd, 1H, J = 3.7, 9.8 Hz), 4.06 (dd, 1H, J = 14.1, 22.0 Hz), 3.82 (d, 3H, J = 4.9 Hz), 3.80 (d, 3H, J = 4.9 Hz), 3.56 (dd, 1H, J = 14.1, 22.2 Hz), 3.18 (dd, 1H, J = 3.7, 14.6 Hz), 2.89 (dd, 1H, J = 9.8, 14.6 Hz), 1.40 (s, 3H), 1.37 (s, 3H) ppm; ¹³C-NMR (125 MHz, CDCl₃) δ 165.0 (d, J = 7.0 Hz), 152.8, 136.9, 129.2, 128.8, 127.0, 82.8, 64.1, 53.4 (d, J = 5.8 Hz), 53.3 (d, J = 5.8 Hz), 35.3, 34.4, 33.3, 28.5, 22.4 ppm; HRMS ESI m/z [M + H]⁺ calcd. for C₁₇H₂₂NO₆P 356.12575 found 356.12491.

Oxodiperoxymolybdenum(pyridine) (hexamethylphosphoric triamide) (SI-57)

MoO₃ (SI-56, 30.0 g, 208 mmol, 1.00 eq.) was dissolved in H_2O_2 (30 wt%, 150 mL) and stirred at 40 °C. Temperature was strictly kept at max. 40 °C, while stirring for 4.25 h. The suspension was filtered off over celite® and the mother liquor was treated with HMPA (36.2 mL, 208 mmol, 1.00 eq.) and

stirred vigorously for 5 min. It was again filtered off and the solid was recrystallized in MeOH. The solid (27.6 g, 77.4 mmol, 1.00 eq.) was dried in the desiccator and dissolved in dry THF (115 mL). Pyridine (6.26 mL, 77.4 mmol, 1.00 eq.) was added at room temperature and the mixture was stirred for 15 min. The solid was filtered off, washed with dry THF as well as dry Et₂O and dried in a desiccator filled with P₂O₅. The Vedejs-reagent (**SI-57**, 27.8 g, 31%) was isolated as yellow crystals.

There is no convenient analytical method for characterization of this compound.¹⁰

Scheme S11. Synthesis of glycosides 62a/b.

Reagents and conditions: a) AcCl, allylOH, 0 °C \rightarrow 55 °C, 24 h; b) CuSO₄, AcMe, rt, 17 h; c) 1. (ClCO)₂, DMSO, -78 °C, 40 min, 2. **55**, 50 min, 3. DIPEA, -78 °C \rightarrow rt, 16 h; d) NaBH₄, 0 °C, 1.5 h; e) 1. **56a**: NaH, imidazole, DMF, 0 °C, 35 min, 2. BnBr, TBAI, rt, 17 h; **56b**: TBSOTf, pyridine, CH₂Cl₂, 0 °C, 5 h; f) **SI-60a**: AcOH, H₂O, reflux, 1.5 h; **SI-60b**: HCOOH, EtOH, rt, 2.5 h; g) **57a**: 1. Bu₂SnO, toluene, reflux, 4 h, 2. AcCl, 0 °C, 30 min; **57b**: 1. Bu₂SnO, toluene, reflux, 3 h, 2. AcCl, rt, 1 h; h) **63**: TMSCHN₂, HBF₄, CH₂Cl₂, 0 °C, 5 h; **SI-61** MeO₃BF₄, proton sponge, CH₂Cl₂, 0 °C \rightarrow 40 °C, 21 h; i) **58a**: Pd(PPh₃)₄, AcOH, rt, 17 h; **58b**: 1. DABCO, Wilkinson's catalyst, EtOH, Δ , 15 h, 2. I₂, phosphate buffer pH=7/H₂O/EtOAc, rt, 10 min; j) **60a/b**: acid **59**, DCC, DMAP, CH₂Cl₂, rt, 3-3.5 h; k) **62a/b**: tetramic acid **61**, AuPPh₃NTf₂, rt→40 °C, 17-20 h.

(3R,4R,5R,6S)-2-(Allyloxy)-6-methyltetrahydro-2H-pyran-3,4,5-triol (SI-58)

L-Rhamnose (12; 10.0 g, 54.9 mmol, 1.00 eq.) was added to a solution of AcCl (10.1 mL, 141 mmol, 1.10 eq.) and allylic alcohol (100 mL) at 0 °C. The mixture was stirred at 55 °C for 24 h. The reaction was

quenched with NaHCO₃ and the solid was filtered off. The volatiles were removed in vacuo, toluene was added, and the solvent was concentrated under reduced pressure. This procedure was repeated twice. The crude product was purified by column chromatography (SiO₂, CH₂Cl₂/MeOH 10:1 \rightarrow 9:1 \rightarrow 8:1) to yield the allylated carbohydrate SI-58 (10.3 g, 93%, α:β 9:1) as a colourless resin. **R**_f = 0.74 (CH₂Cl₂/MeOH 4:1); [α]²⁰_D -85.6° (c 1.0, CHCl₃); **IR** v_{max} /cm⁻¹ 3376 (s), 2978 (m), 2919 (m), 1451 (w), 1423 (w), 1384 (w), 1265 (w), 1130 (m), 1050 (s), 985 (m), 927 (w), 810 (w); α-anomer: ¹H-NMR (500 MHz, CDCl₃) δ 5.89 (dddd, 1H, J = 5.1, 6.0, 10.7, 16.9 Hz), 5.29 (dq, 1H, J = 1.5, 16.9 Hz), 5.20 (dq, 1H, J = 1.5, 10.7 Hz),

4.83 (d, 1H, J = 1.0 Hz), 4.18 (ddt, 1H, J = 1.3, 5.1, 13.0 Hz), 3.99 (ddt, 1H, J = 1.3, 6.0, 13.0 Hz), 3.96 (m, 1H), 3.79 (m, 1H), 3.69 (m, 1H), 3.49 (d, 1H, J = 5.5 Hz), 3.46 (dt, 1H, J = 3.5, 9.4 Hz), 3.04-2.86 (br. s, 1H), 2.78-2.56 (br. s, 2H), 1.32 (d, 3H, J = 6.3 Hz) ppm; β-anomer: ¹H-NMR (500 MHz, CDCl₃) δ 5.93 (m, 1H), 5.30 (m, 1H), 5.23 (m, 1H), 4.51 (s, 1H), 4.40 (ddt, 1H, J = 1.3, 5.2, 12.8 Hz), 4.13 (ddt, 1H, J = 1.3, 6.6, 12.8 Hz), 3.99 (m, 2H), 3.79 (m, 1H), 3.69 (m, 1H), 3.27 (m, 1H), 2.93 (br. s, 1H), 1.64 (br. s, 1H), 1.37 (d, 3H, J = 6.2 Hz), 0.99 (m, 1H) ppm. α-anomer: ¹³C-NMR (125 MHz, CDCl₃) δ 133.8, 117.7, 99.0, 73.1, 71.9, 71.1, 68.3, 68.1, 17.7 ppm; β-anomer: ¹³C-NMR (125 MHz, CDCl₃) δ 133.6, 118.6, 98.6, 74.2, 72.9, 72.2, 71.2, 70.1, 17.7 ppm.

Spectroscopic data corresponded to those reported in the literature.¹¹

(3a*R*,6*S*,7*S*,7a*R*)-4-(Allyloxy)-2,2,6-trimethyltetrahydro-4*H*-[1,3]dioxolo[4,5-c]pyran-7-ol (55)

A solution of glycoside **SI-58** (7.74 g, 37.9 mmol, 1.00 eq.) in acetone (1.60 L) was treated with $CuSO_4$ (96.8 g, 606 mmol, 16.0 eq.) and stirred for 17 h at room temperature. The solid was removed by filtration over celite®. Removing of the solvent under reduced pressure gave the product

55 (8.68 g, 94%, α:β 16:1) as a colourless resin. **R**_f = 0.75 (CH₂Cl₂/MeOH 9:1); $[α]_D^{20} - 26.7^{\circ}$ (c 1.0 in CHCl₃); **IR** *v_{max}*/cm⁻¹ 3470 (m), 2985 (m), 2937 (m), 2905 (m), 1456 (w), 1383 (m), 1244 (m), 1220 (m), 1141 (m), 1077 (s), 1053 (s), 1023 (s), 997 (m), 922 (w), 860 (m), 818 (w); α-Anomer: ¹**H-NMR** (500 MHz, CDCl₃) δ 5.91 (dddd, 1H, *J* = 5.3, 6.2, 10.3, 17.0 Hz), 5.31 (dq, 1H, *J* = 1.4, 17.0 Hz), 5.22 (dq, 1H, *J* = 1.4, 10.3 Hz), 5.01 (s, 1H), 4.20 (ddt, 1H, *J* = 1.4, 2.8, 5.3 Hz), 4.17 (d, 1H, *J* = 5.8 Hz), 4.10 (dd, 1H, *J* = 5.8, 7.1 Hz), 4.01 (ddt, 1H, *J* = 1.4, 6.2, 12.8 Hz), 3.70 (dq, 1H, *J* = 6.3, 9.1 Hz), 3.42 (ddd, 1H, *J* = 4.6, 7.1, 9.1 Hz), 2.19 (m, 1H), 1.53 (s, 3H), 1.36 (s, 3H), 1.30 (d, 3H, *J* = 6.3 Hz) ppm; β-Anomer: ¹**H-NMR** (500 MHz, CDCl₃) δ 5.96 (m, 1H), 5.31 (m, 1H), 5.23 (m, 1H), 4.78 (d, 1H, *J* = 2.2 Hz), 4.43 (ddt, 1H, *J* = 1.5, 4.9, 13.0 Hz), 4.25 (dd, 1H, *J* = 2.2, 5.7 Hz), 4.19 (m, 1H), 4.10 (m, 1H), 3.54 (m, 1H), 3.30 (m, 1H), 2.11 (m, 1H), 1.57 (s, 3H), 1.39 (s, 3H), 1.35 (m, 3H) ppm. α-Anomer: ¹³**C-NMR** (125 MHz, CDCl₃) δ 133.9, 118.5, 111.0, 97.0, 80.3, 75.1, 75.0, 71.1, 70.3, 28.2, 26.4, 17.9 ppm.

Spectroscopic data corresponded to those reported in the literature.¹²

(3a*R*,6*S*,7a*S*)-4-(Allyloxy)-2,2,6-trimethyldihydro-4*H*-[1,3]dioxolo[4,5-c]pyran-7(6*H*)-one (SI-59)

Oxalyl chloride (7.90 mL, 92.1 mmol, 2.00 eq.) was dissolved in dry CH_2Cl_2 (38 mL) and treated with dry DMSO (13.1 mL, 184 mmol, 4.00 eq.) at -78 °C. After stirring for 40 min, glycoside **55** (11.3 g, 46.1 mmol, 1.00 eq.) was added. Stirring was continued for 50 min at

-78 °C and DIPEA (31.5 mL, 184 mmol, 4.00 eq.) was dropped into the mixture. The solution was allowed to warm to room temperature and stirred for a further 16 h. Sat. aq. Na₂S₂O₃ solution was added, and the aqueous phase was extracted thrice with CH₂Cl₂. The combined organic phases were washed with brine, dried over Na₂SO₄ and the solvent was removed under reduced pressure. Purification by column chromatography (SiO₂, pentane/EtOAc 8:1) afforded ketone **SI-59** (9.52 g, 92%, only α) as a colourless oil. **R**_f = 0.79 (hexanes/EtOAc 7:3); $[\alpha]_D^{20} - 125.1^\circ$ (c 1.0 in CHCl₃); **IR** ν_{max} /cm⁻¹ 2989 (m), 2938 (m), 2922 (m), 2876 (w), 1742 (s), 1456 (w), 1375 (m), 1228 (m), 1162 (m), 1107 (s), 1979 (s), 1012 (s), 932 (m), 857 (m); ¹**H-NMR** (500 MHz, CDCl₃) δ 5.89 (m, 1H), 5.31 (m, 1H), 5.24 (m, 1H), 5.00 (s, 1H), 4.45 (q, 2H, *J* = 5.7 Hz), 4.28 (q, 1H, *J* = 6.8 Hz), 4.24 (m, 1H), 4.08 (m, 1H), 1.49 (s, 3H), 1.39 (d, 3H, *J* = 6.8 Hz), 1.36 (s, 3H), ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 204.8, 133.1, 118.5, 111.5, 96.1, 78.9, 76.1, 70.2, 68.9, 26.9, 25.6, 16.0 ppm.

Spectroscopic data corresponded to those reported in the literature.¹³

(3a*R*,6*S*,7*R*,7a*R*)-4-(Allyloxy)-2,2,6-trimethyltetrahydro-4*H*-[1,3]dioxolo[4,5-c]pyran-7-ol (11)

A solution of ketone **SI-59** (9.52 g, 39.3 mmol, 1.00 eq.) in EtOH *p.a.* (157 mL) was treated with NaBH₄ (1.64 g, 43.2 mmol, 1.10 eq.) at 0 °C. The suspension was stirred for 1.5h and the solid was filtered off over celite[®]. The solvent was removed under reduced pressure. Column

chromatography (SiO₂, pentane/EtOAc, 7:1 \rightarrow 6:1 \rightarrow 4:1) gave alcohol **11** (9.19 g, 96%, only α) as a colourless liquid. **R**_f = 0.53 (hexanes/EtOAc 3:2); $[\alpha]_D^{20} - 38.5^\circ$ (c 1.0 in CHCl₃); **IR** v_{max} /cm⁻¹ 3528 (m), 2984 (m), 2936 (m), 1381 (m), 1255 (m), 1215 (m), 1152 (m), 1073 (s), 1019 (m), 991 (s), 852 (m); ¹H-NMR (500 MHz, CDCl₃) δ 5.92 (m, 1H), 5.31 (d, 1H, J = 17.0 Hz), 5.22 (d, 1H, J = 10.3 Hz), 5.08 (s, 1H), 4.22 (q, 1H, J = 5.9 Hz), 4.20 (m, 1H), 4.07 (d, 1H, J = 6.2 Hz), 4.03 (dd, 1H, J = 6.2, 12.8 Hz), 3.89 (q, 1H, J = 6.7 Hz), 3.55 (t, 1H, J = 5.9 Hz), 2.18 (d, 1H, J = 6.7 Hz), 1.59 (s, 3H), 1.38 (s, 3H), 1.32 (d, 3H, J = 6.7 Hz) ppm; ¹³C-NMR (125 MHz, CDCl₃) δ 133.8, 118.0, 109.4, 96.8, 73.4, 73.1, 68.4, 67.0, 64.5, 26.0, 25.4, 16.8 ppm.

Spectroscopic data corresponded to those reported in the literature.¹³

(3a*R*,6*S*,7*R*,7a*R*)-4-(Allyloxy)-7-(benzyloxy)-2,2,6-trimethyltetrahydro-4*H*-[1,3]dioxolo-[4,5-c]pyran (56a)

A solution of alcohol **11** (8.98 g, 36.8 mmol, 1.00 eq.) in dry DMF (142 mL) was treated with NaH (2.82 g, 118 mmol, 3.20 eq.) and imidazole (225 mg, 3.31 mmol, 0.09 eq.) at 0 $^{\circ}$ C. The solution was stirred for 35 min, BnBr (6.33 mL, 53.3 mmol, 1.45 eq.) and TBAI (1.36 g,

3.68 g, 0.10 eq.) were added and stirring was continued for 17 h at room temperature. H₂O and EtOAc were added, the phases were separated, and the aqueous phase was extracted thrice with EtOAc. The combined organic phases were washed with H₂O and brine, dried over Na₂SO₄ and the solvent was removed under reduced pressure. Purification by column chromatography (SiO₂, pentane/EtOAc 7:1) afforded benzylated glycoside 56a (12.2 g, quant., only α) as a colourless solid. $\mathbf{R}_{f} = 0.76$ (hexanes/EtOAc 3:2); mp 27 °C; $[\alpha]_{D}^{20} - 12.7^{\circ}$ (c 1.0 in CHCl₃); IR v_{max}/cm^{-1} 2984 (m), 2933 (m), 2910 (m), 1455 (m), 1380 (m), 1369 (m), 1252 (m), 1214 (m), 1161 (m), 1144 (m), 1055 (s), 1025 (s), 924 (w), 858 (m); ¹H-NMR (500 MHz, CDCl₃) δ 7.40-7.26 (m, 5H), 5.89 (dddd, 1H, J = 5.6, 6.2, 10.5, 17.1 Hz), 5.27 (dq, 1H, J = 1.6, 17.1 Hz), 5.18 (d, 1H, J = 1.6, 10.5 Hz), 4.98 (d, 1H, J = 1.5 Hz), 4.85 (d, 1H, J = 12.0 Hz), 4.56 (d, 1H, J = 12.0 Hz), 4.40 (dd, 1H, J = 4.6, 6.6 Hz), 4.18 (ddt, 1H, J = 1.5, 5.1, 12.7 Hz), 4.07 (dd, 1H, J =1.7, 6.7 Hz), 4.01 (ddt, 1H, J = 1.5, 6.3, 12.8 Hz), 3.88 (dq, 1H, J = 3.3, 6.7 Hz), 3.59 (dd, 1H, J = 3.3, 4.3 Hz), 1.56 (s, 3H), 1.37 (s, 3H), 1.20 (d, 3H, J = 6.7 Hz) ppm; ¹³C-NMR (125 MHz, $CDCl_3$) δ 138.1, 134.0, 128.7, 128.4, 127.9, 117.7, 110.1, 97.0, 74.5, 74.3, 73.8, 72.8, 68.6, 65.8, 26.4, 25.6, 16.9 ppm. **HRMS** ESI m/z [M + Na]⁺ calcd. for C₁₉H₂₆O₅Na 357.16685, found 357.16725.

(3R,4S,5S,6S)-2-(Allyloxy)-5-(benzyloxy)-6-methyltetrahydro-2H-pyran-3,4-diol (SI-60a)

Carbohydrate **56a** (12.2 g, 36.4 mmol, 1.00 eq.) was dissolved in H_2O (7 mL) and AcOH (64 mL). The solution was stirred at 110 °C for 1.5 h. Toluene was added and the volatiles were

removed under reduced pressure. This procedure was repeated twice. The crude product was purified by column chromatography (SiO₂, pentane/EtOAc 4:1 \rightarrow 2:1) to give deprotected carbohydrate **SI-60a** (9.94 g, 93%, only α) as a colourless oil in 93% yield. **R**_f = 0.65

(hexanes/EtOAc 3:2); $[\alpha]_D^{20} - 103.3^\circ$ (c 1.0 in CHCl₃); **IR** v_{max} /cm⁻¹ 3475 (m), 2932 (m), 1736 (w), 1455 (w), 1383 (w), 1360 (w), 1103 (s), 1052 (s), 1008 (s), 928 (w), 813 (m), 737 (m); ¹**H-NMR** (500 MHz, CDCl₃) δ 7.38-7.29 (m, 5H), 5.89 (m, 1H), 5.28 (dq, 1H, J = 1.4, 17.2 Hz), 5.19 (dq, 1H, J = 1.4, 10.4 Hz), 4.90 (d, 1H, J = 1.1 Hz), 4.78 (d, 1H, J = 11.0 Hz), 4.70 (d, 1H, J = 11.0 Hz), 4.15 (ddt, 1H, J = 1.4, 5.1, 13.0 Hz), 3.99 (ddt, 1H, J = 1.4, 6.0, 13.0 Hz), 3.92 (q, 1H, J = 6.6 Hz), 3.88 (dt, 1H, J = 3.4, 10.3 Hz), 3.69 (m, 1H), 3.64 (m, 1H), 3.39 (m, 1H), 2.79 (m, 1H), 1.27 (d, 3H, J = 6.6 Hz) ppm; ¹³C-NMR (125 MHz, CDCl₃) δ 137.6, 133.9, 128.7, 128.3, 128.2, 117.4, 100.2, 81.5, 76.8, 70.9, 68.3, 66.9, 66.1, 17.1 ppm; **HRMS** ESI m/z [M + Na]⁺ calcd. for C₁₆H₂₂O₅Na 317.13568, found 317.13594.

(*3R*,4*S*,5*R*,6*S*)-2-(Allyloxy)-5-(benzyloxy)-3-hydroxy-6-methyltetrahydro-2*H*-pyran-4-yl acetate (57a)

A solution of diol **SI-60a** (6.12 g, 21.0 mmol, 1.00 eq.) in toluene *p.a.* (1.00 L) was treated with Bu₂SnO (6.27 g, 25.2 mmol, 1.20 eq.) and stirred for 4 h under reflux with a water separator. AcCl (1.60 mL, 22.1 mmol, 1.05 eq.) was added at 0 $^{\circ}$ C and stirred for a further 30 min.

The volatiles were removed under reduced pressure and the crude product was purified by column chromatography (SiO₂, pentane/EtOAc 5:1) to give product **57a** (5.56 g, 79%) as a colourless oil. **R**_f = 0.56 (hexanes/EtOAc 3:2); $[\alpha]_D^{20} - 128.0^\circ$ (c 1.0 in CHCl₃); **IR** v_{max} /cm⁻¹ 3487 (m), 2937 (w), 1740 (s), 1432 (w), 1455 (w), 1362 (m), 1229 (s), 1150 (m), 1116 (s), 1045 (s), 1011 (s), 919 (m), 752 (m), 731 (m); ¹**H-NMR** (500 MHz, CDCl₃) δ 7.39-7.29 (m, 5H), 5.88 (m, 1H), 5.28 (dq, 1H, J = 1.4, 17.2 Hz), 5.19 (d, 1H, J = 1.4, 10.4 Hz), 5.08 (t, 1H, J = 3.1 Hz), 4.90 (d, 1H, J = 1.5 Hz), 4.77 (d, 1H, J = 11.3 Hz), 4.61 (d, 1H, J = 11.3 Hz), 4.16 (ddt, 1H, J = 1.3, 5.3, 13.0 Hz), 4.11, (d, 1H, J = 11.1 Hz), 4.00 (m, 2H), 3.83 (m, 1H), 3.77 (m, 1H), 2.11 (s, 3H), 1.25 (d, 3H, J = 6.5 Hz) ppm; ¹³C-NMR (125 MHz, CDCl₃) δ 170.6, 137.3, 133.9, 128.7, 128.4, 128.4, 117.6, 100.7, 79.0, 76.1, 70.1, 69.3, 68.4, 66.4, 21.3, 16.9 ppm; **HRMS** ESI m/z [M + Na]⁺ calcd. for C₁₈H₂₄O₆Na 359.14651, found 359.14602.

(3*R*,4*R*,5*R*,6*S*)-2-(Allyloxy)-5-(benzyloxy)-3-methoxy-6-methyltetrahydro-2*H*-pyran-4-yl acetate (63)

A solution of carbohydrate **57a** (2.75 g, 8.20 mmol, 1.00 eq.) in dry CH_2Cl_2 (33 mL) was treated with TMSCHN₂ (1.8-2.4M in hexanes, 20.5 mL, 40.9 mmol, 5.00 eq.) and HBF₄ (50 wt% in H₂O, 2.00 mL, 16.4 mmol, 2.00 eq.) at 0 °C. The reaction mixture was stirred for 3 h at

0 °C, TMSCHN₂ (1.8-2.4M in hexanes, 20.5 mL, 40.9 mmol, 5.00 eq.) and HBF₄ (50 wt% in H₂O, 2.00 mL, 16.4 mmol, 2.00 eq.) were added again and stirring was continued for 1 h. This was repeated a second time. The reaction was quenched by addition of sat. aq. NaHCO₃ solution. The aqueous phase was extracted thrice with CH₂Cl₂, the combined organic phases were washed with brine and dried over Na₂SO₄. The volatiles were removed under reduced pressure. Purification by column chromatography (SiO₂, pentane/EtOAc 4:1→2:1) gave product **63** (2.58 g, 90%) as a colourless resin. **R**_f = 0.61 (hexanes/EtOAc 3:2); $[\alpha]_D^{20}$ -79.1° (c 1.0 in CHCl₃); **IR** *v*_{max}/cm⁻¹ 3004 (w), 2989 (w), 1744 (w), 1276 (m), 1261 (m), 1092 (w), 1051 (w), 764 (s), 750 (s); ¹**H-NMR** (500 MHz, CDCl₃) δ 7.39-7.25 (m, 5H), 5.89 (m, 1H), 5.28 (dq, 1H, *J* = 11.6, 7.2 Hz), 5.18 (d, 1H, *J* = 1.4, 10.4 Hz), 5.17 (t, 1H, *J* = 3.5 Hz), 4.95 (d, 1H, *J* = 2.1 Hz), 4.71 (d, 1H, *J* = 12.2 Hz), 4.65 (d, 1H, *J* = 12.2 Hz), 4.17 (ddt, 1H, *J* = 1.5, 5.1, 13.0 Hz), 4.02-3.94, (m, 2H), 3.61 (m, 1H), 3.51 (s, 3H), 3.43 (m, 1H), 2.03 (s, 3H), 1.24 (d, 3H, *J* = 6.7 Hz) ppm; ¹³C-**NMR** (125 MHz, CDCl₃) δ 170.5, 138.6, 134.0, 128.4, 128.3, 127.7, 127.6, 117.4, 97.5, 77.5, 76.1, 74.7, 71.3, 68.2, 67.0, 59.9, 21.3, 16.6 ppm; **HRMS** ESI *m*/z [M + Na]⁺ calcd. for Cl₁₉H₂₆O₆Na 373.16216, found 373.16129.

(2*S*,3*R*,4*R*,5*R*)-3-(Benzyloxy)-6-hydroxy-5-methoxy-2-methyltetrahydro-2*H*-pyran-4-yl acetate (58a)

Glycoside **63** (1.00 g, 2.85 mmol, 1.00 eq.) was dissolved in AcOH (29 mL) and Pd(PPh₃)₄ (989 mg, 856 μ mol, 0.30 eq.) was added at room temperature. The mixture was stirred for 17 h and quenched with sat. aq.

NaHCO₃ solution as well as solid NaHCO₃. The aqueous phase was

extracted thrice with EtOAc, the combined organic phases were washed with brine and dried over Na₂SO₄. The solvent was removed under reduced pressure and crude product was purified by column chromatography (SiO₂, pentane/EtOAc $1.5:1\rightarrow1:1$) to afford hemi-acetal **58a** (784 mg, 89%, $\alpha:\beta$ 6:1) as a light yellow resin. **R**_f = 0.52 (CH₂Cl₂/MeOH 9:1); [α]²⁰_D -41.1° (c

1.0 in CHCl₃); IR v_{max} /cm⁻¹ 3438 (m), 2977 (w), 2934 (m), 2896 (m), 2837 (w), 1739 (s), 1497 (w), 1455 (m), 1372 (m), 1236 (s), 1157 (m), 1132 (m), 1096 (s), 1044 (s), 968 (m), 913 (m), 817 (w), 750 (s), 699 (m), 677 (m); α-anomer ¹**H-NMR** (500 MHz, CDCl₃) δ 7.39-7.26 (m, 5H), 5.31 (t, 2H, J = 3.2 Hz), 4.71 (d, 1H, J = 12.1 Hz), 4.64 (d, 1H, J = 12.1 Hz), 4.22 (dq, 1H, J = 2.6, 6.6 Hz), 3.63 (t, 1H, J = 2.8 Hz), 3.51 (s, 3H), 3.87 (t, 1H, J = 3.2 Hz), 2.70 (d, 1H, J = 3.7 Hz), 2.06 (s, 3H), 1.28 (d, 3H, J = 6.7 Hz) ppm; β-anomer ¹**H-NMR** (500 MHz, CDCl₃) δ 7.39-7.26 (m, 5H), 4.85 (t, 1H, J = 3.3 Hz), 4.75 (d, 1H, J = 12.3 Hz), 4.68 (dd, 1H, J = 1.8, 12.8 Hz), 4.63 (d, 1H, J = 12.3 Hz), 4.04 (d, 1H, J = 12.8 Hz), 3.67 (s, 3H), 3.56 (m, 2H), 3.53 (m, 1H), 1.99 (s, 3H), 1.30 (m, 3H) ppm; α-anomer ¹³C-NMR (125 MHz, CDCl₃) δ 170.5, 138.4, 128.4, 128.3, 127.8, 92.7, 77.9, 75.7, 74.2, 70.3, 67.8, 59.7, 21.3, 16.4, ppm; β-anomer ¹³C-NMR (125 MHz, CDCl₃) δ 170.3, 138.3, 128.8, 128.4, 128.0, 93.8, 77.9, 75.6, 75.4, 74.4, 71.4, 61.6, 21.1, 16.9 ppm; **HRMS** ESI m/z [M + Na]⁺ calcd. for C₁₆H₂₂O₆Na 333.13033, found 333.213086.

(*3R*,4*R*,5*R*,6*S*)-4-Acetoxy-5-(benzyloxy)-3-methoxy-6-methyltetrahydro-2*H*-pyran-2-yl-2-(hex-1-yn-1-yl)benzoate (60a)

A solution of hemi-acetal **58a** (784 mg, 2.53 mmol, 1.00 eq.) in dry CH_2Cl_2 (3.6 mL) was treated with acid **59** (656 mg, 3.03 mmol, 1.20 eq.), DCC (782 mg, 3.79 mmol, 1.50 eq.) and DMAP (463 mg, 3.79 mmol, 1.50 eq.) at room temperature. After stirring for 3 h, the solids were filtered off over celite®. The organic phase was washed with sat. aq. NaHCO₃ solution and the aqueous phase was extracted twice with CH_2Cl_2 .

The combined organic phases were dried over Na₂SO₄, and solvents were removed under reduced pressure. Purification by column chromatography (SiO₂, pentane/EtOAc $6:1\rightarrow4:1\rightarrow2:1$) gave product **60a** (1.16 g, 93% mmol, $\alpha:\beta$ 2.9:1) as a colourless resin. **R**_f = 0.71 (hexanes/EtOAc 1:1); $[\alpha]_D^{20} - 9.6^\circ$ (c 1.0 in CHCl₃); **IR** ν_{max} /cm⁻¹ 2934 (w), 2872 (w), 2229 (w), 1737 (s), 1596 (w), 1567 (w), 1484 (w), 1456 (w), 1366 (m), 1275 (m), 1233 (s), 1131 (m), 1069 (s), 1042 (s), 989 (m), 946 (m), 916 (m), 751 (s), 698 (m); α -anomer ¹**H-NMR** (500 MHz, CDCl₃) δ 7.89 (dd, 1H, J = 1.2, 8.0 Hz), 7.53 (dd, 1H, J = 1.2, 8.0 Hz), 7.45 (dq, 1H, J = 2.3, 7.6 Hz), 7.40-7.27 (m, 6H), 6.51 (d, 1H, J = 2.0 Hz), 5.23 (t, 1H, J = 3.5 Hz), 4.75 (d, 1H, J = 12.2 Hz), 4.69 (d, 1H, J = 12.2 Hz), 4.24 (dq, 1H, J = 1.8, 6.5 Hz), 3.73 (m, 1H), 3.60 (s, 3H), 3.59 (s, 1H), 2.47 (m, 2H), 2.06 (s, 3H), 1.61 (m, 2H), 1.48 (m, 2H), 1.28 (d, 3H, J = 6.6 Hz), 0.94 (t, 3H, J = 7.4 Hz) ppm; β -anomer ¹**H-NMR** (500 MHz, CDCl₃) δ 8.09 (dd, 1H, J = 1.2, 9.00 MHz, 1.20 MHz, 0.20 MHz, 0.20

8.0 Hz), 7.53 (dd, 1H, J = 1.2, 8.0 Hz), 7.45 (dq, 1H, J = 2.3, 7.6 Hz), 7.40-7.27 (m, 6H), 6.07 (d, 1H, J = 2.2 Hz), 5.24 (t, 1H, J = 3.5 Hz), 4.72 (d, 1H, J = 12.2 Hz), 4.68 (d, 1H, J = 12.2 Hz), 3.89 (dq, 1H, J = 2.9, 6.7 Hz), 3.69 (dd, 1H, J = 1.8, 3.5 Hz), 3.65 (t, 1H, J = 3.5 Hz), 3.57 (s, 3H), 2.45 (m, 2H), 2.09 (s, 3H), 1.61 (m, 2H), 1.48 (m, 2H), 1.37 (d, 3H, J = 6.7 Hz), 0.94 (t, 3H, J = 7.3 Hz) ppm; α-anomer ¹³C-NMR (125 MHz, CDCl₃) δ 170.5, 164.4, 138.3, 135.0, 132.1, 130.7, 130.6, 128.4, 128.3, 127.8, 125.0, 96.6, 93.2, 79.6, 76.3, 75.5, 74.8, 70.9, 70.0, 60.1, 30.8, 22.2, 21.2, 19.6, 16.8, 13.8 ppm; significant signals β-anomer ¹³C-NMR (125 MHz, CDCl₃) δ 170.5, 164.0, 138.2, 134.6, 130.75, 130.73, 128.34, 128.27, 127.3, 127.0, 125.7, 97.1, 92.2, 79.1, 76.4, 74.2, 73.7, 72.2, 60.7, 30.8, 22.2, 21.1, 19.7, 17.0 ppm; HRMS ESI *m*/*z* [M + Na]⁺ calcd. for C₂₉H₃₄O₇Na 517.21967, found 517.21924.

(2*S*,3*R*,4*R*,5*R*)-3-(Benzyloxy)-6-((*S*,*Z*)-3-(cyclohexyl(hydroxy)methylene)-5-isopropyl-2,4dioxopyrrolidin-1-yl)-5-methoxy-2-methyltetrahydro-2*H*-pyran-4-yl acetate (62a)

Ester **60a** (200 mg, 404 μ mol, 1.00 eq.) and 3-acyl tetramic acid **61** (152 mg, 607 μ mol, 1.50 eq.) were dissolved in dry toluene (1.00 mL). AuPPh₃NTf₂ (59.8 mg, 80.9 μ mol, 0.20 eq.) was added and the mixture was stirred at 40 °C for 17 h. All volatiles were removed in vacuo. The crude product was purified by column

chromatography (SiO₂ C-18, 40% MeCN in H₂O + 0.1% HCO₂H→60% MeCN in H₂O + 0.1% HCO₂H→80% MeCN in H₂O + 0.1% HCO₂H→100% MeCN in H₂O + 0.1% HCO₂H) to give product **62a** as a light-yellow resin (127 mg, 58%, α:β 10:1). Anomers were separated by HPLC. Minor impurities occurred due to third tautomer **R**_f = 0.49 (hexanes/EtOAc 1:1); $[\alpha]_D^{20} - 8.5^\circ$ (c 1.0 in CHCl₃); **IR** v_{max} /cm⁻¹ 2932 (m), 2857 (w), 1744 (s), 1796 (s), 1647 (s), 1607 (s), 1453 (m), 1364 (w), 1312 (w), 1232 (s), 1089 (s), 1027 (w), 752 (m), 698 (w); α-anomer ¹**H-NMR** (500 MHz, CD₃OD) δ 7.40-7.26 (m, 5H), 6.00 (t, 1H, *J* = 3.0 Hz), 5.09 (br. s, 1H), 4.67 (d, 1H, *J* = 11.6 Hz), 4.51 (d, 1H, *J* = 11.6 Hz), 4.26 (m, 2H), 3.84 (br. s, 1H), 3.83 (dd, 1H, *J* = 3.2, 6.5 Hz), 3.43 (tt, 1H, *J* = 3.3, 11.5 Hz), 3.32 (s, 3H), 2.24 (m, 1H), 2.13 (s, 3H), 1.86-1.70 (m, 5H), 1.51 (m, 2H), 1.43 (d, 3H, *J* = 7.1 Hz), 1.39 (m, 2H), 1.27 (m, 1H), 1.17 (d, 3H, *J* = 7.1 Hz), 0.89 (d, 3H, *J* = 7.1 Hz) ppm; α-anomer major tautomer ¹³C-**NMR** (125 MHz, CDCl₃) δ 193.9, 192.6, 175.9, 170.4, 137.8, 128.6, 128.0, 127.7, 101.2, 75.6, 74.2, 73.2, 71.9, 71.0, 66.4, 57.1, 41.0, 30.4, 29.0, 28.5, 25.8, 25.71, 25.70, 25.6, 21.4, 18.1, 16.1, 13.6 ppm; significant signals α-anomer minor tautomer ¹³C-**NMR** (125 MHz, CDCl₃) δ 199.7, 197.6, 170.5, 168.4, 137.8, 128.6, 128.2, 127.7, 104.8, 73.1, 71.7, 70.9, 66.6, 57.0, 41.8, 30.2,

29.1, 28.4, 25.8, 25.5, 21.4, 18.2, 15.7, 13.6 ppm; **HRMS** ESI m/z [M + H]⁺ calcd. for C₃₀H₄₂NO₈ 544.29049, found 544.28949.

Fig. S8. 2D-NMR-spectra [¹H-¹H-COSY (top, left), ¹H-¹³C-HSQC (top, right), ¹H-¹³C-HMBC (bottom, left)] of **62a** for elucidation of *N*,*O*-acetal formation. ¹H-NMR-spectrum (CDCl₃) of **62a** (bottom, right).

2D-NMR-spectra (COSY, HSQC, HMBC) as well as 1D-NMR-spectra (¹H and ¹³C, CDCl₃) clearly showed the exclusive formation of an *N*,O-acetal. An *O*-glycosylation with tautomers of 3-acyl-tetramic acids could is conceivable, yet was not observed.¹ Via COSY and HSQC the signal at 4.92 ppm was assigned to the anomeric proton (Fig. S8, top). The chemical shift of the anomeric C-atom ($\delta = 75.6$ ppm) had a distinct high-field shift compared to an *O*,*O*-acetal ($\delta \approx 95$ ppm). The chemical shifts of the anomeric position are in full accordance with the results of Yang *et al.*² As known from the literature the enolization of the amide is highly unfavoured and therefore an *O*-glycosylation with enolized amide is unlikely.¹ HMBC indicated a coupling of the anomeric proton of talose-derivative with amide-C-atom (Fig. S8, bottom left, green circle) confirming the spatial proximity to the amide-C. In the ¹H-NMR-spectrum a signal for an enolic

proton was found at 14.5 ppm while no signal for NH was observed. In an additional experiment for *N*-glycosylation of tetramic acid derivatives, the *O*-glycosylation took place (for synthesis see Scheme S19). For proof of *N*-glycosylation the spectra can be compared with those of the accidently formed *O*,*O*-acetal **SI-62**. In the ¹H-spectrum of **SI-62** (Fig. S9, top) a signal for an amide proton (no HSQC-correlation, Fig. S9 bottom) instead of enolic proton signal was indicated at 5.84 ppm. The anomeric H-atom ($\delta = 5.52$ ppm) and the anomeric C-atom ($\delta = 98.3$ ppm) of **SI-62** were shifted downfield compared to the *N*,*O*-acetal **62a**.

OAc .∖OBn MeO/ ΗŇ SI-62 15 14 13 12 11 10 9 å 2 0 ррт Ġ 5 4 3 11100 66 ppm 0 20 40 60 80 100 120 140 5.90 5.85 5.80 5.75 5.70 5.65 5.60 5.55 5.50 5.45 5.40 5.35 5.30 5.25 5.20 ррт

Fig. S9. ¹H-NMR-spectrum (top) and ¹H-¹³C-HSQC-spectrum (bottom) of SI-62 for comparison with spectra of the N,O-acetal.

((((3a*R*,6*S*,7*R*,7a*S*)-4-(Allyloxy)-2,2,6-trimethyltetrahydro-4*H*-[1,3]dioxolo[4,5-c]pyran-7yl)oxy)(*tert*-butyl)dimethylsilane (56b)

Alcohol **11** (772 mg, 3.16 mmol, 1.00 eq.) in dry CH_2Cl_2 (55 mL) was treated with pyridine (2.55 mL, 31.6 mmol, 10.0 eq.) and TBSOTF (2.18 mL, 9.48 mmol, 3.00 eq.) at 0 °C. The solution was stirred for 5 h and the reaction was quenched by addition of sat. aq. NaHCO₃ solution.

The aqueous phase was extracted with EtOAc thrice and the combined organic phases were washed with brine as well as dried over Na₂SO₄. After removal of the solvent *in vacuo* the crude product was purified by column chromatography (SiO₂, pentane/EtOAc 6:1) to give TBS-ether **56b** (1.16 g, quant.) as a colourless liquid. **R**_f = 0.88 (hexanes/EtOAc 3:2); $[\alpha]_D^{20}$ -58.3° (c 1.0 in CHCl₃); **IR** *v*_{max}/cm⁻¹ 2988 (m), 2933 (m), 2889 (m), 2865 (m), 1473 (w), 1381 (w), 1276 (s), 1260 (s), 1979 (m), 1056 (m), 838 (m), 764 (s), 750 (s); ¹**H-NMR** (500 MHz, CDCl₃) δ 5.92 (dddd, 1H, *J* = 5.2, 6.3, 10.7, 17.2 Hz), 5.30 (dq, 1H, *J* = 1.5, 17.2 Hz), 5.19 (dq, 1H, *J* = 1.5, 10.7 Hz), 4.85 (d, 1H, *J* = 4.1 Hz), 4.29 (dd, 1H, *J* = 3.6, 7.5 Hz), 4.26 (ddt, 1H, *J* = 1.3, 5.2, 12.8 Hz), 4.13 (dd, 1H, *J* = 3.6, 4.1 Hz), 4.08 (ddt, *J* = 1.3, 6.3, n.d. Hz), 4.07 (m, 1H), 3.95 (m, 1H), 1.52 (s, 3H), 1.33 (s, 3H), 1.33 (d, 3H, *J* = 6.5 Hz), 0.92 (s, 9H), 0.11 (s, 3H), 0.07 (s, 3H) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 134.2, 117.6, 110.2, 97.2, 76.2, 75.5, 69.8, 69.2, 67.5, 26.7, 26.2, 24.8, 18.5, 17.2, -4.01, -4.58 ppm; **HRMS** ESI *m*/*z* [M + Na]⁺ calcd. for C₁₈H₃₄O₅SiNa 381.20677, found 381.20547.

(*3R*,4*S*,5*S*,6*S*)-2-(Allyloxy)-5-((*tert*-butyldimethylsilyl)oxy)-6-methyltetrahydro-2*H*-pyran-3,4-diol (SI-60b)

Fully protected carbohydrate **56b** (310 mg, 865 μ mol, 1.00 eq.) was dissolved in EtOH *p.a.* (1.3 mL) and formic acid (1.3 mL). The solution was stirred at room temperature for 2.5 h. After addition of sat. aq. NaHCO₃ solution, the aqueous phase was extracted with EtOAc thrice.

The combined organic phases were dried over Na₂SO₄, and the volatiles were removed *in vacuo*. The crude product was purified by column chromatography (SiO₂, pentane/EtOAc 9:1) to yield deprotected diol **SI-60b** (116 mg, 42%) as a colourless solid. **R**_f = 0.58 (hexanes/EtOAc 3:1); **mp** 69 °C; $[\alpha]_D^{20}$ -91.6° (c 1.0 in CHCl₃); **IR** *v_{max}*/cm⁻¹ 3405 (m), 3359 (m), 2945 (m), 2929 (m), 2882 (w), 2858 (m), 1471 (w), 1425 (w), 1351 (w), 1276 (m), 1260 (m), 1167 (w), 1143 (w), 1104 (m), 1067 (m), 1044 (w), 1014 (m), 996 (m), 916 (w), 837 (m), 765 (s), 749 (s),

678 (w); ¹**H-NMR** (500 MHz, CDCl₃) δ 5.89 (dddd, 1H, J = 5.2, 6.2, 10.7, 17.0 Hz), 5.28 (dq, 1H, J = 1.6, 17.0 Hz), 5.19 (dq, 1H, J = 1.6, 10.7 Hz), 4.92 (d, 1H, J = 1.3 Hz), 4.16 (ddt, 1H, J = 1.4, 5.2, 13.0 Hz), 4.00 (ddt, J = 1.4, 6.0, 13.0 Hz), 3.89 (q, 1H, J = 6.6 Hz), 3.80 (m, 1H), 3.75 (dt, 1H, J = 3.1, 10.7 Hz), 3.68 (m, 1H), 3.43 (d, 1H, J = 12.0 Hz), 2.61 (d, 1H, J = 10.7 Hz), 1.23 (d, 3H, J = 6.6 Hz), 0.95 (s, 9H), 0.19 (s, 3H), 0.12 (s, 3H) ppm; ¹³C-NMR (125 MHz, CDCl₃) δ 134.0, 117.5, 100.2, 75.1, 71.4, 68.3, 66.6, 66.4, 26.1, 18.4, 17.6, -3.88, -4.50 ppm; HRMS ESI m/z [M + Na]⁺ calcd. for C₁₅H₃₀O₅SiNa 341.17547, found 341.17505.

(3*R*,4*S*,5*R*,6*S*)-2-(Allyloxy)-5-((*tert*-butyldimethylsilyl)oxy)-3-hydroxy-6-methyltetrahydro-2*H*-pyran-4-yl acetate (57b)

To a solution of diol **SI-60b** (210 mg, 659 μ mol, 1.00 eq.) in dry toluene (33 mL) was added Bu₂SnO (197 mg, 791 μ mol, 1.20 eq.). The suspension was stirred under reflux for 3 h. AcCl (49.4 μ L, 692 μ mol, 1.05 eq.) was added at room temperature and stirring was continued for

1 h. All volatiles were removed under reduced pressure. Purification of the crude product (SiO₂, pentane/EtOAc 9:1) resulted in acetylated carbohydrate **57b** (220 mg, 93%) as a colourless liquid. **R**_f = 0.35 (hexanes/EtOAc 5:1); $[\alpha]_D^{20}$ –93.8° (c 1.0 in CHCl₃); **IR** *v_{max}*/cm⁻¹ 3504 (m), 2956 (m), 2932 (m), 2900 (m), 2860 (m), 1741 (m), 1473 (w), 1432 (w), 1374 (w), 1276 (m), 1260 (s), 1235 (m), 1180 (w), 1118 (m), 1070 (m), 1001 (s), 938 (w), 839 (m), 765 (s), 750 (s), 680 (w); ¹**H-NMR** (500 MHz, CDCl₃) δ 5.89 (dddd, 1H, *J* = 5.1, 6.2, 10.5, 17.1 Hz), 5.29 (dq, 1H, *J* = 1.6, 17.1 Hz), 5.19 (dq, 1H, *J* = 1.6, 10.5 Hz), 5.00 (t, 1H, *J* = 2.9 Hz), 4.90 (d, 1H, *J* = 1.5 Hz), 4.17 (ddt, 1H, *J* = 1.5, 5.1, 13.0 Hz), 4.11 (d, 1H, *J* = 11.1 Hz), 4.01 (ddt, *J* = 1.5, 6.2, 13.0 Hz), 3.99 (q, 1H, *J* = 6.6 Hz), 3.92 (m, 1H), 3.80 (m, 1H), 2.15 (s, 3H), 1.23 (d, 3H, *J* = 6.6 Hz), 0.96 (s, 9H), 0.15 (s, 3H), 0.10 (s, 3H) ppm; ¹³C-NMR (125 MHz, CDCl₃) δ 170.6, 134.0, 117.6, 110.7, 73.2, 69.66, 69.65, 68.4, 66.8, 26.0, 21.5, 18.3, 17.5, -4.24, -4.41 ppm; **HRMS** ESI *m*/*z* [M + Na]⁺ calcd. for C₁₇H₃₂O₆SiNa 383.18604, found 383.18468.

(3*R*,4*S*,5*R*,6*S*)-2-(Allyloxy)-5-((*tert*-butyldimethylsilyl)oxy)-3-methoxy-6-methyltetrahydro-2*H*-pyran-4-yl acetate (SI-61)

Alcohol **57b** (40 mg, 111 μ mol, 1.00 eq.) in dry CH₂Cl₂ (1.10 mL) was treated with Me₃OBF₄ (65.6 mg, 444 μ mol, 4.00 eq.) and proton sponge (95.1 mg, 444 μ mol, 4.00 eq.) at 0 °C and stirred at 40 °C for 21 h. The

reaction was quenched by addition of sat. aq. NH₄Cl solution. The aqueous phase was extracted with EtOAc thrice. Combined organic phases were washed with sat. aq. citric acid solution as well as brine and dried over Na₂SO₄. After removal of the solvent *in vacuo* and purification of the crude product by column chromatography (SiO₂, pentane/EtOAc 9:1) product **SI-61** (40 mg, 96%) was isolated as a colourless liquid. **R**_f = 0.63 (hexanes/EtOAc 4:1); $[\alpha]_D^{20}$ -30.0° (c 1.0 in CHCl₃); **IR** *v*_{max}/cm⁻¹ 2930 (m), 2900 (m), 2857 (m), 1745 (s), 1463 (w), 1374 (w), 1237 (s), 1197 (w), 1130 (m), 1091 (m), 1053 (m), 1004 (m), 859 (m), 838 (m), 765 (s), 750 (s); ¹**H-NMR** (500 MHz, CDCl₃) δ 5.91 (dddd, 1H, *J* = 5.2, 6.1, 10.5, 17.1 Hz), 5.29 (dq, 1H, *J* = 1.6, 17.1 Hz), 5.18 (dq, 1H, *J* = 1.6, 10.5 Hz), 5.16 (t, 1H, *J* = 3.4 Hz), 4.93 (d, 1H, *J* = 2.9 Hz), 4.18 (ddt, 1H, *J* = 1.4, 5.1, 13.0 Hz), 4.01 (ddt, *J* = 1.4, 6.1, 13.0 Hz), 3.96 (dq, 1H, *J* = 2.6, 6.6 Hz), 3.80 (t, 1H, *J* = 2.8 Hz), 3.43 (s, 3H), 3.36 (m, 1H), 2.13 (s, 3H), 1.25 (d, 3H, *J* = 6.6 Hz), 0.93 (s, 9H), 0.08 (s, 3H), 0.05 (s, 3H) pm; ¹³C-NMR (125 MHz, CDCl₃) δ 170.5, 134.1, 117.5, 97.1, 77.5, 71.3, 70.4, 70.1, 68.4, 68.3, 59.6, 26.0, 21.5, 18.5, 16.6, -4.40, -4.48 pm; **HRMS** ESI *m/z* [M + Na]⁺ calcd. for C₁₈H₃₄O₆SiNa 397.20169, found 397.20114.

(2*S*,3*R*,4*S*,5*R*)-3-((*tert*-Butyldimethylsilyl)oxy)-6-hydroxy-5-methoxy-2-methyltetrahydro-2*H*-pyran-4-yl acetate (58b)

Glycoside **SI-61** (820 mg, 2.19 mmol, 1.00 eq.) dissolved in EtOH *p.a.* (15 mL) was treated with DABCO (128 mg, 1.09 mmol, 0.50 eq.) and Wilkinson catalyst (101 mg, 109 μ mol, 0.05 eq.). The reaction mixture was stirred at reflux for 15 h. After cooling down to room temperature, the

suspension was filtered off over celite® and solvents were removed under reduced pressure. The crude product was dissolved in EtOAc *p.a.* (226 mL), H₂O (226 mL) and phosphate buffer (22.6 mL). A solution of I₂ (1.67 g, 6.57 mmol, 3.00 eq.) in EtOAc *p.a.* (92 mL) was added dropwise at room temperature. The mixture was stirred vigorously for 10 min. The reaction was quenched by addition of sat. aq. Na₂S₂O₃ solution. The aqueous phase was extracted with EtOAc thrice. Combined organic phases were washed with sat. aq. Na₂S₂O₃ solution as well as sat. aq. NaHCO₃ solution and dried over Na₂SO₄. After removal of the solvents under reduced pressure, purification of the crude product by column chromatography (SiO₂, pentane/EtOAc 2:1) gave semi-acetal **58b** (618 mg, 84%, α:β 4:1) as a colourless liquid. **R**_f = 0.86 (hexanes/EtOAc 4:1); $[\alpha]_D^{20} - 45.9^\circ$ (c 1.0 in CHCl₃); **IR** *v*_{max}/cm⁻¹ 3402 (m), 2949 (m), 2931 (m), 2886 (w), 2858 (m), 1746 (m), 1464 (w), 1373 (m), 1276 (s), 1260 (s), 1198 (m), 1139 (m), 1090 (m), 1047 (m), 962 (w), 858 (m), 837 (m), 765 (s), 750 (s); α-anomer ¹**H-NMR**

(500 MHz, CDCl₃) δ 5.32 (t, 1H, J = 3.3 Hz), 5.25 (t, 1H, J = 4.3 Hz), 4.15 (m, 1H), 3.85 (t, 1H, J = 3.4 Hz), 3.44 (s, 3H), 3.28 (m, 1H), 2.57 (d, 1H, J = 4.1 Hz), 2.12 (s, 3H), 1.30 (d, 3H, J = 6.8 Hz), 0.92 (s, 9H), 0.09 (s, 3H), 0.06 (s, 3H) ppm; β-anomer ¹H-NMR (500 MHz, CDCl₃) δ 4.84 (t, 1H, J = 3.3 Hz), 4.70 (dd, 1H, J = 1.9, 12.5 Hz), 3.99 (d, 1H, J = 12.5 Hz), 3.72 (dt, 1H, J = 1.3, 3.3 Hz), 3.56 (dd, 1H, J = 1.6, 6.6 Hz), 3.54 (s, 3H), 3.49 (m, 1H), 2.17 (s, 3H), 1.28 (d, 3H, J = 6.6 Hz), 0.96 (s, 9H), 0.10 (s, 3H), 0.06 (s, 3H) ppm; α-anomer ¹³C-NMR (125 MHz, CDCl₃) δ 170.4, 91.7, 78.3, 70.5, 69.9, 69.6, 59.1, 26.0, 21.4, 18.4, 15.9, -4.54, -4.60 ppm; significant signals β-anomer ¹³C-NMR (125 MHz, CDCl₃) δ 93.5, 77.9, 74.1, 71.7, 69.5, 61.5, 26.1, 21.5, 17.5, -4.28 ppm; HRMS ESI m/z [M + Na]⁺ calcd. for C₁₅H₃₀O₆SiNa 357.17039, found 357.17020.

(*3R*,4*S*,5*R*,6*S*)-4-Acetoxy-5-((*tert*-butyldimethylsilyl)oxy)-3-methoxy-6-methyltetrahydro-2*H*-pyran-2-yl 2-(2,2-dimethyl-2l6-but-1-yn-1-yl)benzoate (60b)

Semi-acetal **58b** (52.8 mg, 158 μ mol, 1.00 eq.) in dry CH₂Cl₂ (1.2 mL) was treated with acid **59** (41.0 mg, 190 μ mol, 1.20 eq.), DMAP (28.9 mg, 237 μ mol, 1.50 eq.) and DCC (48.9 mg, 237 μ mol, 1.50 eq.) at room temperature. The reaction mixture was stirred for 3.5 h and quenched by addition of sat. aq. NaHCO₃ solution. The aqueous phase was extracted with CH₂Cl₂ thrice and combined organic phases were dried over

Na₂SO₄. After removal of all volatiles and purification by column chromatography (SiO₂, pentane/EtOAc 11:1) glycoside **60b** (59.1 mg, 72%, α:β 10:1) was isolated as a light-yellow oil. **R**_f = 0.80 (hexanes/EtOAc 3:1); $[\alpha]_D^{20} - 60.9^\circ$ (c 1.0 in CHCl₃); **IR** ν_{max} /cm⁻¹ 2931 (m), 2854 (m), 1744 (s), 1276 (s), 1260 (s), 1136 (m), 1081 (m), 838 (m), 762 (s), 750 (s); α-anomer ¹**H-NMR** (500 MHz, CDCl₃) δ 7.90 (dd, 1H, J = 1.3, 8.1 Hz), 7.53 (d, 1H, J = 7.8 Hz), 7.44 (dt, 1H, J = 1.3, 7.5 Hz), 7.32 (dt, 1H, J = 1.3 Hz, 7.5 Hz), 6.47 (d, 1H, J = 2.7 Hz), 5.23 (t, 1H, J = 3.5 Hz), 4.20 (dq, 1H, J = 3.3, 7.2 Hz), 2.15 (s, 3H), 1.62 (m, 2H), 1.50 (m, 2H), 1.30 (d, 3H, J = 6.7 Hz), 0.95 (s, 9H), 0.95 (t, 3H, J = 7.0 Hz), 0.10 (s, 3H), 0.06 (s, 3H) ppm; β-anomer significant signals ¹**H-NMR** (500 MHz, CDCl₃) δ 170.5, 164.5, 135.0, 132.1, 130.9, 130.6, 127.3, 125.1, 96.7, 92.9, 79.6, 76.3, 70.9, 70.8, 69.9, 59.7, 30.9, 26.0, 22.2, 21.5, 19.7, 18.6, 16.9, 13.8,

-4.34, -4.48 ppm; **HRMS** ESI m/z [M + Na]⁺ calcd. for C₂₈H₄₂O₇SiNa 541.25868, found 541.25920.

(2*S*,3*R*,4*S*,5*R*)-3-((*tert*-Butyldimethylsilyl)oxy)-6-((*S*,*Z*)-3-(cyclohexyl(hydroxy)methylene)-5-isopropyl-2,4-dioxopyrrolidin-1-yl)-5-methoxy-2-methyltetrahydro-2*H*pyran-4-yl acetate (62b)

Glycoside **60b** (200 mg, 386 μ mol, 1.00 eq.) and tetramic acid **61** (145 mg, 578 μ mol, 1.50 eq.) were dissolved in toluene and the solvent was removed on a rotary evaporator. This procedure was repeated twice. The substances were dissolved in dry toluene (1 mL) and treated with AuPPh₃NTf₂ (57.0 mg, 77.1 μ mol,

0.20 eq.) at room temperature. After stirring for 20 h at 40 °C the volatiles were removed in vacuo and crude product was purified by column chromatography (SiO₂ C-18, 40% MeCN in $H_2O + 0.1\%$ HCOOH $\rightarrow 60\%$ MeCN in $H_2O + 0.1\%$ HCOOH $\rightarrow 80\%$ MeCN in $H_2O + 0.1\%$ HCOOH \rightarrow 90% MeCN in H₂O + 0.1% HCOOH). The product **62b** (110 mg, 50%, α : β >30:1) was isolated as a light-yellow solid. $\mathbf{R}_{f} = 0.40$ (hexanes/EtOAc 3:1); mp 88 °C; $[\alpha]_{D}^{20} - 44.6^{\circ}$ (c 1.0 in CHCl₃); **IR** v_{max} /cm⁻¹ 2991 (w), 2931 (m), 2858 (m), 1748 (m), 1705 (m), 1652 (m), 1607 (m), 1452 (m), 1361 (w), 1276 (m), 1260 (m), 1231 (m), 1106 (m), 1987 (m), 1007 (w), 963 (m), 863 (m), 838 (m), 764 (s), 751 (s); α-anomer ¹**H-NMR** (500 MHz, CD₃OD) δ 5.72 (t, 1H, J = 3.3 Hz), 5.06 (br. s, 1H), 4.26 (br. s, 1H), 4.10 (m, 2H), 3.85 (br. s, 1H), 3.45 (m, 1H), 3.30 (s, 3H, under solvent signal), 2.23 (m, 1H), 2.12 (s, 3H), 1.86-1.69 (m, 5H), 1.50 (m, 2H), 1.41 (d, 3H, J = 6.8 Hz), 1.44-1.23 (m, 3H), 1.17 (d, 3H, J = 6.9 Hz), 0.89 (s, 9H), 0.89 (d, 3H, J = 6.9 Hz), 0.13 (s, 3H), 0.11 (s, 3H) ppm; α -anomer major tautomer ¹³C-NMR (125 MHz, CDCl₃) *δ* 193.9, 192.6, 175.9, 170.2, 104.9, 101.3, 75.4, 74.0, 73.7, 71.5, 69.8, 67.7, 57.1, 41.0, 30.3, 29.0, 28.5, 25.8, 25.7, 25.6, 18.1, 18.0, 16.0, 13.1, -4.89, -4.98 ppm; significant signals α -anomer minor tautomer ¹³C-NMR (125 MHz, CDCl₃) δ 199.7, 197.6, 170.2, 75.9, 73.5, 73.0, 71.3, 70.1, 67.8, 57.0, 41.8, 30.2, 29.1, 28.4, 25.8, 25.7, 21.4, 18.2, 15.7, 13.1, -4.90, -4.98 ppm; **HRMS** ESI m/z [M + H]⁺ calcd. for C₂₉H₅₀NO₈Si 568.33002, found 568.32990.

Scheme S12. Synthesis of 3-acyltetramic acid **61**. Reagents and conditions: a) 1. Meldrum's acid, DMAP, EDC·HCl, CH₂Cl₂, rt, 3 h, 2. EtOAc, Δ, 2 h; b) 1. cyclohexylcarbonic acid, EDC·HCl, DMAP, CH₂Cl₂, 0 °C, 50 min, 2. tetramic acid **SI-64**, rt, 2.5 h; c) NEt₃, DMAP, CH₂Cl₂, rt, 2 d; d) TFA, CH₂Cl₂, rt, 20 min.

tert-Butyl(*S*,*Z*)-3-(cyclohexyl(hydroxy)methylene)-5-isopropyl-2,4-dioxopyrrolidine-1carboxylate (SI-66)

Amino acid **SI-63** (5.00 g, 23.0 mmol, 1.00 eq.) in dry CH_2Cl_2 (74 mL) was treated with Meldrum's acid (3.65 g, 25.3 mmol, 1.10 eq.), DMAP (3.93 g, 32.2 mmol, 1.40 eq.) and EDC·HCl (5.29 g, 27.6 mmol, 1.20 eq.). at room temperature. The reaction mixture was stirred for 3 h. 0.5M H₂SO₄ and EtOAc

were added. The organic phase was separated, and the aqueous phase was extracted thrice with EtOAc. Combined organic phases were washed with H_2O and dried over Na_2SO_4 . After filtration, organic phase was stirred under reflux for 2 h. The solvent was removed under reduced pressure. The product **SI-64** was used without further purification.

Cyclohexylcarbonic acid (2.58 mL, 20.9 mmol, 1.00 eq.) in dry CH_2Cl_2 (70 mL) was treated with EDC·HCl (4.79 g, 25.0 mmol, 1.20 eq.) and DMAP (511 mg, 4.18 mmol, 0.20 eq.) at 0 °C. After 50 min at room temperature, tetramic acid **SI-64** (5.55 g, 23.0 mmol, 1.10 eq.) in dry CH_2Cl_2 (55 mL) was

added. Stirring was continued for 2.5 h. Addition of CH₂Cl₂ and 0.5M H₂SO₄ was followed by separation of organic phase. The aqueous phase was extracted thrice with CH₂Cl₂, combined organic phases were washed with brine, dried over Na₂SO₄ and volatiles were removed under reduced pressure. Purification over a short SiO₂-plug (SiO₂, pentane/EtOAc 20:1 \rightarrow 10:1 \rightarrow 7:1 \rightarrow 5:1) led to 4-*O*-acyl tetramic acid **SI-65** (6.65 g). It was pure enough for the next step. **R**_f = 0.92 (hexanes/EtOAc 3:1); ¹**H-NMR** (500 MHz, CD₃OD) δ 6.10 (d, 1H, *J* = 0.7 Hz), 4.49 (dd, 1H, *J* = 0.7, 2.4 Hz), 2.49 (m, 2H), 1.99 (m, 2H), 1.79 (m, 2H), 1.67 (m, 1H), 1.54 (s, 9H), 1.51 (m, 1H), 1.32 (m, 4H), 1.12 (d, 3H, *J* = 6.8 Hz), 0.82 (d, 3H, *J* = 6.8Hz) ppm; **HRMS** ESI *m/z* [M + Na]⁺ calcd. for C₁₉H₂₉NO₅Na 374.19375, found 374.19308.

4-*O*-Acyltetramic acid **SI-65** (6.65 g, 18.8 mmol, 1.00 eq.) in dry CH_2Cl_2 (190 mL) was treated with dry NEt₃ (3.20 mL, 22.6 mmol, 1.20 eq.) and DMAP (1.15 g, 9.40 mmol, 0.50 eq.) at room temperature. After stirring for 22 h DMAP (575 mg, 4.70 mmol, 0.25 eq.) was added again and stirring was

continued for 24 h. Sat. aq. NaHCO3 solution and CH2Cl2 were added. The aqueous phase was extracted thrice with CH₂Cl₂, combined organic phases were washed with brine and dried over Na₂SO₄. Removal of all volatiles under reduced pressure and purification by column chromatography (SiO₂ C-18, 40% MeCN in H₂O + 0.1% HCO₂H \rightarrow 60% MeCN in H₂O + 0.1%HCO₂H \rightarrow 80% MeCN in H₂O + 0.1% HCO₂H \rightarrow 100% MeCN in H₂O + 0.1% HCO₂H) gave 3acyl tetramic acid SI-66 as an orange resin (4.04 g, 50% over three steps). $R_f = 0.72$ (CH₂Cl₂/MeOH 9:1); $[\alpha]_{n}^{20}$ +37.2° (c 1.0 in CHCl₃); **IR** v_{max} /cm⁻¹ 2970 (m), 2933 (m), 2857 (m), 1771 (m), 1744 (m), 1713 (s), 1652 (m), 1599 (s), 1452 (m), 1393 (m), 1228 (m), 1308 (s), 1277 (s), 1259 (s), 1154 (s), 1022 (w), 931 (m), 913 (m), 857 (w), 764 (s), 751 (s); ¹H-NMR (500 MHz, CD₃OD) δ 4.33 (s, 1H), 3.46 (tt, 1H, J = 3.0, 11.5 Hz), 2.45 (dqn, 1H, J = 3.0, 7.1 Hz), 1.84 (m, 4H), 1.75 (m, 1H), 1.55 (s, 9H), 1.48 (dt, 2H, J = 2.9, 12.1 Hz), 1.40 (m, 2H), 1.28 (m, 1H), 1.17 (d, 3H, J = 7.1Hz), 0.82 (d, 3H, J = 7.1 Hz); mixture of three tautomers ¹³C-NMR (125 MHz, CDCl₃) δ 201.2, 197.7, 195.4, 192.4, 174.5, 165.8, 165.0, 163.3, 149.7, 149.0, 117.3, 104.5, 101.4, 84.0, 83.5, 83.3, 69.1, 65.6, 61.8, 42.7, 41.3, 30.8, 30.3, 29.2, 28.8, 28.6, 28.4, 28.3, 28.1, 26.0, 25.8, 25.7, 25.6, 25.5, 19.0, 18.6, 18.5, 16.2, 15.7, 15.1 ppm; **HRMS** ESI m/z [M + Na]⁺ calcd. for C₁₉H₂₉NO₅Na 374.19379, found 374.19296.

(S,Z)-3-(Cyclohexyl(hydroxy)methylene)-5-isopropylpyrrolidine-2,4-dione (61)

Tetramic acid **SI-66** (606 mg, 1.71 mmol, 1.00 eq.) was dissolved in dry CH_2Cl_2 (32 mL) and treated with TFA (3.20 mL, 10 vol% CH_2Cl_2) at room temperature. The solution was stirred for 20 min. All volatiles were removed at the rotary evaporator. The crude product was purified by column

chromatography (SiO₂ C-18, 40% MeCN in H₂O + 0.1% HCO₂H \rightarrow 50% MeCN in H₂O + 0.1% HCO₂H \rightarrow 60% MeCN in H₂O + 0.1% HCO₂H \rightarrow 80% MeCN in H₂O + 0.1% HCO₂H \rightarrow 100% MeCN in H₂O + 0.1% HCO₂H) to afford product **61** as a light orange solid (323 mg, 75%). **R**_f = 0.68 (CH₂Cl₂/MeOH 9:1); **mp** 109 °C; $[\alpha]_D^{20}$ -109.3° (c 1.0 in CHCl₃); **IR** v_{max} /cm⁻¹ 3219 (m), 2931 (m), 2856 (m), 1653 (s), 1606 (s), 1448 (m), 1352 (m), 1308 (m), 1276 (m), 1261 (m), 1227 (m), 1137 (w), 1024 (w), 920 (m), 817 (m), 765 (s), 750 (s); ¹**H-NMR** (500 MHz, CD₃OD) δ 3.75 (br. s, 1H), 3.40 (br. s, 1H), 2.17 (m, 1H), 1.86-1.70 (m, 4H), 1.56-1.20 (m,

6H), 1.03 (d, 3H, J = 7.1 Hz), 0.82 (d, 3H, J = 7.1 Hz) ppm; major tautomer ¹³C-NMR (125 MHz, CDCl₃) δ 196.6, 192.6, 176.7, 100.4, 67.3, 41.0, 30.26, 28.9, 28.6, 25.74, 25.67, 25.61, 19.6, 16.0 ppm; minor tautomer ¹³C-NMR (125 MHz, CDCl₃) δ 201.5, 194.9, 169.5, 103.8, 64.0, 41.6, 30.30, 28.9, 28.8, 25.8, 25.61, 25.56, 19.3, 16.3 ppm; HRMS ESI m/z [M + H]⁺ calcd. for C₁₄H₂₂NO₃ 252.15942, found 252.15883.

2.10 Synthesis of acid **59**

Scheme S13. Synthesis of acid 59.

Reagents and conditions: a) SOCl₂, MeOH, $-10 \degree C \rightarrow 40 \degree C$, 17 h; b) 1. PdCl₂(PPh₃)₂, PPh₃, CuI, *i*Pr₂NH, rt, 1 h, 2. 1-hexyne, 0 °C \rightarrow rt, 18.5 h; c) NaOH, THF, 50 °C, 19 h.

Methyl 2-iodobenzoate (SI-68)

2-Iodobenzoic acid **SI-67** (5.00 g, 20.2 mmol, 1.00 eq.) was dissolved in dry MeOH (35.0 mL) and SOCl₂ (2.20 mL, 30.2 mmol, 1.20 eq.) was slowly added at -10 °C. After 15 min the solution was heated to 40 °C and stirred for a further 17 h. The reaction was quenched by addition of sat. aq. NaHCO₃

solution and EtOAc. The organic phase was separated, and the aqueous phase was extracted with EtOAc thrice, combined organic phases were washed with H₂O twice and dried over Na₂SO₄. The solvents were removed *in vacuo*. Purification by column chromatography (SiO₂, pentane/EtOAc 6:1) afforded product **SI-68** (5.11 g, 97%) as a colourless liquid. **R**_f = 0.70 (hexanes/EtOAc 4:1); **IR** v_{max} /cm⁻¹ 2950 (m), 1727 (s), 1583 (m), 1562 (w), 1465 (m), 1432 (s), 1289 (s), 1251 (s), 1191 (m),1131 (s), 1104 (s), 1043 (m), 1016 (s), 963 (m), 826 (w), 739 (s), 688 (m); ¹**H-NMR** (500 MHz, CDCl₃) δ 7.99 (d, 1H, *J* = 7.9 Hz), 7.80 (dd, 1H, *J* = 1.5, 7.9 Hz), 7.40 (t, 1H, *J* = 7.7 Hz), 7.15 (t, 1H, *J* = 7.7 Hz), 3.93 (s, 3H) ppm.

Spectroscopic data corresponded to those reported in the literature.¹⁴

Methyl 2-(hex-1-yn-1-yl)benzoate (SI-69)

Methyl 2-iodobenzoate (**SI-68**, 100 mg, 382 μ mol, 1.00 eq.) was dissolved in *i*Pr₂NH (1.00 mL) and treated with PdCl₂(PPh₃)₂ (13.4 mg, 19.1 μ mol, 5 mol%), PPh₃ (10.0 mg, 38.2 μ mol, 10 mol%) and CuI (3.63 mg, 19.1 μ mol, 5 mol%). The mixture was stirred at room temperature for 1h. At

0 °C, hexyne (65.7 μL, 572 μmol, 1.50 eq.) was added, stirring was continued for a further 18.5 h and the mixture was allowed to warm to room temperature. Addition of sat. aq. NH₄Cl solution stopped the reaction. Pentane was added and the organic phase was separated. The aqueous phase was extracted with pentane/EtOAc 100:1 and the combined organic phases were washed with H₂O and brine. They were dried over Na₂SO₄ and all volatiles were removed under reduced pressure. The crude product was purified by column chromatography (SiO₂, pentane/EtOAc 30:1→20:1) to give alkyne **SI-69** as a colourless liquid (76.0 mg, 86%). **R**_f = 0.79 (hexanes/EtOAc 9:1); **IR** v_{max} /cm⁻¹ 2956 (m), 2934 (m), 2873 (m), 1733 (s), 1718 (s), 1597 (w), 1577 (w), 1485 (m), 1447 (m), 1433 (m), 1294 (s), 1276 (s), 1249 (s), 1190 (w), 1129 (m), 1083 (s), 1043 (w), 966 (w), 757 (s), 702 (m); ¹**H-NMR** (500 MHz, CDCl₃) δ 7.88 (dd, 1H, *J* = 1.1, 7.9 Hz), 7.51 (dd, 1H, *J* = 1.1, 7.9 Hz), 7.42 (dt, 1H, *J* = 1.4, 7.6 Hz), 7.31 (t, 1H, *J* = 1.4, 7.6 Hz), 3.91 (s, 3H), 2.48 (t, 2H, *J* = 7.1 Hz), 1.62 (m, 2H), 1.51 (m, 2H), 0.96 (t, 3H, *J* = 7.3 Hz) ppm.

Spectroscopic data corresponded to those reported in the literature.¹⁵

2-(Hex-1-yn-1-yl)benzoic acid (59)

Ester **SI-69** (76.0 mg, 330 μ mol, 1.00 eq.) in THF *p.a.* (1.40 mL) and 1M NaOH (1.40 mL) was stirred at 50 °C for 19 h. The solution was treated with conc. HCl until pH value reached 1. The aqueous phase was extracted five times with CH₂Cl₂. The combined organic phases were dried over

Na₂SO₄, and the volatiles were removed under reduced pressure. Product **59** (68.2 mg, 95%) was isolated as a colourless resin and used without further purification. **R**_f = 0.23 (hexanes/EtOAc 9:1); **IR** v_{max} /cm⁻¹ 3077 (m), 2958 (m), 2932 (m), 2873 (m), 2656 (m), 2229 (w), 1693 (s), 1600 (w), 1568 (w), 1487 (w), 1455 (w), 1409 (m), 1379 (w), 1297 (m), 1274 (m), 1141 (w),1086 (w), 922 (w), 756 (m); ¹H-NMR (500 MHz, CDCl₃) δ 8.11 (d, 1H, 7.7 Hz), 7.51 (dd, 1H, *J* = 1.2, 7.7 Hz), 7.42 (dt, 1H, *J* = 1.2, 7.7 Hz), 7.31 (t, 1H, *J* = 1.2, 7.7 Hz), 2.48

(t, 2H, J = 7.1 Hz), 1.62 (m, 2H), 1.51 (m, 2H), 0.96 (t, 3H, J = 7.3 Hz) ppm. COOH not detectable.

Spectroscopic data corresponded to those reported in the literature.¹⁵

2.11 Synthesis of glycoside **65** for formal synthesis

Scheme S14. Synthesis of glycoside 65 for formal synthesis.

Reagents and conditions: a) 1. I₂, CH₂Cl₂, -65 °C, 35 min, 2. Et₃SiH, -65 °C \rightarrow -20 °C, 2 h; b) TESOTf, pyridine, CH₂Cl₂, 0 °C, 2 h; c) 1. DABCO, Wilkinson's catalyst, EtOH, Δ , 5 h, 2. I₂, phosphate buffer/H₂O/EtOAc, rt, 25 min; d) DCC, DMAP, CH₂Cl₂, rt, 3 h; e) Ph₃PCCO (**66**), benzoic acid, THF, 60 °C, 22 h.

(*3R*,4*R*,5*R*,6*S*)-2-(Allyloxy)-5-hydroxy-3-methoxy-6-methyltetrahydro-2*H*-pyran-4-yl acetate (SI-70)

Glycoside **63** (141 mg, 402 μ mol, 1.00 eq.) in dry CH₂Cl₂ (10.9 mL) was treated with I₂ (153 mg, 604 μ mol, 1.50 eq.) at -65 °C. The mixture was stirred for 35 min and Et₃SiH (96.4 μ L, 604 μ mol, 1.50 eq.) was added. After 40 min at -65 °C, the solution was allowed to warm to -20 °C.

Stirring was continued for 1 h 30 min. Allylic alcohol (136 µL, 2.01 mmol, 5.00 eq.) and NaHCO₃ (169 mg, 2.01 mmol, 5.00 eq.) were added. After stirring for 10 min, the mixture was treated with sat. aq. Na₂S₂O₃ solution and CH₂Cl₂. The organic phase was separated, and the aqueous phase was extracted with CH₂Cl₂ twice. The combined organic phases were washed with brine and dried over Na₂SO₄. After removal of the volatiles and purification by column chromatography (SiO₂, pentane/EtOAc 3:1) product **SI-70** (67.0 mg, 64%) was obtained as a colourless liquid. **R**_f = 0.63 (hexanes/EtOAc 4:1); $[\alpha]_D^{20}$ -110.3° (c 1.0 in CHCl₃); **IR** *v*_{max}/cm⁻¹ 3510 (m), 2987 (m), 2938 (m), 1744 (m), 1429 (m), 1375 (m), 127 (m), 1237 (s), 1178 (w), 1114 (s), 1984 (m), 1045 (s), 981 (m), 933 (w), 764 (s), 750 (s),687 (w); ¹**H-NMR** (500 MHz, CDCl₃) δ 5.90 (dddd, 1H, *J* = 5.2, 6.1, 10.4, 17.3 Hz), 5.30 (dq, 1H, *J* = 1.5, 17.3 Hz), 5.21 (dq, 1H, *J* = 1.5, 10.4 Hz), 5.07 (t, 1H, *J* = 3.3 Hz), 4.97 (d, 1H, *J* = 0.8 Hz), 4.20 (ddt, 1H, *J* = 1.4, 5.2, 12.8 Hz), 4.01 (ddt, 1H, *J* = 1.4, 6.1, 12.8 Hz), 3.94 (d, 1H, *J* = 6.6 Hz), 3.70 (m, 1H), 3.55

(m, 1H), 3.52 (s, 3H), 3.38 (d, 1H, J = 11.0 Hz), 2.13 (s, 3H), 1.29 (d, 3H, J = 6.6 Hz) ppm; ¹³CNMR (125 MHz, CDCl₃) δ 170.5, 133.7, 117.8, 96.7, 78.7, 71.0, 69.9, 68.3, 67.5, 59.8, 21.3, 16.4 ppm; HRMS ESI m/z [M + Na]⁺ calcd. for C₁₂H₂₀O₆Na 283.11521, found 283.11435.

(*3R*,4*S*,5*R*,6*S*)-2-(Allyloxy)-3-methoxy-6-methyl-5-((triethylsilyl)oxy)tetrahydro-2*H*pyran-4-yl acetate (64)

Carbohydrate **SI-70** (30.0 mg, 115 μ mol, 1.00 eq.) in dry CH₂Cl₂ (2.30 mL) was treated with pyridine (576 μ L, 231 μ L, 5.00 eq.) and TESOTF (52.1 μ L, 231 μ L, 2.00 eq.) at 0 °C. After stirring at this temperature for 2 h, sat. aq. NaHCO₃ solution and CH₂Cl₂ were added.

The aqueous phase was extracted with CH₂Cl₂ thrice and the combined organic phases were dried over Na₂SO₄. After removal of the volatiles under reduced pressure and purification by column chromatography (SiO₂, pentane/EtOAc 4:1) product **64** (43.1 mg, quant.) was isolated as a colourless liquid. **R**_f = 0.59 (hexanes/EtOAc 3:1); $[\alpha]_D^{20} - 77.5^\circ$ (c 1.0 in CHCl₃); **IR** ν_{max} /cm⁻¹ 2854 (m), 2878 (m), 1744 (s), 1459 (m), 1413 (w), 1374 (m), 1235 (s), 1197 (m), 1128 (m), 1090 (s), 1052 (s), 1031 (s), 1003 (s), 962 (m), 848 (m), 747 (s), 724 (s), 677 (m); **¹H-NMR** (500 MHz, CDCl₃) δ 5.90 (dddd, 1H, J = 5.3, 6.0, 10.5, 16.9 Hz), 5.29 (dq, 1H, J = 1.6, 16.9 Hz), 5.18 (dq, 1H, J = 1.6, 10.5 Hz), 5.10 (t, 1H, J = 3.5 Hz), 4.94 (d, 1H, J = 2.5 Hz), 4.17 (ddt, 1H, J = 1.5, 5.3, 12.9 Hz), 4.00 (ddt, J = 1.5, 6.0, 12.9 Hz), 3.95 (dq, 1H, J = 2.1, 6.6 Hz), 3.80 (m, 1H), 3.42 (s, 3H), 3.39 (m, 1H), 2.14 (s, 3H), 1.26 (d, 3H, J = 6.6 Hz), 0.98 (t, 9H, J = 7.9 Hz), 0.65 (q, 6H, J = 7.9 Hz) pm; ¹³C-NMR (125 MHz, CDCl₃) δ 170.5, 134.1, 117.4, 97.3, 77.5, 71.2, 70.3, 68.3, 67.9, 59.8, 21.4, 16.5, 7.07, 5.14 ppm; **HRMS** ESI m/z [M + H]⁺ calcd. for C₁₈H₃₅O₆Si 375.21930, found 375.21974.

(*3R*,4*S*,5*R*,6*S*)-2-Hydroxy-3-methoxy-6-methyl-5-((triethylsilyl)oxy)tetrahydro-2*H*pyran-4-yl acetate (SI-71)

Glycoside **64** (168 mg, 449 μ mol, 1.00 eq.) was dissolved in EtOH *p.a.* (3.00 mL) and treated with Wilkinson catalyst (4.15 mg, 44.9 μ mol, 1 mol%) as well as DABCO (7.55 mg, 67.3 μ mol, 15 mol%). The

suspension was stirred at 95 °C for 24 h. Rhodium-catalyst (4.15 mg, 44.9 μ mol, 1 mol%) and DABCO (7.55 mg, 67.3 μ mol, 15 mol%) were added again at room temperature. Stirring was continued for 24 h at 95 °C. A third portion of Wilkinson catalyst (4.15 mg, 44.9 μ mol,
1 mol%) and DABCO (7.55 mg, 67.3 µmol, 15 mol%) was added. After stirring for a further 3 days the mixture was filtered off over celite® and the volatiles were removed under reduced pressure. The crude product was dissolved in EtOAc (48 mL) and H₂O (48 mL). A buffer (pH=7, 4.8 mL) was added. The mixture was treated dropwise with a solution of iodine (342 mg, 1.35 mmol, 3.00 eq.) in EtOAc (19 mL). After 25 min, sat. aq. Na₂S₂O₃ solution was added. The aqueous phase was extracted with EtOAc thrice, combined organic phases were washed with sat. aq. NaHCO3 solution and dried over Na2SO4. Removal of the volatiles in *vacuo* and purification by column chromatography (SiO₂, pentane/EtOAc 2:1 \rightarrow 1:1) afforded product SI-71 (109 mg, 73%) as a colourless resin. $\mathbf{R}_{f} = 0.33$ (hexanes/EtOAc 2:1); $[\alpha]_{P}^{20}$ -64.5° (c 1.0 in CHCl₃); **IR** v_{max} /cm⁻¹2930 (m), 2900 (m), 2857 (m), 1745 (s), 1463 (w), 1374 (m), 1238 (s), 1130 (m), 1091 (s), 1053 (s), 1004 (m), 940 (w), 859 (m), 838 (m), 765 (s), 750 (s); α -anomer ¹**H-NMR** (500 MHz, CDCl₃) δ 5.27 (t, 1H, J = 2.6 Hz), 5.22 (t, 1H, J =3.4 Hz), 4.16 (dq, 1H, J = 3.0, 6.7 Hz), 3.82 (t, 1H, J = 3.0 Hz), 3.43 (s, 3H), 3.32 (dt, 1H, J = 3.0 Hz)0.6, 3.5 Hz), 3.03 (br. s, 1H), 2.13 (s, 3H), 1.69 (br. s, 1H), 1.29 (d, 3H, J = 6.7 Hz), 0.97 (t, 9H, J = 7.9 Hz), 0.66 (q, 6H, J = 7.9 Hz) ppm; β -anomer ¹H-NMR (500 MHz, CDCl₃) δ 4.81 $(t, 1H, J = 3.2 \text{ Hz}), 4.67 \text{ (dd, 1H, } J = 1.6, 12.5 \text{ Hz}), 4.09 \text{ (d, 1H, } J = 12.6 \text{ Hz}), 3.72 \text{ (dt, 1H, } J = 1.6, 12.5 \text{ Hz}), 4.09 \text{ (d, 1H, } J = 1.6, 12.5 \text{ Hz}), 3.72 \text{ (dt, 2H, } J = 1.6, 12.5 \text{ Hz}), 3.72 \text{ (dt, 2H, } J = 1.6, 12.5 \text{ Hz}), 3.72 \text{ (dt, 2H, } J = 1.6, 12.5 \text{ Hz}), 3.72 \text{ (dt, 2H, } J = 1.6, 12.5 \text{ Hz}), 3.72 \text{ (dt, 2H, } J = 1.6, 12.5 \text{ Hz}), 3.72 \text{ (dt, 2H, } J = 1.6, 12.5 \text{ Hz}), 3.72 \text{ (dt, 2H, } J = 1.6, 12.5 \text{ Hz}), 3.72 \text{ (dt, 2H, } J = 1.6, 12.5 \text{ Hz}), 3.72 \text{ (dt, 2H, } J = 1.6, 12.5 \text{ Hz}), 3.72 \text{ (dt, 2H, } J = 1.6, 12.5 \text{ Hz}), 3.72 \text{ (dt, 2H, } J = 1.6, 12.5 \text{ Hz}), 3.72 \text{ (dt, 2H, } J = 1.6, 12.5 \text{ Hz}), 3.72 \text{ (dt, 2H, } J = 1.6, 12.5 \text{ Hz}), 3.72 \text{ (d$ 1.1, 3.2 Hz), 3.55 (s, 3H), 3.55 (dq, 1H, J = 1.4, 6.7 Hz), 3.50 (m, 1H), 2.18 (s, 3H), 1.29 (d, 3H, J = 6.7 Hz), 0.99 (t, 9H, J = 7.9 Hz), 0.66 (q, 6H, J = 7.9 Hz) ppm; α -anomer ¹³C-NMR (125 MHz, CDCl₃) δ 170.4, 92.2, 78.1, 70.6, 69.9, 69.1, 59.5, 21.3, 16.0, 7.01, 5.05 ppm; βanomer ¹³C-NMR (125 MHz, CDCl₃) δ 170.3, 93.8, 73.9, 71.9, 69.7, 61.7, 21.3 17.1, 7.12, 5.22 ppm; **HRMS** ESI m/z [M + Na]⁺ calcd. for C₁₅H₃₀O₆SiNa 357.17039 found 357.16962.

(2*S*,3*R*,4*S*,5*R*,6*S*)-4-Acetoxy-3-methoxy-6-methyl-5-((triethylsilyl)oxy)tetrahydro-2*H*pyran-2-yl 2-(hex-1-yn-1-yl)benzoate (65)

Semi-acetal **SI-71** (110 mg, 329 μ mol, 1.00 eq.) and acid **59** (85.4 mg, 395 μ mol, 1.20 eq.) were dissolved in dry CH₂Cl₂ (1.5 mL) and treated with DCC (102 mg, 493 μ mol, 1.50 eq.) as well as DMAP (60.3 mg, 493 μ mol, 1.50 eq.) at room temperature. The suspension was stirred for 3 h, before sat. aq. NaHCO₃ solution was added. The aqueous phase was extracted with CH₂Cl₂ thrice and the combined organic phases were dried

over Na₂SO₄. Removal of the solvent at the rotary evaporator and purification by column chromatography (SiO₂, pentane/EtOAc $6:1\rightarrow4:1$) as well as a second column chromatography (SiO₂, pentane/EtOAc $9:1\rightarrow8:1$) furnished glycoside **65** (122 mg, 71%, single diastereomer) as

a colourless oil. $\mathbf{R}_{f} = 0.80$ (hexanes/EtOAc 3:1); $[\alpha]_{D}^{20} - 61.7^{\circ}$ (c 1.0 in CHCl₃); $\mathbf{IR} v_{max}/\text{cm}^{-1}$ 2956 (m), 2938 (m), 2877 (m), 1744 (m), 1458 (w), 1375 (w), 1276 (s), 1261 (s), 1236 (m), 1136 (m), 1081 (m), 1031 (w), 921 (w), 853 (w), 764 (s), 750 (s); ¹H-NMR (500 MHz, CDCl₃) δ 7.90 (dd, 1H, J = 1.0, 7.9 Hz), 7.53 (dd, 1H, J = 1.0, 7.9 Hz), 7.44 (dt, 1H, 7.8 Hz), 7.32 (dt, 1.2, 7.5 Hz), 6.49 (d, 1H, J = 2.3 Hz), 5.18 (t, 1H, J = 3.5 Hz), 4.22 (dq, 1H, J = 1.7, 6.5 Hz), 3.89 (m, 1H), 3.56 (ddd, 1H, J = 0.9, 2.3, 3.5 Hz), 3.50 (s, 3H), 2.46 (dt, 2H, J = 3.2, 7.2 Hz), 2.17 (s, 3H), 1.61 (m, 2H), 1.49 (m, 2H), 1.31 (d, 3H, J = 6.5 Hz), 1.00 (t, 9H, J = 7.9 Hz), 0.95 (t, 3H, J = 7.3 Hz), 0.68 (q, 6H, J = 7.9 Hz) ppm; ¹³C-NMR (125 MHz, CDCl₃) δ 170.5, 164.5, 135.0, 132.1, 130.9, 130.7, 127.3, 125.1, 96.7, 93.1, 79.7, 76.3, 70.7, 70.1, 60.0, 30.9, 22.3, 21.4, 19.7, 16.8, 13.8, 7.05, 5.15 ppm; **HRMS** ESI m/z [M + Na]⁺ calcd. for C₂₈H₄₂O₇SiNa 541.25920, found 541.25885.

Spectroscopic data corresponded to those reported in the literature.²

(S)-4-(Benzyloxy)-5-isopropyl-1,5-dihydro-2H-pyrrol-2-one (68)

Amino acid **67** (500 mg, 2.41 mmol, 1.00 eq.) in dry THF (8.00 mL) was treated with Ph₃PCCO (**66**, 802 mg, 2.65 mmol, 1.10 eq.) and benzoic acid (58.9 mg, 482 μ mol, 0.20 eq.) at room temperature. The mixture was heated to 60 °C and stirred for 22 h. The volatiles were removed under reduced pressure and the

crude product was purified by column chromatography (SiO₂, acetone/CH₂Cl₂ 19:1 \rightarrow 6:1 \rightarrow 4:1 \rightarrow 3:1 \rightarrow 2:1 \rightarrow 1.5:1) to furnish 4-*O*-alkyl tetramic acid **68** (351 mg, 1.52 mmol) as a colourless solid. **R**_f = 0.59 (CH₂Cl₂/MeOH 9:1); **mp** 129 °C; ¹**H-NMR** (500 MHz, CDCl₃) δ 7.37 (m, 5H), 6.76 (br. s, 1H), 5.10 (d, 1H, *J* = 1.5 Hz), 4.99 (d, 1H, *J* = 11.6 Hz), 4.94 (d, 1H, *J* = 11.6 Hz), 4.04 (d, 1H, *J* = 3.3 Hz), 2.14 (dqn, 1H, *J* = 3.3, 7.0 Hz), 1.03 (d, 3H, *J* = 7.0 Hz), 0.80 (d, 3H, *J* = 7.0 Hz) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) 176.3, 175.2, 135.0, 128.82, 128.78, 127.9, 95.4, 73.2, 63.0, 29.4, 19.6, 15.2 ppm; **HRMS** ESI *m/z* [M + H]⁺ calcd. for C₁₄H₁₈NO₂ 232.13321, found 232.13260.

Spectroscopic data corresponded to those reported in the literature.²

2.12 Failed routes to amykitanose

Before the synthesis with an allyl function at the anomeric position was completed, we tried to use a methyl acetal at 1-position. It was introduced with sulfuric acid in MeOH in quantitative yield. Protection of the *syn*-diol furnished carbohydrate **SI-72** in 93% yield. Swern-oxidation in 77% yield and consequent reduction with NaBH4 in 99% yield gave alcohol **SI-73** with inverted stereoconfiguration at 4-position as a single diastereomer. The remaining hydroxyl group was benzylated in 99%. Removal of the acetal with BiCl₃ provided a diol, which was regioselectively acetylated at 3-position. This was followed by methylation with TMSCHN₂ and HBF₄ (\rightarrow **SI-75**). Different acidic conditions were used to cleave the acetal at the anomeric position. However, either the acetyl group was removed too, or no reaction was observed. Therefore, it was switched to the allyl group at the anomeric position. It was also tried, to introduce the carbamate at 4-position. The benzyl group was removed via hydrogenation. The resulting hydroxyl group reacted quickly with trichloroacetylisocyanate to an intermediate, which was converted to carbamate **SI-77** by stirring with SiO₂ in a THF/MeOH mixture.

Scheme S15. Performed steps towards methyl-acetal of L-rhamnose SI-76. Reagents and conditions: a) H₂SO₄, MeOH, RT, on, quant.; b) CuSO₄, acetone, rt, 21 h, 93%; c) 1. (ClOC)₂, DMSO, CH₂Cl₂, -78 °C, 30 min, 2. SI-72, 30 min, 3. DIPEA, rt, 18 h, 77%; d) NaBH₄, EtOH, 0 C, 21 h, 99%, single diastereomer; e) 1. NaH, imidazole, DMF, 0 °C \rightarrow rt, 35 min, 2. BnBr, TBAI, rt, 18 h, 99%; f) BiCl₃, MeCN/H₂O, rt, 1 d, 99%; g) 1. Bu₂SnO, toluene, reflux, 2 h, 2. AcCl, rt, 3 h, 85%; h) TMSCHN₂, HBF₄, CH₂Cl₂, 0 °C, 5 h, 77%; i) Pd/C, H₂, MeOH, 20 h, quant.; j) trichloroacety-lisocyanate, CH₂Cl₂, 0 °C, 10 min; k) SiO₂, THF/MeOH, 40 °C, 16 h, 65% over two steps.

The main problem of the synthesis of the upper part of kibdelomycin was the coupling of the sugar and tetramic acid. Our first concept was to build *N*-glycosides **SI-79a/b** with L-valine, which we achieved in excellent 99% yield and α : β -ratio of 2:1 by simply adding the amino acid in EtOH or MeOH. However, it was not possible to convert the aminoglycosides **SI-79a/b** into the corresponding β -ketoamides **SI-80a/b**, tetramic acids **SI-81a/b** or 4-*O*-alkyl tetramic acids

SI-82a/b. All of them could be converted to 3-acyltetramic acid in well studied reactions and therefore could have been possible intermediates. For building β -ketoamides SI-80a/b, we focused on Ley's acylation with β -ketothioester SI-85. This method was successfully used for acylation of a aminoglycoside by our group in 2016.¹⁶ Different equivalents, reaction time, temperature, different silver salts and additional reagents were tested (Table S1). Most of the times the acetyl group or valine was removed, sometimes complete decomposition was observed or educt was reisolated. Also, an attempt to introduce a β-ketoamide by conversion with adduct SI-86 under reflux only led to removal of the acetyl group. Likewise, the in situ formation of the acid chloride of carboxylic acid SI-89a and conversion with aminoglycoside SI-79a under basic conditions gave decomposition of starting materials. After multiple attempts, the acetyl group turned out to be instable under different conditions. So instead of the acetyl group, a TBS protecting group was introduced to try some of the reactions already carried out again. Each of them also lead to decomposition or removal of acetyl group or no transformation. Further attempts to convert the aminoglycosides SI-79a/b into a tetramic acid via Meldrum's acid method led to elimination of valine. Also, the conversion with ketenylidentriphenylphosphorane to give 4-O-alkyltetramic acids SI-82a/b wasn't successful, only decomposition products were isolated. After trials to convert the aminoglycoside, the β ketoamide or tetramic acid should be introduced directly. Therefore, a Mitsunobu reaction with β-ketoamide SI-88 was carried out, but only educt was reisolated. Conversion of semi-acetal 58a with tetramic acid SI-87 and pTsOH led to decomposition. The experiments with TBSgroup instead of acetyl group led to similar results.

Scheme S16. Failed attempts to attach a tetramic acid or β -ketoamide at the glycoside or aminoglycoside.

Reagents and conditions: a) PPh₃, DIAD, β -ketoamide **SI-88**, THF, -78 °C; b) **SI-87**, *p*TsOH, CH₂Cl₂, reflux, 2 d; c) X = Ac L-valine methyl ester, EtOH/MeOH, rt, 3 d, 99%; X = TBS 86%; d) Table S1 e) X = Ac adduct **SI-86**, toluene, 120 °C, 2 h; f) X = Ac 1. oxalyl chloride, acid **SI-89a**, DMF, 0 °C, 2 h, 2. **SI-79a**, 0 °C, 21 h; g) X = Ac β -ketoester **SI-89b**, toluene, reflux, 22 h; h) X = Ac/TBS 1. Meldrum's acid, DMAP, EDC·HCl, CH₂Cl₂, rt, 3 h, 2. EtOAc, reflux, 3 h, i) X = Ac/TBS Ph₃PCCO, THF, reflux, 19 h.

Entry	X	Reagents and conditions	Tempera- ture[°C]	Time	Result
1	Ac	Educt (1.00 eq.), SI-85 (1.25 eq.), AgO ₂ CCF ₃ (1.60 eq.), 4 Å MS, THF, aq. Work-up	0	3 h	Removal of Ac
2	Ac	Educt (1.00 eq.), SI-85 (1.25 eq.), AgO ₂ CCF ₃ (1.60 eq.), 4 Å MS, THF, without aq. work-up	0	3 h	Removal of Ac/valine
3	Ac	Educt (1.20 eq.), SI-85 (1.00 eq.), AgO ₂ CCF ₃ (1.20 eq.), NEt ₃ , THF	0	3 h	Removal of valine
4	Ac	Educt (1.00 eq.), SI-85 (1.20 eq.), AgO ₂ CCF ₃ (1.50 eq.), NEt ₃ , THF	0	3 h	Removal of Ac/valine

Table S1. Reaction conditions for Ley-acylation of aminoglycosides SI-79a/b.

6	Ac	Educt (1.00 eq.), SI-85 (1.20 eq.), AgO ₂ CCF ₃ (1.25 eq.), Na ₂ KHPO ₄ , THF	0	6 h	Removal of valine
7	Ac	Educt (1.00 eq.), SI-85 (1.25 eq.), AgO ₂ CCF ₃ (1.25 eq.), 4 Å MS, THF	-78	1 h	Removal of Ac
8	Ac	Educt (1.00 eq.), SI-85 (1.20 eq.), AgO ₂ CCF ₃ (1.25 eq.), Na ₂ KHPO ₄ , THF	-78	1.5 h	Removal of Ac
9	Ac	Educt (1.00 eq.), SI-85 (1.50 eq.), AgO ₃ SCF ₃ (2.00 eq.), NEt ₃ , THF	0	6 h	educt
10	Ac	Educt (1.00 eq.), SI-85 (1.25 eq.), AgO ₃ SCF ₃ (1.60 eq.), 4 Å MS, THF	0	22 h	Removal of Ac/valine
11	TBS	Educt (1.00 eq.), SI-85 (1.25 eq.), AgO ₂ CCF ₃ (1.25 eq.), 4 Å MS, THF	-78	4 h	Decompo- sition
12	TBS	Educt (1.00 eq.), SI-85 (1.25 eq. + 1.25 eq.), AgO ₂ CCF ₃ (1.25 eq. + 1.25 eq.), Na ₂ KHPO ₄ , THF	−78→rt	1 d	Decompo- sition
13	TBS	Educt (1.20 eq.), SI-85 (1.00 eq.), AgO ₂ CCF ₃ (1.20 eq.), NEt ₃ , THF	0→rt	2 d	educt

Some reactions were carried out with activated forms of carbohydrate **58a**. Therefore, it was first acetylated at the anomeric position in 90% yield. The bromide **SI-91** was formed by addition of TMSBr and had to be used directly in the next step because of its instability. On the one hand it was reacted with tetramic acid **SI-87** and KOtBu and on the other hand it was converted with β -ketoamide **SI-88** and KOtBu. Both reactions led to decomposition of starting material. The trichloroacetimidate **SI-92** was easily built by conversion of sugar **58a** with trichloroacetonitrile in 62% yield. Though, the attempts to couple it with tetramic acid **SI-87** or β -ketoamide **SI-88** weren't successful and led to reisolation of starting material and decomposition, respectively.

Scheme S17. Failed attempts to attach a tetramic acid or β -ketoamide at activated glycosides SI-92 and SI-91.

Reagents and conditions: a) Ac₂O, pyridine, rt, 2 h; b) TMSBr, CH₂Cl₂, 0 °C, 2 h; c) tetramic acid **SI-87**, KO*t*Bu, THF, 0 °C, 20 h; d) β -ketoamide **SI-88**, KO*t*Bu, THF, 0 °C, 20 h; e) DBU, Cl₃CCN, CH₂Cl₂, 0 °C \rightarrow rt, 1 d, f) β -ketoamide **SI-88**, TMSOTf, 4 Å MS, CH₃NO₂, rt, 4 d; g) tetramic acid **SI-87**, TMSOTf, 4 Å MS, CH₃NO₂, 0 °C, 1 d.

On the basis of the work of Beretta *et al.*¹⁷ we synthesized the sulfoxide donor **SI-96** in three steps out of L-Rhamnose (**12**) by complete acetylation, *S*-glycosylation and oxidation to the sulfoxide with *m*CPBA. This sugar was used instead of the ready functionalised sugar to try the coupling reactions. Sulfoxide **SI-96** was reacted with tetramic acid **SI-87**, β -ketoamide **SI-88**, 3-acyltetramic acid **61** and 4-*O*-alkyltetramic acid **SI-101**. Before, they were activated by conversion with BSA, which should silylate the nitrogen. Second step is the addition of sugar **SI-96** and a lewis-acid, for which we choose TMSOTf. All the experiments led to decomposition of the starting material.

Scheme S18. Failed attempts to attach a tetramic acid or β -ketoamide to sulfoxide SI-96. Reagents and conditions: a) Ac₂O, pyridine, rt, 22 h; b) PhSH, BF₃·OEt₂, CH₂Cl₂, rt, 22 h; c) *m*CBPA, CH₂Cl₂, -78 °C \rightarrow 0 °C, 7 h; d) 1. tetramic acid SI-87, BSA, dichloroethane, 90 °C, 2 h, 2. SI-96, TMSOTf, rt, 23 h; e) 1. β -ketoamide SI-88, BSA, dichloroethane, 90 °C, 2 h, 2. SI-96, TMSOTf, rt, 19 h; f) 1. 3-acyl tetramic acid 61, BSA, dichloroethane, 90 °C, 1 h, 2. SI-96, TMSOTf, rt, 22 h; g) 1. 4-O-alkyltetramic acid SI-101, BSA, dichloroethane, 90 °C, 2 h, 2. SI-96, TMSOTf, rt, 20 h.

Finally, we decided to use the established method of the first total synthesis.² Ester **60a** was treated with gold-catalyst and all of the coupling products used before. Conversion with tetramic acid **SI-87** led to a defined product. 2D-NMR-experiments indicated that tetramic acid is bound to the sugar via a *O*-glycosidic linkage. This is possible because of the tautomeric character of tetramic acid **SI-87**. Reaction with β -ketoamide **SI-88** led to a product mixture. Here *O*-, *C*- or *N*-glycosidic linkages are possible. The different products couldn't be separated. The glycosylation with 4-*O*-alkyltetramic acid **68** as well as 3-acyltetramic acid **61** gave the desired products but with a α : β ratio of 1:1 and 10:1, respectively.

Scheme S19. Investigations on attaching different forms of tetramic acids to a glycoside via an Aucatalysed reaction.

Reagents and conditions: a) tetramic acid **SI-87**, AuPPh₃NTf₂, toluene, 40 °C, 20 h; b) β -ketoamide **SI-88**, AuPPh₃NTf₂, toluene, 40 °C, 20 h; c) 4-*O*-alkyltetramic acid **68**, AuPPh₃NTf₂, toluene, 40 °C, 20 h; d) 3-acyltetramic acid **61**, AuPPh₃NTf₂, toluene, 40 °C, 20 h.

2.13 Synthesis of amykitanose (13)

Glycoside SI-70 was reacted with trichloroacetylisocyanate to give product SI-103, which gave the carbamate SI-104 after stirring with SiO_2 in 91% yield over two steps. Deprotection at the anomeric position in 17% yield gave amykitanose (13). The synthesis wasn't optimised yet but can easily be used to introduce the carbamate function.

Schema S20. Synthesis of amykitanose (13). Reagents and conditions: a) trichloroacetylisocyanate, CH₂Cl₂, 0°C, 13 min; b) SiO₂, THF/MeOH, 40°C; c) Pd(PPh₃)₄, AcOH, rt, 16 h.

2.14 Alternative formal synthesis of kibdelomycin (1)

For the completion of an alternative total synthesis exploiting the novel *N*-glycosylation of 3acyltetramic acids, tetramic acid **SI-87** would have to be attached to the decalin fragment **SI-105** via an established Yoshii-Yoda acylation (Scheme S21).¹⁸ The resulting 3-acyltetramic acid **SI-106** would then be *N*-glycosylated with the sugar fragments **60a/b** via the known Aucatalysed reaction and the 4-position be converted into a carbamic acid to give **SI-107** (analogue to the synthesis of amykitanose (**13**) *cf*. Scheme S20). Finally, building block **SI-107** would be *O*-glycosylated with the amycolose derivative **4** to afford kibdelomycin (**1**).

Schema S21. Synthetic plan for an alternative synthesis of kibdelomycin (1). Reagents and conditions: a) LiOH; b) EDC·HCl, DMAP, then NEt₃, DMAP, CaCl₂; c) 60a/b, AuPPh₃NTf₂; d) deprotection 4-position, then Cl₃CCONCO, then SiO₂, then MEM-deprotection; e) 4, TfOH.

3. References

- 1 B. J. L. Royles, Chem. Rev., 1995, 95, 1981.
- 2 S. Yang, C. Chen, J. Chen and C. Li, J. Am. Chem. Soc., 2021, 143, 21258.
- 3 R. J. Abraham and M. Reid, J. Chem. Soc., Perkin Trans. 2, 2002, 1081.
- 4 A. M. Molins-Pujol, C. Moranta, C. Arroyo, M. T. Rodríguez, M. C. Meca, M. D. Pujol and J. Bonal, J. Chem. Soc., Perkin Trans. 1, 1996, 2277.
- 5 H. Guo and G. A. O'Doherty, Angew. Chem. Int. Ed., 2007, 46, 5206.
- 6 T. J. Kucharski, N. Ferralis, A. M. Kolpak, J. O. Zheng, D. G. Nocera and J. C. Grossman, *Nat. Chem.*, 2014, **6**, 441.
- 7 T. den Hartog, D. van Jan Dijken, A. J. Minnaard and B. L. Feringa, *Tetrahedron Asymmetry*, 2010, **21**, 1574.
- 8 H. Sakaguchi, H. Tokuyama and T. Fukuyama, Org. Lett., 2007, 9, 1635.
- 9 S. G. Davies, I. A. Hunter, R. L. Nicholson, P. Roberts, E. D. Savory and A. D. Smith, *Tetrahedron*, 2004, **60**, 7553.
- 10 E. Vedejs, in *Encyclopedia of Reagents for Organic Synthesis*, John Wiley & Sons, Ltd, Chichester, UK, 2001.
- 11 J. Willwacher and A. Fürstner, Angew. Chem. Int. Ed., 2014, 53, 4217.
- 12 T. Hanaya, H. Baba, H. Toyota and H. Yamamoto, *Tetrahedron*, 2009, 65, 7989.
- 13 E. Danieli, D. Proietti, G. Brogioni, M. R. Romano, E. Cappelletti, M. Tontini, F. Berti, L. Lay, P. Costantino and R. Adamo, *Bioorg. Med. Chem.*, 2012, 20, 6403.
- 14 B. J. Dahl and B. P. Branchaud, Tetrahedron Lett., 2004, 45, 9599.
- 15 A. S. K. Hashmi, C. Lothschütz, R. Döpp, M. Ackermann, J. de Buck Becker, M. Rudolph, C. Scholz and F. Rominger, *Adv. Synth. Catal.*, 2012, **354**, 133.
- 16 M. Petermichl, S. Loscher and R. Schobert, Angew. Chem. Int. Ed., 2016, 55, 10122.
- 17 M. Beretta, E. Rouchaud, L. Nicolas, J.-P. Vors, T. Dröge, M. Es-Sayed, J.-M. Beau and S. Norsikian, Org. Biomol. Chem., 2021, 19, 4285.
- 18 a) T. Sengoku, J. Wierzejska, M. Takahashi and H. Yoda, *Synlett*, 2010, 2010, 2944; b) K.
 Hori, M. Arai, K. Nomura and E. Yoshii, *Chem. Pharm. Bull.*, 1987, 35, 4368.

4. NMR-Spectra

$\begin{array}{c} 7,7,3\\ 7,7,7,4\\ 7,7,7,7\\ 7,7,7$

7,155 7,155 7,157 7,157 7,157 7,157 7,158 7,159

8 7 6 5 4 3 2 1 0 ppm

S103

S105

S106

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

